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Abstract:    A bi-harmonic stress function is constructed in this work. Ariy stress function methodology is used to obtain a set of 
analytical solutions for both ends fixed beams subjected to uniform load. The treatment for fixed-end boundary conditions is the 
same as that presented by Timoshenko and Goodier (1970). The solutions for propped cantilever beams and cantilever beams are 
also presented. All of the analytical plane-stress solutions can be obtained for a uniformly loaded isotropic beam with rectangular 
cross section under different types of classical boundary conditions. 
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INTRODUCTION 
 

The plane stress problem of beams is very clas-
sical in elasticity theory and is encountered frequently 
in practical cases. Timoshenko and Goodier (1970) 
investigated isotropic beams for different cases, such 
as tension, shearing, pure bending, bending of a can-
tilever by transverse load at the end, bending of a 
simply supported beam by uniform load and other 
cases of continuously loaded beams. Lekhnitskii 
(1968) studied the anisotropic beams problem in-
cluding tension, shearing, pure bending, bending of a 
cantilever loaded at the end, bending of simply sup-
ported beams and cantilever beams by uniform load 
or linearly distributed load. Jiang and Ding (2005) 
investigated orthotropic cantilever beams subjected to 
uniform load. For beams fixed at both ends subjected 
to uniform load, Gere and Timoshenko (1984) pre-
sented the deflection and stress expressions with 

Euler-Bernoulli beam theory. Ahmed et al.(1996) 
presented a numerical solution of fixed-end deep 
beams. To the authors’ knowledge, no literature on 
the analytical elasticity solution for both ends fixed 
beams acted on uniform load has been published yet. 
Stress function methodology was used to investigate 
fixed-end beams in plane stress subjected to uniform 
load, and obtain the stress and displacements expres-
sions. The solutions for propped cantilever beam and 
cantilever beam are also presented.  

 
 

BASIC EQUATIONS IN PLANE STRESS STATE 
 

In the absence of the body force, the stress 
components can be expressed with stress function φ as 
follows 

 
2 2 2

2 2, ,x y xyy x x y
φ φ φσ σ τ∂ ∂ ∂

= = = −
∂ ∂ ∂ ∂

            (1) 

 
where stress function φ satisfies Eq.(2): 
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The relations between displacement and stress are as 
Eq.(3): 
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where E and µ are Young’s modulus and Poisson ratio, 
respectively. 
 

 
STRESS AND DISPLACMENT 
 

Consider a fixed-end beam with unit width rec-
tangular cross section subjected to a uniform load q as 
shown in Fig.1. The length of the beam is l and height 
h. Take the stress function in the following form of a 
bi-harmonic polynomial with 7 terms 

 
5 2 3 3 3 2 2 21

5
a y x y bxy cy dy ex y f xy gxφ  = − + + + + + + 
 

                                                                                 (4) 
 
where a, b, c, d, e, f and g are unknown constants to be 
determined. The substitution of Eq.(4) into Eq.(1) 
gives  

 
3 22 (2 3 ) 6 6 2x a y x y bxy cy dσ = − + + +                (5) 

32 2 2y ay e y gσ = − + +                                        (6) 
2 26 3 2xy axy by ex fτ = − − −                                (7) 

 
Substituting Eqs.(5) and (6) into the first two 

equations in Eq.(3), and  then  integrating  them  with 
 
 
 
 
 
 
 
 
 

respect to x and y, respectively, yields the displace-
ment components u and v as 

 
3 3 21 2 (2 ) (2 3 6

  2 ) 2 2 ( )

u a xy ax bx cx
E

ex y dx gx A y

µ

µ µ

= + − − −

+ + − +

              (8) 

4 2 21 (1 2 ) 3 3 3
2

   2 2 ( )                                      (9)

av y a x b x c e y
E

d y gy B x

µ µ µ µ

µ

  = − + + − − + 
− + +

                        where A(y) and B(x) are functions of x and y, respec-
tively. Substituting Eqs.(8), (9) and (7) into the third 
equation in Eq.(3), we have 
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Eqs.(11) and (12) can be obtained from Eq.(10), 
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                                                          (12) 
 

where ω is an arbitrary constant. It is noted that, A(y) 
and B(x) can be obtained by integrating Eqs.(11) and 
(12). Substituting A(y) and B(x) into Eqs.(8) and (9), 
we have 
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− +Fig.1  Fixed-end beam subjected to uniform load
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where arbitrary constants u0, v0 and ω denote the 
translation and rotation of rigid body, respectively. 
 

 

FIXED-END BEAM SUBJECTED TO UNIFORM 
LOAD 
 

Timoshenko and Goodier (1970) presented two 
methods for dealing with the boundary conditions for 
fixed-end beams. Both of them will be considered. 
The first method is to treat the boundary conditions as, 
(1) y=h/2, σy=0, (2) y=−h/2, σy=−q, (3) y=±h/2, τxy=0, 
(4) x=0, y=0 point and x=l, y=0 point, u=v=0, ∂v/∂x=0. 
By substituting the stress components Eqs.(6), (7) and 
displacement components Eqs.(13), (14) into corre-
sponding boundary conditions, 10 algebraic equations 
can be obtained and all the unknown constants can be 
determined as  

 
a=q/h3, b=ql/h3, c=−q/2h−ql2/6h3−qµ/4h, 
d=−qµ/4, e=3q/4h, f=−3ql/4h, g=−q/4,  
u0=0, v0=0, ω=0                                             (15) 

 
Substituting Eq.(15) into Eq.(5), (6), (7), (13) 

and (14), the stress and displacement components are 
then obtained 
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where J=h3/12. 

The stress components and deflection expres-
sions obtained with Euler-Bernoulli beam theory are 
as follows (Gere and Timoshenko, 1984): 
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It can be found that the first part of the normal 

stress expression Eq.(16) coincides with Eq.(21) ac-
tually, and that the second part in Eq.(16) is the cor-
rection term. We also found that the shear stress 
Eq.(18) is the same as Eq.(22). In Eq.(20), letting y=0, 
we obtain the deflection expression which is the same 
as Eq.(23) of Euler-Bernoulli beam theory.   

The second method to treat fixed-end boundary 
conditions is to substitute ∂u/∂y=0 for ∂v/∂x=0 at x=0, 
y=0 point and x=l, y=0 point. We thus resolve the 
problem to obtain 
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Ahmed et al.(1996) investigated fixed-end deep 
beams subjected to uniform load with fi-
nite-difference technique. The material constants 
applied here are E=2×1011 N/m2, µ=0.3. The bound-
ary conditions are treated as, (1) x=0, l, −h/2≤y≤h/2, 
u=v=0, (2) y=h/2, σy=τxy=0, (3) y=−h/2, σy=−6×107 
N/m2, τxy=0. They presented the deflection curve at 
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y/h=0.04 for l/h=2. Fig.2 shows the deflection curve 
obtained by using Eqs.(20) and (28) at y/h=0.04, and 
presented the curves altogether in Fig.2, where the 
dashed line is the deflection curve of Eq.(28), the  
dash-dot line is that of Eq.(20) and the solid line is 
that obtained by Ahmed et al.(1996). We find that the 
numerical result by Ahmed et al.(1996) locates be-
tween the two analytical solution obtained in this 
paper. Correctly, the differences among the curves in 
Fig.2 denote that the different treatments for fixed end 
will display different constrain effects in physics. The 
two obtained analytical solutions are two important 
approximation for practical application. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
PROPPED CANTILEVER BEAM SUBJECTED TO 
UNIFORM LOAD 
 

In this cases, boundary condition are, (1) y=h/2, 
σy=0;  (2) y=−h/2, σy=−q;  (3) y=±h/2, τxy=0;  (4) x=0, 
N=0, M=0, and  x=y=0 point, v=0; (5) x=l, y=0 point, 
u=v=0, ∂v/∂x=0, where 
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By following the above-mentioned procedure, 

we obtain   
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the obtained components of stress and displacement 
are  
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The components of stress and displacement ob-

tained by using Euler-Bernoulli beam theory are 
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Fig.2  Deflection curves at y/h=0.04 in different
boundary condition (l/h=2) 
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The first part of stress σx in Eq.(32) coincides with 
Eq.(37), while the second part of Eq.(32) is the cor-
rection term. Also the first part in Eq.(34) coincides 
with Eq.(38), and the second part is correction term. 
Letting y=0 in Eq.(36) we then obtain the deflection 
of beam. Correspondingly, the first part of Eq.(36) 
coincides with Eq.(39), and the second part is correc-
tion term. 
 
 
CANTILEVER BEAM SUBJECTED TO UNIFO- 
RM LOAD 
 

The boundary conditions are, (1) y=h/2, σy= 0; (2) 
y=−h/2, σy=−q; (3) y=±h/2, τxy=0;  (4) x=0, N=0, M=0, 
Q＝0;  (5) x=l, y=0 point, u=v=0, ∂v/∂x=0, 
in which  
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With similar procedure, we obtain the undetermined 
constants  
 
           a=q/h3, b=0, c=−q/10h, d=0, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

e=3q/4h, f=0, g=−q/4, u0=−µql/2E 
2 2 2
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v
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Substituting these constants into Eqs.(5), (6), (7), (13) 
and (14), we obtain the stress and displacement ex-
pressions of a cantilever beam acted on uniform load, 
which coincide with degenerated forms in Lekhnitskii 
(1968).  
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