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Abstract: In this paper, we mainly pay attention to the weighted sampling and reconstruction algorithm in lattice-invariant signal
spaces. We give the reconstruction formula in lattice-invariant signal spaces, which is a generalization of former results in
shift-invariant signal spaces. That is, we generalize and improve Aldroubi, Grochenig and Chen’s results, respectively. So we
obtain a general reconstruction algorithm in lattice-invariant signal spaces, which the signal spaces is sufficiently large to ac-

commodate a large number of possible models. They are maybe useful for signal processing and communication theory.
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INTRODUCTION

In digital signal and image processing, digital
communication, etc., a continuous signal is usually
represented and processed by using its discrete sam-
ples. A finite energy bandlimited signal is completely
characterized by its samples, and described by the
famous classical Shannon sampling theorem with
wide application in signal processing and communi-
cation theory.

However, in many real applications sampling
points are not always regular. If a weighted sampling
is considered, the system will be made to be more
efficient. It is well known that in the sampling and
reconstruction problem of non-bandlimited spaces,
the signal is often assumed to belong to shift-invariant
spaces (Aldroubi, 2002; Aldroubi and Feichtinger,
1998; Aldroubi and Gréchenig, 2000; 2001; Chen et
al., 2002; Sun and Zhou, 2002; Xian and Lin, 2004;
Xian and Qiang, 2003; Luo and Lin, 2004; Xian et al.,
2004).

Clearly we hope signal spaces be sufficiently
large to accommodate a large number of possible
models. So Feichtinger introduced lattice-invariant

space of the form V! (¢) :{ > c(k)p(-—Lk):ce !’ }
keR?
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in (Aldroubi and Feichtinger, 2002), where L is a dxd
non-singular matrix, 1<p<oo. The matrix L transforms
the lattice Z into the lattice A. When L is the identity
matrix, we can obtain the standard shift-invariant
spaces. Feichtinger pointed out that a combination of
generator ¢ (e.g. radial symmetric ones) with suitable
lattice A (related to sphere packing) is a good alter-
native for the usual voxel representation of volume
data also observed in (Lewitt, 1992). So the lat-
tice-invariant spaces are a sufficiently large value
family of signal spaces. We will show the recon-
struction formula for the lattice-invariant spaces. This
result is generalized and improved form of Chen’s
result in (Chen et al., 2002). At the same time, my
results are a generalization of Proposition 1(iv) in
(Aldroubi and Gréchenig, 2000) and Eq.(5.1) in (Al-
droubi and Grdchenig, 2001).

RECONSTRUCTION IN LATTICE-INVARIANT
SPACES

Let X be a countable separated index set in R’
that is, inf

x,yeX,x#y

negative function on R¢ which we may assume to be

|x—y[>0>0. A weight is a non-
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continuous. A weight m is called polynominaly
s-moderate, if there are constant C, s>0 such that
m(t+x)<C(1+f])’'m(x) for all txeRe 1t is also called
Sobolev weight. The weighted ¢” -space ¢”(Z%) is

defined by the norm ||c||/,ﬂ,’ =X Je(x)|” m(x)")"” with

the usual modification for p=oo. A function f'belongs
to L7 (R’) with weight function m if mf belong to

m

L2 (R"). Equipped with the norm | f ||L, =|mf],, .

I’ (R") is a Banach space. Weighted lattice invari-

ant spaces can be described as:

Vi (@) ={ 2 c(b)p(-—Lk):ce «?Z},

keR?

where ¢ is a suitable generator, L is a dxd
non-singular matrix, 1<p<oco. When L is the identity
matrix, we obtain the standard shift-invariant spaces.

We impose the following standard assumptions
on the generator ¢:

(i) {@(-—Lk):keZ"} form a Riesz basis for V(¢).

(i1) ¢ is continuous.

(iii)) ¢ satisfies the decay condition
|pI<C(1+x])*** for any s>d and some £>0.

Since the Riesz basis {@(—Lk):keZ’} is lat-
tice-invariant, the dual basis must again be of the form

{p(-— Lk):k € Z}. The dual ¢ satisfies the relation
((p(- —Lk),p(-— Ll)> =J,. So Vz((p) is a reproducing
kernel Hilbert space. Its kernel functions are given
explicitly by k. (y)= 3 o(x— Lk)@(y — Lk).

kez?

If Y [f)| = |/ is satistied for XeR?, then X
xeX

is called a set of sampling for V(¢). That is, it is
equivalent to saying that {k:xeX} is a frame for
(o).

Lemma 1 (Grochenig, 2004)  If XcR is separated,

then for any s>d, sup D’ (1 + |x - v|)_‘v =C, <.

veR? xeX
Corollary 1 If XcR? is separated, then for any s>d,
sup >’ (1 +|x - Lz|)_s = C! <o, where L is matrix.

zez? xeX

If XcR? is separated and s>d, then

—5
]

Lemma 2
> (1 +|x - Ln|)_s (1 + |x— Lm|)_x < C(l +|L(n —m)|)
xeX

(YmneZ").

Proof By Corollary 1, we can easily obtain Lemma
2.

Lemma 3  Assume that dxd matrix L, that weight
function m satisfies m(Ln)<m(n) for all ne Z* and that
X is separated. Let A=(1+Ln|) ™ for some &0,
s>d (neZ’, xeX). Then the operator 4 defined on
finite sequences (c,) ., by matrix multiplication

(do), = Zd A, c, is a bounded operator from ¢ (Z*)

neZ
to £7 (X) for all pe(1,0) and all s-moderate weight
m.
Remark Some methods of (Bergh and Lofstrom,
1976) are used in the proof of Lemma 3.

The following Theorem 1 is Jaffard’s Theorem.
Theorem 1  (Jaffard’s Theorem (Grochenig, 2004;
Jaffard, 1990; Lewitt, 1992)) Assume that the matrix
G =(Gy),,,. satisfies the following properties:

(a) G is invertible as an operator on L*(Z%), and

(b) |GulI<C+L(k-1)[", k,leZ’ for some constant
C>0, dxd matrix and some r>d. Then the inverse
matrix H=G"' satisfies the same decay, that is,

\Hy|<CAHL(k-1)|", kleZ’.

Lemma 4
s-moderate weight m. Assume that the generator ¢
satisfies the assumptions (i)~(iii), and that X={x;} is a

Given 1<p<co, s20 and polynominaly

set of sampling for V(¢).
(a) Then the coefficient operator defined by

Cf = ((f,kx/ >)X/EX is bounded from V' (p) to
2 (X).

(b) The defined by
Dc=chkx/ extend to a bounded mapping from

synthesis  operator

0, (X) to V. (9).
(c) The frame operator S= Y (f .k, )k, maps

x;eX
V'’ (@) into V?(¢), and the series converges uncon-

ditionally for 1<p<co.
Proof It is easy to prove (a) and (b) from results of
(Aldroubi and Grochenig, 2001) and Lemma 3.

In the following, we will prove (c). The bound-
edness of S=DC follows by combining (a) and (b). As
for the unconditional convergence of the series, let
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£>0 and choose Ny=Ny(¢&) such that H( 7, kx>

xgNy o

Then for any finite set N;DN, assertions (a) and (b)
imply that

Sk dan, <[

op op

HSf - ZN (fskk,

<[o]
L

P
174

This means that

2 (f .k, )k, converges

x;eX
unconditionally in V/ (@) .
Lemma 5 If {(/)(-—Lk):keZd} is a Riesz basis for
Vz((p) and satisfies |@<C(1+/Lx|™) for some r>d, then
the dual generator satisfies @(x)|< C'(1+|Lx|)™".

Proof  For every fe V*(¢), we have the series ex-
pansion f = 3 (f,¢(—Lk))p(-~Lk).

kez!
Since @ eV’(p), it has the series expansion

@= Y bo(-—Lk). The coefficients b, are deter-

kezd

mined by the biorthogonality condition

(@(-—Lk),p(-— LI))=5,,,
S0 =(@.0(~LD)= T b,(p.0(~L{~m)).

meZ

This convolution can be written with the (infinite)
matrix @ with entries @, =(@,(-—L(I-m)))=%_,,. The
assumption on the decay of @ and Lemma 2 imply that
| @ |<CAHL(—m)|) ", LmeZ". Since {@(—Lk):keZ"}
is a Riesz basis for matrix @ is invertible on ¢*(Z%),
and @' is again a convolution with a sequence f.
Since r>d, Jaffard Theorem yields the decay estimate
(@ Yinl=| Bl <C'AHL(=m))) ™"

b=@'5=p*5=f. Thus |b|
<C(1+|L1))™", leZ®, and invoking Lemma 2 once again
we obtain that | @(x) < C'(1+| Lx|)™".

Consequently

Lemma 6 If the generator ¢ satisfies (i)~(iii), then
|{k,,o(-— Lk))|< C(1+ | x = Lk |)™ and
|{k,,@(-— Lk))|< C(1+| x— Lk|)” with decay s>d.
Moreover, |T, |<C(+|L(m—-n)|)" for mneZ,
T,, = % (@~ Ln).k, ) (k. ¢(—~ Lm))

xeX

=(So(-— Ln),@(-— Lm)) .

where

<g.

Proof Using the decay properties of generator ¢ and
¢ (Lemma 5 with r=s+d+¢) and fix)=(f,k.), we esti-
|k, (-—LK))|=|Xx—Lk)|<C(1+x—Lk|™  and
| (ks 0= LE)) [H (x = LK) [ C(+ | x — Lk |) ™.

By the above discussions and Lemma 2, we have

mate

| T, 1< 2 [ <k p(-= L))y ||k, @(- — Lm)) |

xeX

<3 (I+|x—Ln|)y” (+|x—Lm|)”

xeX

<C+|Lim-n)|)"* (YmneZ').

Theorem 2 Assume that the generator @ satisfies the
assumptions (i)~(iii), that m is polynominaly
s-moderate, and that X is a set of sampling for V*(¢)
with dual frame £_.

(a) Then we have forevery f eV/(p) (1<p<w),

4,1/

L < ( @ m(x)ﬁj <B, |/, -

(b) Each l;x satisfies the following estimate
|k (1)< CA+ |1 —x )~ for all xeX, teZ, with a
constant C independent of x.

(c) The reconstruction formula f'=3 f (x)lgx

xeX
holds for any f €V (¢) and the reconstruction se-

ries converges in  felV (o)

(1<p=0).
Proof At first, we will show the frame operator S is

unconditionally

invertible on V(@) , where 1<p<co and m is an

s-moderate weight.
Let T, =D (@(-—Ln),k, )Xk, ,p(-—Lm)) =

XJGX
(So(-=Ln),p(-— Lm)) and (I), =(f,@(-— Ln)).
It is easy to show that T is invertible. Then from
Jaffard’s Theorem we conclude that the entries of the
(T, <C+

inverse  matrix  also

|L(m—n))~"*.

By Lemma 3, 7' is a bounded operator on se-

satisfy

quence spaces (% (Z"). Since T is invertible and

S=I""'TT, S is invertible on V' (¢).
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Since /=S'Sf= §'DCY; we have

I D

-1
= ||S

‘m

f

op op op L, )

By the definition of norm ||

o and operator C,

we can obtain the following result from the above
inequalities:

Al = Zirer mer | <A,

where 4= , B=|c

op

Is7[,, 11,
(b) By k =Sk, we know |(k,.o(—Ln))|
=|(S k(- = L)) =] (k. S (- = L)) [< C, (14| x -
Ln|) .
Similarly| (k,, (- — Lk)) |< C(1+ | — Lk [)™~*.

So [k 3 |[(k.o(-— LI)| (@~ L) k)| < C,(1+

gy,

(c) Since the series Y. (f,k, )k  converges un-

xeX

conditionally by Lemma 4(c), the series

xeX

N ( DSk, >k‘j also converges unconditionally.

So f=3(f.k)S'k =Y f(x)k, and the recon-

xeX xeX

struction series Y. f (x)lgx converges unconditionally
xeX

in V' (p) for 1<p<co.

In contrast to sampling theorem in (Aldroubi,
2002; Aldroubi and Gréchenig, 2000; 2001; Chen et

al., 2002), lattice-invariant space V(@) is more
common than shift-invariant spaces, and the sampling
density in lattice-invariant space V/(¢) is deter-
mined entirely by the required density in the Hilbert
spaces V(@) (and suitable decay of ¢), and the space

is high dimension.

CONCLUSION

In this paper, we mainly pay attention to the

weighted sampling and reconstruction in lat-
tice-invariant subspaces. We give the reconstruction
formula in lattice-invariant spaces, which is gener-
alization of results in shift-invariant spaces (Aldroubi,
2002; Aldroubi and Grochenig, 2000; 2001; Chen et
al., 2002). Due to the limitation of paper space, we
omit some numerical examples and detail of proofs of
lemmas and theorems.
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