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INTRODUCTION 
 

New topological method in complementarity 
theory is now developing. This method is based on the 
notion of “exceptional family of elements (EFE)” 
initially defined in 1991–1993 by G. Isac as “radial 
family of elements”. The name of EFE was given in 
(Isac et al., 1997), after the authors found a connection 
between this notion and the topological degree in Rn.  

We note that after 1997, this notion was extended 
to completely continuous fields and to other classes of 
mappings in general Hilbert spaces. Now it is known 
(Isac, 2001) that this notion is related to the 
Leray-Schauder Alternative, which is one of the most 
important theorems in Nonlinear Analysis. The notion 
of EFE for a function in arbitrary Hilbert spaces, has 
recently been used in several papers for example, 
(Bulavski et al., 1998; Isac, 1998; 1999a; 1999b; 
2000a; 2000b; 2000c; 2001; Isac et al., 1997; Isac and 
Carbone, 1999; Isac and Li, 2001; Isac and 
Obuchowska, 1998; Isac and Zhao, 2000; Kalash-
nikov, 1995; Kalashnikov and Isac, 2002; Zhao, 1997; 
1998; Zhao and Isac, 2000a; 2000b), among others. In 
this paper we generalize the notion of EFE to uni-
formly smooth and uniformly convex Banach spaces, 

by using the “generalized projection operator” defined 
by Alber (1996) and the Leray-Schauder Alternative 
for completely continuous mappings. We use this 
generalization to give some new existence theorems of 
solutions for complementarity problems in Banach 
spaces. 

 
 

PRELIMINARY 
 

Let (E, ||.||) be a Banach space. We denote by E* 
the topological dual of E, and by 〈E, E*〉 the natural 
duality pairing between E* and E, i.e., 〈ϕ, x〉=ϕ(x), 
where φ∈E* and x∈E. We denote by Ω a nonempty, 
closed and convex subset in E. The set Ω may be a 
closed convex cone K in E, i.e., K is a closed subset of 
E satisfying: 
       (k1)  λK⊆K, for all λ≥0; 
       (k2)  K+K⊆K. 

The dual cone K* of the cone K is by definition:  
 

K*={y∈E*:〈y, x〉≥0, for all x∈K}. 
 

We need to recall several known definitions. A 
Banach space (E, ||.||) is called strictly convex if for 
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two elements x, y∈E which are linearly independent, 
we have that ||x+y||<||x||+||y||. 

Also, a Banach space (E, ||.||) is called uniformly 
convex if and only if, for every sequences {xn}x∈N, 
{yn}y∈N⊂E, with ||xn||=||yn||=1, for any n∈N and such 
that 

 
||xn+yn||→2 implies ||xn–yn||→0.  

 
Equivalently (E, ||.||) is uniformly convex if and 

only if, for every ε >0, there exists δ>0 such that for 
any x, y∈E with ||x||=||y||=1 and ||x–y||≥ε we have that 
||x+y||≤2(1–δ).  

It is known (Cioranescu, 1990; Takahashi, 2000) 
that any uniformly Banach space is strictly convex. 

A Banach space (E, ||.||) is smooth if and only if 
its norm ||.|| is G-differentiable on E\{0} (Takahashi, 
2000). A Hilbert space is smooth but there exist 
smooth Banach spaces that are not Hilbert spaces. 

Finally, we say that a Banach space (E, ||.||) is 
uniformly smooth, if and only if the norm f(x)=||x|| is 
F-differentiable and 
 

0 1
lim sup ( ), 0
t x = y =

x+ ty x
< f x y > .

t→

−
′− =  

 
Also, we recall that a Banach space (E, ||.||) is 

uniformly convex if and only if its dual E* is uni-
formly smooth, and conversely E is uniformly smooth 
if and only if E* is uniformly convex (Cioranescu, 
1990; Takahashi, 2000). The Banach space (E, ||.||) is 
uniformly convex if and only if the function 
f(x)=(1/2)||x||2 is strictly convex. It is also important, 
for the results of this paper to recall the notion of 
“duality mapping” associated with a Banach space. 

Let (E, ||.||) be an arbitrary Banach space. The 
normalized duality mapping between E and E* is by 
definition:  

 
J(x)={x*∈E*: 〈x*, x〉=||x*||||x||,  ||x||=||x*||}, 

that is, for any x*∈J(x), we have  
          * * 2

*< , >=|| || || ||=|| || ,x x x x x  
 

for any x∈E, where *
*|| ||x  is the norm in the dual 

space E* and ||x|| is the E-norm. Obviously, we 
have

*

: 2EJ E .→  

J is a monotone, coercive, homogeneous, odd 
and bounded operator in arbitrary Banach spaces. J is 
also uniformly continuous on each bounded set in 
uniformly smooth Banach spaces and is the identical 
operator in Hilbert spaces. It is known that if (E, ||.||) is 
uniformly smooth Banach space, then J is a single 
valued mapping and is continuous from norm topol-
ogy to norm topology and moreover 

 
J(x)=grad(||x||2/2). 

 
Regarding the classes of Banach spaces pre-

sented above and the duality mapping, the reader is 
referred to (Cioranescu, 1990; Takahashi, 2000). We 
note, as cited in (Alber, 1996), the Banach spaces lp, 
Lp and ,p

mW  p∈(0, ∝) are uniformly convex and uni-
formly smooth. 
 
 
COMPLEMENTARITY PROBLEMS AND 
VARIATIONAL INEQUALITIES 
 

Let (E, ||.||) be a Banach space,  Ω⊂E a nonempty, 
closed and convex subset,  K⊂E a closed convex cone 
and f:E→E* a mapping, the nonlinear complementar-
ity problem defined by  f and K is by definition: 
 

*
*

* * *

find  such that
( , ):

( )  and , ( ) =0.

x K
NCP f K

f x K x f x

∈


∈
 

    
The NCP(f, K) is the mathematical model of 

many problems considered in optimization, game 
theory, economics, engineering and mechanics, 
among others. Generally, the NCP(f, K) is related to 
equilibrium problems (Cottle et al., 1992; Isac, 1992; 
2000a; Kalashnikov, 1995). The (classical) varia-
tional inequality defined by the mapping f and the set 
Ω is: 

 

*

* *

find  such that
( , ):

( ), 0, for every 
x

VI f
f x x x x .

∈ΩΩ  − ≥ ∈Ω
  

 
The variational inequalities have many applica-

tions in economics, physics and technology. The 
Variational Inequalities Theory is a popular domain 
in applied mathematics. 
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It is known (Cottle et al., 1992; Isac, 1992; 
2000a) that when Ω is a closed convex cone K, then 
the problems NCP(f, K) and VI(f, K) are equivalent. 

 
 

A GENERALIZED PROJECTION OPERATOR 
                          

Let (E, ||.||) be a uniformly convex and uniformly 
smooth Banach space. Let E* be the topological dual 
of E and Ω⊂E a closed and convex set. We consider 
the functional V:E*×E→R that is defined in Alber 
(1996): 

 
         V *( ,y x)= 2

* *
y –2〈 * ,y x〉+||x||2, 

 
where *y ∈E* and x∈E and ||.||*  is the norm in E*.  

It is known (Alber, 1996) that the minimization 
problem 
 

*
* *

* * *

given , find ( )  such that
( , ( ))= inf ( , )

y

y E x y
V y x y V y y

∈Ω

 ∈ ∈Ω



 

 

has a unique solution. The operator πΩ:E*→Ω defined 
by πK *( )y =x *( )y  is called the generalized projection 
operator. 

The generalized projection operator was defined 
by Alber (1996) and has several interesting properties. 
For these properties, the reader is referred to (Alber, 
1996).  

We need to recall the following two results: 
Lemma 1 (Alber, 1996)    The functional V(y*, x) is 
convex with respect to y* when x is fixed and with 
respect to x when y* is fixed. 
Proof    A proof of this result is given in (Alber, 1996). 
Lemma 2 (Bulavski et al., 1998)    gradxV *( ,y  
x)=2(J(x)– *y ). 
Proof    This formula is a consequence of the fact that 
on a uniformly smooth Banach space, we have that 
 
             J(x)=grad(||x||2/2). 
 
Lemma 3    A differentiable functional f:E→R is 
convex if and only if 
 

f(x)–f(x0)≥〈grad f(x0), x–x0〉, 
 

for any x, x0∈E. 

Proof    This is a classical result and well known in 
convex analysis.  

The following two results are due to Alber 
(1996). 
Theorem 1 (Alber, 1996)    The point y0 is the gen-
eralized projection of *y ∈E* on Ω, i.e., y0=πΩ *( ),y if 
and only if  
 

〈 *y –J(y0), y0–u〉≥0,  for all u∈Ω.                      (1) 
 
Proof    Because by definition y0=πΩ( *y ), we have 
 

V *( ,y y0)≤V *( ,y  y0+t(u–y0)), 
 

where u∈Ω, t∈[0, 1] and y0+t(u–y0)∈Ω (using the 
convexity of Ω). Considering Lemmas 1, 2 and 3, we 
deduce the following inequalities, 
 
              0≥V *( ,y  y0)–V *( ,y  y0+t(u–y0)) 

                 ≥2〈J(y0+t(u–y0))– *y , y0–y0–t(u–y0)〉, 
which implies 
                     〈J(y0+t(u–y0))– *y , u–y0〉≥0. 
Letting t→0, we have 

〈J(y0)– *,y u–y0〉≥0, for all u∈Ω, 
 

so Eq.(1) is satisfied. 
Conversely, if Eq.(1) is satisfied, then we have 

(using Lemma 2 again), 
 

V *( ,y u)–V *( ,y y0)≥2〈J(y0)– *,y u–y0〉≥0, for all u∈Ω, 
which implies that 
                  V(y*, u)≥V(y*, y0), for all u∈Ω, 
 
that is, y0=πΩ *( )y and the proof is completed.  
Theorem 2 (Alber, 1996)    Let  f  be a mapping from 
E into E*, Ω⊂E a closed and convex set and α an 
arbitrarily fixed positive number. Then an element 

*x ∈Ω is a solution of the VI(f, Ω) if and only if *x  is a 
fixed point of the mapping 
 

ΨΩ(x)=πΩ(J(x)–αf(x)), x∈E,   
i.e., *x =πΩ( * *( ) ( )).J x f xα−  

 
Proof    Indeed, we remark that VI(f, Ω) has the 
equivalent representation 
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〈J(x)–α(f(x)–J(x)), x–u〉≥0, for all u∈Ω                (2) 
 

Considering Eq.(2) and taking in Theorem 1,  
y*=J(x)–αf(x*)∈E* and  x=y0∈Ω⊂E, the conclusion of 
the theorem is achieved.  
Corollary 1    Let  f  be a mapping from E into E* and 
K⊂E a closed convex cone. Then an element x*∈K is 
a solution of the NCP(f, K) if and only if x* is a fixed 
point of the mapping 
 

x*=πK(J(x*)–f(x*)). 
 

Remarks    (i) For the main results of this paper, it is 
important to recall that in the case of uniformly con-
vex and uniformly smooth Banach space, the gener-
alized projection πΩ is uniformly continuous on each 
bounded subset of the space. 

(ii) The assumptions that the space E must be 
uniformly convex and uniformly smooth are essential 
for the definition of πΩ and for its properties necessary 
for the results of this paper. 

 
 

A NOTION OF EXCEPTIONAL FAMILY OF 
ELEMENTS IN BANACH SPACES 
 

The notion of “exceptional family of elements 
(EFE)” as it was defined in (Isac et al., 1997) has been 
systematically used in many papers for example, 
(Bulavski et al., 1998; Isac, 1998; 1999a; 1999b; 
2000a; 2000b; 2000c; 2001; Isac et al., 1997; Isac and 
Carbone, 1999; Isac and Li, 2001; Isac and 
Obuchowska, 1998; Isac and Zhao, 2000; Kalash-
nikov, 1995; Zhao, 1997; Zhao and Isac, 2000a; 
2000b), among others. In the cited papers, the notion 
of EFE has been used in the study of complemetarity 
problems and in the study of variational inequalities. 
Until now this notion has been considered only in 
Hilbert spaces. 

Now, in this paper we introduce the notion of 
EFE in uniformly convex and uniformly smooth 
Banach spaces and we apply this notion to the study 
of complemetarity problems. 

Let (E, ||.||) be a uniformly convex and uniformly 
smooth Banach space. Let Ω⊂E be a closed and con-
vex set and let  f:E→E* be a mapping. 
Definition 1    If x∈Ω, then, the generalized normal 
cone of Ω at the point x is 

NΩ(x)={y*∈E*:〈y*, u–x〉≤0, for all u∈Ω}. 
 
Remark    The generalized normal cone NΩ(x) is a 
subset of the dual space E*. If E is a Hilbert space, 
Ω⊂E is a closed and convex set and x∈Ω, then in this 
case NΩ(x) is the normal cone NΩ(x)⊂E of the set Ω at 
point x. 

The importance of this notion is given by the 
following results. 
Proposition 1    An element y0∈Ω has the property 
that y0=πΩ(y*), where y*∈E* if and only if 
y*∈J(y0)+NK(y0). 
Proof    Indeed, by Theorem 1 we have that y0=πΩ(y*), 
if and only if, for any u∈Ω, we have 
 
       〈y*–J(y0), y0–u〉≥0,   
or 
        〈y*–J(y0), u–y0〉≤0,  for all u∈Ω, 
 
that is,  y*–J(y0)∈NK (y0), i.e., y*∈J(y0)+NK (y0). This 
proposition is proved.  

Now, we suppose that Ω=K⊂E, where K is a 
closed convex cone. We recall that a mapping 
T:E→E* is completely continuous if T is continuous 
and for any bounded set D⊂E, we have that T(D) is 
relatively compact. 
Definition 2    We say that a mapping f:E→E* is a 
J-completely continuous field if f has a representation 
f(x)=J(x)–T(x), for all x∈E, where T:E→E* is a com-
pletely continuous mapping.   

Now we can define a notion of EFE for J-com-
pletely continuous fields. 
Definition 3    We say that a family of elements 
{xr}r>0⊂K is an exceptional family of elements (EFE) 
for a J-completely continuous field f(x)=J(x)–T(x) 
with respect to a closed convex cone K⊂E, if and only 
if, for every real number r>0 there exists a real 
number µr >1 such that  

(i) ||xr||→+∞ as r→+∞ 
(ii) T(xr)–J(µrxr)∈NK(µrxr). 

Remark    In the case of a Hilbert space, the notion of 
EFE defined by Definition 3 is the notion of EFE used 
in the papers (Bulavski et al., 1998; Isac, 1998; 1999a; 
1999b; 2000b; 2000c; 2001; Isac et al., 1997; Isac and 
Carbone, 1999; Isac and Li, 2001; Isac and 
Obuchowska, 1998; Isac and Zhao, 2000; Kalash-
nikov, 1995). 
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The importance of this notion of EFE is given in 
the next section.  

 
 

APPLICATIONS TO THE STUDY OF 
COMPLEMENTARITY PROBLEMS 
 

We present in this section some existence theo-
rems for nonlinear Complementarity Problems in 
uniformly convex and uniformly smooth Banach 
spaces. Our results are based on the notion of EFE and 
on an alternative theorem deduced from the 
Leray-Schauder Alternative. We note that the 
Leray-Schauder Alternative is one of the most im-
portant theorems in Nonlinear Analysis.  

First, we recall the Leray-Schauder Alternative. 
Let E(τ) be a locally convex space, D⊂E a subset and 
f:E→E* a mapping. We say that  f  is compact if  f(D) 
is relatively compact.  
Theorem 3 (Leray-Schauder Alternative)    Let (E, ||.||) 
be a Banach space, C⊂E a convex set and V⊂C a 
subset open with respect to C and such that 0∈V. 
Then each continuous compact mapping f:clV→C has 
at least one of the following two properties: f has a 
fixed point, there exists x*∈∂V and there is a real 
number λ*∈(0, 1) such that x*∈λ* f(x*). 
Proof    The reference about the proof of this result is 
in (Isac, 2001).   

We have the following result. 
Theorem 4    Let (E, ||.||) be a uniformly convex and 
uniformly smooth Banach space, K⊂E a closed con-
vex cone and f:E→E* a J-completely continuous field 
with the representation f(x)=J(x)–T(x). Then there 
exists either a solution to the problem NCP(f, K) or f 
has an exceptional family of elements (EFE) with 
respect to K. 
Proof    From Theorem 2, the problem NCP(f, K) has 
a solution if and only if the following mapping 
 
        ΨK(x)=πK(J(x)–f(x))=πK(T(x)),  for all x∈E, 
 
has a fixed point (which is obviously in K).  

If ΨK(x) has a fixed point, the proof is com-
pleted. 

Assume that the problem NCP(f, K) has no so-
lution. Obviously the mapping ΨK is fixed point free. 
We observe that ΨK satisfies the assumptions of 
Theorem 3 with respect to each set Br={x∈E:||x||≤r} 

with r>0 (Because T is completely continuous and πΩ 
is uniformly continuous on each bounded subset of 
the space). Then applying Theorem 3 to each set Br 
we obtain for each r>0, that there exists xr∈∂Br and 
there is a real number λr∈[0, 1] such that 
xr=λrπK(T(xr)). We have that xr∈K for each r>0. From 
Proposition 1 we obtain that T(xr)∈J(xr/λr)+NK (xr/λr). 
Let µr =1/λr, for all r>0, then we obtain 

(d1)  ||xr||=r, and µr>1, for all r>0, 
(d2)  ||xr||→+∞ as r→+∞, 
(d3)  T(xr)–J(µrxr)∈NK (µrxr),  

and the conclusion of the theorem is achieved.   
A consequence of Theorem 4 is the fact that if 

we know that the J-completely continuous field 
f:E→E* is without EFE, then the NCP(f, K) has a 
solution. Therefore, it is interesting to have some 
conditions that imply the nonexistence of EFE for a 
given mapping. We give some results in this sense. 

The first author of this paper introduced “condi-
tion θ ” in (Isac, 1999a; Kalashnikov and Isac, 2002) 
and used this condition in (Isac, 1998; 1999b; 2000c; 
2001; Isac and Li, 2001). 

Now we will show that this condition also ap-
plies to Banach spaces. 
Definition 4    Let (E, ||.||) be a uniformly convex and 
uniformly smooth Banach space. We say that a map-
ping f:E→E* satisfies the condition (Θ) with respect 
to a closed convex cone K⊂E if there exists a real 
number ρ>0 such that for each x∈K with ||x||>ρ, there 
exists y∈K such that ||y||<||x|| and 〈f(x), x–y〉 ≥0. 
Theorem 5    If f:E→E* is a J-completely continuous 
field satisfying the condition (Θ) with respect to a 
closed convex cone K⊆E, then f is without excep-
tional family of elements with respect to K and the 
NCP(f, K) has a solution. 
Proof    Suppose, by contradiction, that f has an ex-
ceptional family of elements {xr} with respect to K. 
Then for all r>0, we have ||xr||=r, µrxr∈K such that 
µr>1, and J(xr)–f(xr)–J(µrxr)∈NK (µrxr), that is,  
 

〈J(xr)–f(xr)–J(µrxr),  y–µrxr〉≤0, for all y∈K.     (3)  
 

Because f satisfies the condition (Θ), with re-
spect to K, we have that for any r sufficiently big, 
there exists yr∈K such that ||xr||>ρ, ||yr||<||xr|| and 〈f(xr), 
xr–yr〉≥0.  
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Considering Eq.(3) and using the fact that the 
operator J is homogenous, we have  

 
0≤〈f(xr), xr–yr〉  

=〈–J(xr)+f(xr)+J(µrxr)+J(xr)–J(µrxr), xr–yr〉 
      =〈–J(xr)+f(xr)+J(µrxr), xr–yr〉+〈J(xr)–J(µrxr), xr–yr〉 
      ≤〈J(xr)–J(µrxr), xr–yr〉 

 
We used the following relation in the last ine-

quality: 
 
µr〈–J(xr)+f(xr)+J(µrxr), xr–yr〉 

               = 〈–J(xr)+f(xr)+J(µrxr), µrxr–µryr〉 
               = 〈J(xr)–f(xr)–J(µrxr), µryr–µrxr〉≤0, 
(because µryr∈K), which implies  
            〈– J(xr)+f(xr)+J(µrxr), xr–yr〉≤0. 
 

Therefore we have 
 
        0≤〈J(xr)–J(µrxr), xr–yr〉 
          =≤〈J(xr)–µrJ(xr), xr–yr〉 
          =(1–µr)〈J(xr), xr–yr〉 
          =(1–µr)(||xr||

2–〈J(xr), yr〉) 
          =(1–µr)(||xr||

2+(µr–1)〈J(xr), yr〉) 
          ≤(1–µr)||xr||

2+(µr–1)||J(xr)||||yr|| 
          =(1–µr)||xr||

2+(µr–1)||xr||||yr|| 
          <(1–µr)||xr||

2+(µr –1)||xr||
2 

          =0, 
 
which is a contradiction.   

Hence f is without EFE with respect to K. The 
conclusion of the theorem follows from Theorem 4 
and the proof is completed.   

The following condition is a generalization of 
the Ding-Tan (DT) condition considered in (Isac, 
1999a). 
Definition 5    We say that a mapping f:E→E* satis-
fies the DT condition with respect to a closed convex 
cone K⊂E if there exist two bounded subsets D0 and 
D* in K such that for each x∈K\D* there is a 
y∈conv(D0∩{x}) such that 〈f(x), x–y〉>0. 

We have the following result. 
Proposition 2    If f:E→E* satisfies the DT condition 
with respect to a closed convex cone K⊂E, then f 
satisfies the condition (Θ). 
Proof    Because D0 and D* are bounded subsets in K, 
there exists a real number ρ>0 such that D0, 

D*⊂(clBρ)∪K. If x∈K is such that ||x||>ρ, then by the 
DT condition, there is an element y∈conv(D0∩{x}) 
such that 〈f(x), x–y〉>0. We have, y=λx0+(1–λ)x with 
λ∈[0, 1] and x0∈D0, which implies 
 
        ||y||≤λ||x0||+(1–λ)||x||<λ||x||+(1–λ)||x||=||x||. 
 

Therefore, f satisfies condition (Θ) with respect 
to K. This proposition is proved.   

The following notion is related to a similar no-
tion defined in (Isac et al., 1997). 
Definition 6    Let f, g:E→E* be two mappings. We 
say that mapping f is asymptotically 
g-pseudomonotone with respect to a closed convex 
cone K⊂E, if there exists a real number ρ>0 such that 
for all x, y∈K with max{||y||, ρ}<||x||, we have that  
 

〈g(y), x–y〉≥0 implies 〈f(x), x–y〉≥0. 
 
This notion implies the following result. 

Theorem 6    Let (E, ||.||) be a uniformly convex and 
uniformly smooth Banach space, K⊂E an arbitrary 
closed convex cone and f, g:E→E* be two mappings 
such that f is a J-completely continuous field. If f is 
asymptotically g-pseudomonotone with respect to K 
and the problem NCP(g, K) has a solution, then f is 
without EFE with respect to K and the problem NCP(f, 
K) has a solution. 
Proof    Let x* be a solution to the problem NCP(g, K). 
Then for all y∈K, we have 〈g(x*), y–x*〉≥0. Since f is 
an asymptotically g-pseudomonotone with respect to 
K, there exists a real number ρ>0 such that for all x, 
y∈K with max{||y||, ρ}<||x||, we have that 〈g(y), 
x–y〉≥0 implies 〈f(x), x–y〉≥0.  

Take ρ0=max{||x*||+1, ρ+1}. Then for any x∈K 
with ||x||>ρ0, we may take x*∈K. Because ||x*||<||x|| 
and 〈g(x*), x–x*〉≥0, we have that 〈f(x), x–x*〉≥0, that is,  
f satisfies the condition (Θ) with respect to K. Now, 
applying Theorem 5, the conclusion of this theorem is 
achieved.   
Remark    If in Definition 6 we take g=f, we say that f 
is asymptotically pseudomonotone with respect to K. 
Obviously, if f is monotonic, it is asymptotically 
pseudomonotone, but the converse is not true. 

The following result follows from Theorem 6 
immediately. 
Corollary 2    Let (E, ||.||) be a uniformly convex and 
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uniformly smooth Banach space, K⊂E a closed con-
vex cone and f:E→E* a J-completely continuous field. 
If f is asymptotically pseudomonotone with respect to 
K, then the problem NCP(f, K) has a solution if and 
only if f is without EFE with respect to K. 
 
 
COMMENTS     
 

We introduced in this paper the notion of EFE 
for a J-completely continuous field f:E→E*, where E 
is a uniformly convex and uniformly smooth Banach 
space. By using this notion, we obtained an existence 
theorem for the general nonlinear complementarity 
problem. Other results obtained in (Bulavski et al., 
1998; Isac, 1998; 1999a; 2000a; 2000b), in Hilbert 
spaces may be extended to this class of Banach 
spaces. 
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