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Abstract:    In this paper, we mainly pay attention to the weighted sampling and reconstruction algorithm in lattice-invariant signal 
spaces. We give the reconstruction formula in lattice-invariant signal spaces, which is a generalization of former results in 
shift-invariant signal spaces. That is, we generalize and improve Aldroubi, Gröchenig and Chen’s results, respectively. So we 
obtain a general reconstruction algorithm in lattice-invariant signal spaces, which the signal spaces is sufficiently large to ac-
commodate a large number of possible models. They are maybe useful for signal processing and communication theory. 
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INTRODUCTION 
 

In digital signal and image processing, digital 
communication, etc., a continuous signal is usually 
represented and processed by using its discrete sam-
ples. A finite energy bandlimited signal is completely 
characterized by its samples, and described by the 
famous classical Shannon sampling theorem with 
wide application in signal processing and communi-
cation theory. 

However, in many real applications sampling 
points are not always regular. If a weighted sampling 
is considered, the system will be made to be more 
efficient. It is well known that in the sampling and 
reconstruction problem of non-bandlimited spaces, 
the signal is often assumed to belong to shift-invariant 
spaces (Aldroubi, 2002; Aldroubi and Feichtinger, 
1998; Aldroubi and Gröchenig, 2000; 2001; Chen et 
al., 2002; Sun and Zhou, 2002; Xian and Lin, 2004; 
Xian and Qiang, 2003; Luo and Lin, 2004; Xian et al., 
2004). 

Clearly we hope signal spaces be sufficiently 
large to accommodate a large number of possible 
models. So Feichtinger introduced lattice-invariant 

space of the form ( ) ( ) ( ) :
d

p p
m m

k R
V c k k cϕ ϕ

∈

 = ⋅ − ∈ 
 
∑ L  

in (Aldroubi and Feichtinger, 2002), where L is a d×d 
non-singular matrix, 1<p<∞. The matrix L transforms 
the lattice Zd into the lattice ∧. When L is the identity 
matrix, we can obtain the standard shift-invariant 
spaces. Feichtinger pointed out that a combination of 
generator ϕ (e.g. radial symmetric ones) with suitable 
lattice ∧ (related to sphere packing) is a good alter-
native for the usual voxel representation of volume 
data also observed in (Lewitt, 1992). So the lat-
tice-invariant spaces are a sufficiently large value 
family of signal spaces. We will show the recon-
struction formula for the lattice-invariant spaces. This 
result is generalized and improved form of Chen’s 
result in (Chen et al., 2002). At the same time, my 
results are a generalization of Proposition 1(iv) in 
(Aldroubi and Gröchenig, 2000) and Eq.(5.1) in (Al-
droubi and Gröchenig, 2001). 
 
 
RECONSTRUCTION IN LATTICE-INVARIANT 
SPACES 
 

Let X be a countable separated index set in Rd, 
that is, 

, ,
inf | | 0.

x y X x y
x y δ

∈ ≠
− ≥ > A weight is a non-

negative function on Rd which we may assume to be 
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continuous. A weight m is called polynominaly 
s-moderate, if there are constant C, s>0 such that 
m(t+x)≤C(1+|t|)sm(x) for all t,x∈Rd. It is also called 
Sobolev weight. The weighted p -space ( )p d

m Z  is 

defined by the norm 1/( ( ) ( ) )p
m

p p pc c x m x= ∑  with 

the usual modification for p=∞. A function f belongs 
to ( )p d

mL R  with weight function m if mf belong to 

( ).p d
mL R  Equipped with the norm ,p p

mL L
f mf=  

( )p d
mL R  is a Banach space.  Weighted lattice invari-

ant spaces can be described as: 
 

( ) ( ) ( ) : ,
d

p p
m m

k R
V c k k cϕ ϕ

∈

 = ⋅ − ∈ 
 
∑ L  

 
where ϕ is a suitable generator,  L is a d×d 
non-singular matrix, 1<p<∞.  When L is the identity 
matrix, we obtain the standard shift-invariant spaces. 

We impose the following standard assumptions 
on the generator ϕ: 

(i) {ϕ(⋅−Lk):k∈Zd} form a Riesz basis for V2(ϕ). 
(ii) ϕ is continuous. 
(iii) ϕ satisfies the decay condition 

|ϕ|≤C(1+|x|)−d−s−ε for any s>d and some ε>0. 
Since the Riesz basis {ϕ(⋅−Lk):k∈Zd} is lat-

tice-invariant, the dual basis must again be of the form 
{ ( ) : }dk k Zϕ ⋅ − ∈L . The dual ϕ  satisfies the relation 

( ), ( ) .klk lϕ ϕ δ⋅ − ⋅ − =L L  So V2(ϕ) is a reproducing 
kernel Hilbert space. Its kernel functions are given 
explicitly by ( ) ( ) ( ).

d
x

k Z
k y x k y kϕ ϕ

∈

= − −∑ L L  

If  2 2( )
x X

f x f
∈

≈∑  is satisfied for X⊂Rd, then X 

is called a set of sampling for V2(ϕ). That is, it is 
equivalent to saying that {kx:x∈X} is a frame for 
V2(ϕ). 
Lemma 1 (Gröchenig, 2004)    If X⊂Rd is separated, 

then for any s>d, ( )sup 1 .
d

s

s
x Xv R

x v C
−

∈∈
+ − = < ∞∑  

Corollary 1    If X⊂Rd is separated, then for any s>d, 

( )sup 1 ,
d

s

s
x Xz Z

x z C
−

∈∈

′+ − = < ∞∑ L  where L is matrix. 

Lemma 2    If X⊂Rd is separated and s>d, then 

( ) ( ) ( )1 1 1 ( ) ,
s s s

x X
x n x m C n m

− − −

∈
+ − + − ≤ + −∑ L L L

( , )dm n Z∀ ∈ . 
Proof    By Corollary 1, we can easily obtain Lemma 
2. 
Lemma 3    Assume that d×d matrix L, that weight 
function m satisfies m(Ln)≤m(n) for all n∈Zd and that 
X is separated. Let Akn=(1+|Ln|)−d−s−ε for some ε>0, 
s>d (n∈Zd, x∈X). Then the operator A defined on 
finite sequences ( ) dn n Z

c
∈

 by matrix multiplication 

( )
d

x xn n
n Z

Ac A c
∈

= ∑ is a bounded operator from ( )p d
m Z  

to ( )p
m X  for all p∈(1,∞) and all s-moderate weight 

m. 
Remark    Some methods of (Bergh and Löfström, 
1976) are used in the proof of Lemma 3. 

The following Theorem 1 is Jaffard’s Theorem. 
Theorem 1    (Jaffard’s Theorem (Gröchenig, 2004; 
Jaffard, 1990; Lewitt, 1992)) Assume that the matrix 

,
( ) dkl k l Z
G

∈
=G  satisfies the following properties:  

(a) G is invertible as an operator on L2(Zd), and 
(b) |Gkl|≤C(1+|L(k−l)|r, k,l∈Zd for some constant 

C>0, d×d matrix and some r>d. Then the inverse 
matrix H=G−1 satisfies the same decay, that is,  

 
|Hkl|≤C(1+|L(k−l)|r, k,l∈Zd. 

 
Lemma 4    Given 1≤p<∞, s≥0 and polynominaly 
s-moderate weight m. Assume that the generator ϕ 
satisfies the assumptions (i)~(iii), and that X={xj} is a 
set of sampling for V2(ϕ). 

(a) Then the coefficient operator defined by 
( , )

j jx x XCf f k ∈= 〈 〉  is bounded from ( )p
mV ϕ  to 

( )p
m X . 

(b) The synthesis operator defined by 

jj xDc c k= ∑  extend to a bounded mapping from 

( )p
m X  to ( )p

mV ϕ . 
(c) The frame operator ,

j j
j

x x
x X

S f k k
∈

= 〈 〉∑  maps 

( )p
mV ϕ  into ( )p

mV ϕ , and the series converges uncon-
ditionally for 1≤p<∞. 
Proof    It is easy to prove (a) and (b) from results of 
(Aldroubi and Gröchenig, 2001) and Lemma 3. 

In the following, we will prove (c). The bound-
edness of S=DC follows by combining (a) and (b). As 
for the unconditional convergence of the series, let 
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ε>0 and choose N0=N0(ε) such that 
0

,
p
m

x x N
f k ε

∉
≤ . 

Then for any finite set N1⊃N0, assertions (a) and (b) 
imply that 

 

1
1

, ,
p
mp

m

x x x x Nop op
x N L

Sf f k k D f k Dε∉
∈

− 〈 〉 ≤ 〈 〉 ≤∑  

 
This means that ,

j j
j

x x
x X

f k k
∈
〈 〉∑  converges 

unconditionally in ( )p
mV ϕ . 

Lemma 5    If {ϕ(⋅−Lk):k∈Zd} is a Riesz basis for 
V2(ϕ) and satisfies |ϕ|≤C(1+|Lx|−r) for some r>d, then 
the dual generator satisfies ( ) | (1 | |) rx C xϕ −′≤ + L . 
Proof    For every f∈V2(ϕ), we have the series ex-
pansion , ( ) ( )

dk Z
f f k kϕ ϕ

∈

= ⋅ − ⋅ −∑ L L . 

Since 2 ( ),Vϕ ϕ∈  it has the series expansion 
( ).

d
k

k Z
b kϕ ϕ

∈

= ⋅ −∑ L  The coefficients bn are deter-

mined by the biorthogonality condition 
 

    ( ), ( ) klk lϕ ϕ δ⋅ − ⋅ − =L L , 

    0 , ( ) , ( ( )
d

l m
m Z

l b l mδ ϕ ϕ ϕ ϕ
∈

= ⋅ − = ⋅ − −∑L L . 

 
This convolution can be written with the (infinite) 
matrix Φ with entries Φlm=〈ϕ,ϕ(⋅−L(l−m))〉=γl−m. The 
assumption on the decay of ϕ and Lemma 2 imply that 
|Φlm|≤C(1+|L(l−m)|)−r, l,m∈Zd. Since {ϕ(⋅−Lk):k∈Zd} 
is a Riesz basis for matrix Φ is invertible on 2 ( ),dZ  
and Φ−1 is again a convolution with a sequence β. 
Since r>d, Jaffard Theorem yields the decay estimate 
|(Φ−1)lm|=|βl−m|≤C′(1+|L(l−m)|)−r. 

Consequently b=Φ−1δ=β*δ=β. Thus |bl| 
≤C(1+|Ll|)−r, l∈Zd, and invoking Lemma 2 once again 
we obtain that | ( ) | (1 | |) rx C xϕ −′≤ + L . 
Lemma 6    If the generator ϕ satisfies (i)~(iii), then 
| , ( ) | (1 | |) s

xk k C x kϕ −⋅ − ≤ + −L L  and 

| , ( ) | (1 | |) s
xk k C x kϕ −⋅ − ≤ + −L L  with decay s>d. 

Moreover, | | (1 | ( ) |) s
mnT C m n −≤ + −L  for m,n∈Zd, 

where ( ), , ( )mn x x
x X

T n k k mϕ ϕ
∈

= ⋅ − ⋅ −∑ L L

( ), ( )S n mϕ ϕ= ⋅ − ⋅ −L L . 

Proof    Using the decay properties of generator ϕ and 
ϕ  (Lemma 5 with r=s+d+ε) and f(x)=〈f,kx〉, we esti-
mate |+kx,ϕ(⋅−Lk),|=|ϕ(x−Lk)|≤C(1+|x−Lk|−s and 
| , ( ) | | ( ) | (1 | |) .s

xk k x k C x kϕ ϕ −⋅ − = − ≤ + −L L L  
By the above discussions and Lemma 2, we have  
 
| | | , ( ) | | , ( ) |mn x x

x X
T k n k mϕ ϕ

∈
≤ 〈 ⋅ − 〉 〈 ⋅ − 〉∑ L L  

(1 | |) (1 | |)s s

x X
x n x m− −

∈
≤ + − + −∑ L L  

(1 | ( ) |) sC m n −≤ + −L ( , )dm n Z∀ ∈ . 

 
Theorem 2    Assume that the generator ϕ satisfies the 
assumptions (i)~(iii), that m is polynominaly 
s-moderate, and that X is a set of sampling for V2(ϕ) 
with dual frame xk . 

(a) Then we have for every ( )p
mf V ϕ∈  (1≤p≤∞), 

 
1/

| ( ) | ( )p
m

p
p p

p L
x X

A f f x m x
∈

 ≤  
 
∑ .p

m
p L

B f≤  

 
(b) Each xk  satisfies the following estimate 

| ( ) | (1 | |) d s
xk t C t x ε− − −≤ + −  for all x∈X, t∈Zd, with a 

constant C independent of x. 
(c) The reconstruction formula ( ) x

x X
f f x k

∈
= ∑  

holds for any ( )p
mf V ϕ∈  and the reconstruction se-

ries converges unconditionally in ( )p
mf V ϕ∈  

(1≤p≤∞). 
Proof    At first, we will show the frame operator S is 
invertible on ( )p

mV ϕ , where 1≤p≤∞ and m is an 
s-moderate weight. 

Let ( ), , ( )
j j

j

mn x x
x X

T n k k mϕ ϕ
∈

= 〈 ⋅ − 〉〈 ⋅ − 〉 =∑ L L

( ), ( )S n mϕ ϕ〈 ⋅ − ⋅ − 〉L L  and  ( ) , ( ) .nf f nϕΓ = 〈 ⋅ − 〉L  
It is easy to show that T is invertible. Then from 

Jaffard’s Theorem we conclude that the entries of the 
inverse matrix also satisfy 1( ) (1mnT C− ≤ +  

( ) ) s dm n ε− − −−L . 

By Lemma 3, T−1 is a bounded operator on se-
quence spaces ( )p d

m Z . Since T is invertible and 

S=Γ−1TΓ, S is invertible on ( )p
mV ϕ . 
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Since f=S−1Sf= S−1DCf, we have  
 

1
p p
m mL op op Lop

f S D C f−≤ . 

 
By the definition of norm 

( )p
m X

⋅  and operator C, 

we can obtain the following result from the above 
inequalities:  

 
1/

| ( ) | ( ) ,p p
m m

p
p p

L L
x X

A f f x m x B f
∈

 ≤ ≤ 
 
∑  

 

where 
1

1 ,
op

opop

A B C
S D−

= = . 

(b) By 1 ,x xk S k−= we know | , ( ) |xk nϕ〈 ⋅ − 〉L  
1 1

2| , ( ) | | , ( ) | (1 |x xS k n k S n C xϕ ϕ− −= 〈 ⋅ − 〉 = 〈 ⋅ − 〉 ≤ + −L L
|) d sn ε− − −L . 

Similarly | , ( ) | (1 | |) .d s
tk k C t k εϕ − − −〈 ⋅ − 〉 ≤ + −L L  

So 2| ( ) | , ( ) ( ), (1
d

x x t
k Z

k t k k k k Cϕ ϕ
∈

= 〈 ⋅ − 〉 〈 ⋅ − 〉 ≤ +∑ L L

| |) d sx t ε− − −− . 
(c) Since the series , x x

x X
f k k

∈
〈 〉∑  converges un-

conditionally by Lemma 4(c), the series 
1 , x x

x X
S f k k−

∈

 〈 〉 
 
∑  also converges unconditionally. 

So 1, ( )x x x
x X x X

f f k S k f x k−

∈ ∈
= 〈 〉 =∑ ∑  and the recon-

struction series ( ) x
x X

f x k
∈
∑  converges unconditionally 

in ( )p
mV ϕ  for 1<p<∞. 
In contrast to sampling theorem in (Aldroubi, 

2002; Aldroubi and Gröchenig, 2000; 2001; Chen et 
al., 2002), lattice-invariant space ( )p

mV ϕ  is more 
common than shift-invariant spaces, and the sampling 
density in lattice-invariant space ( )p

mV ϕ  is deter-
mined entirely by the required density in the Hilbert 
spaces 2 ( )V ϕ  (and suitable decay of ϕ), and the space 
is high dimension. 

 
 

CONCLUSION 
 

In this paper, we mainly pay attention to the 

weighted sampling and reconstruction in lat-
tice-invariant subspaces. We give the reconstruction 
formula in lattice-invariant spaces, which is gener-
alization of results in shift-invariant spaces (Aldroubi, 
2002; Aldroubi and Gröchenig, 2000; 2001; Chen et 
al., 2002). Due to the limitation of paper space, we 
omit some numerical examples and detail of proofs of 
lemmas and theorems. 
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