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Abstract:    A long thick-walled hollow cylinder of piezothermoelastic materials was studied in this work. The gradient prop-
erty of the piezoelectric parameter g31 was taken into account. The theory of elasticity was applied to obtain the exact solutions 
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INTRODUCTION 
 

Piezoelectric symmetric structures always play 
an important role in the use of piezoelectric materials 
(Olesiak and Pyryev, 1995; Ding et al., 2003; Wu et 
al., 2003). To improve the durability of this kind of 
piezoelectric structures, functionally gradient piezo-
electric materials (FGPM) have been developed and 
used to produce these devices such as sensors and 
actuators (Hauke et al., 2000; Zhu et al., 1995). For 
the case when a rectangular plate made of function-
ally gradient piezothermoelectric materials subjected 
to different loadings, the analytical solutions were 
obtained by Zhong and Shang (2003). It has been 
realized that sometimes temperature loading is so far 
as to be the predominant reason of failure of smart 
structures (Birman, 1996; Tian and Shen, 2003). The 
fundamental solutions for a kind of density function-
ally gradient piezoelectric cantilever were investi-

gated by Shi (2002) and Shi and Chen (2004). 
In the present paper, a long thick-walled hollow 

cylinder made of piezothermoelastic materials is 
analyzed. And the nonlinear property of the piezo-
electric parameter g31 is considered. Based on the 
theory of elasticity and by the use of the mixed solv-
ing method, the exact solutions for the cylinder sub-
jected simultaneously to thermal and electric load-
ings were obtained. As an application, these solu-
tions have been successfully used to study the in-
verse problem of the materials, i.e. to identify the 
pyroelectric constant q3. At the end of the present 
work, some numerical results were carried out. 

 
 

BASIC EQUATIONS UNDER PLANE STRAIN 
CONDITION 

 
Let us consider a long cylinder (Fig.1) subjected 

to symmetric loading on any cross section, which 
can be considered under plane strain condition. The 
polar coordinate system (r, θ) is introduced in the 
present analysis. Let εij, σij, Di and Ei denote the 
components of strain, stress, induction and the elec-
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tric field strength of the piezoelectric media, respec-
tively. The constitutive equations of the piezother-
moelastic material under plane strain condition can 
be expressed in the common formation (Wu et al., 
2003). 
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where sij, gij and ζij are the coefficients of the effec-
tive elastic compliance, piezoelectric and dielectric 
impermeability, respectively; T is the temperature 
rise; µii and q3 are the thermal strain and pyroelectric 
coefficients of the material, respectively. Without 
consideration of body force and body charge, the 
equilibrium equations can be given as 
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The temperature field is governed by Fourier’s 

heat conduction equation 
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The components of strain and electric field 

strength are related to the displacement (u, w) and 
electrical potential φ by the following equations 
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Based on the theory of elasticity, the compati-

bility equation expressed by the components of strain 
is 
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ELASTIC SOLUTIONS OF A FUNCTIONALLY 
GRADED HOLLOW CYLINDER UNDER THE 
COUPLED LOADINGS 

 
It is known that the piezoelectric parameter g31 

plays an important role in the judgment on the be-
havior of piezoelectric materials and the performance 
of piezoelectric products. In this section, an elastic 
analysis of a functionally graded thick-walled hollow 
cylinder with the inner radius R1 and outer radius R2 
as shown in Fig.1 will be studied. In the following 
analysis the piezoelectric parameter g31 is assumed 
varying quadratically in radial direction while the 
other material parameters are assumed to be con-
stants, i.e. 

 
2

31 2 1 0g m r m r m= + +                 (6) 
 

where mi (i=0,1,2) are material constants. 
For the functionally graded thick-walled hollow 

cylinder subjected to uniform and symmetrically 
coupled thermal and electric loadings as shown in 
Fig.1, the exact solutions can be found by using the 
theory of elasticity. The Airy stress function method 
is used to find the mechanical field of the piezoelec-

Fig.1  The graded hollow cylinder subjected to thermal 
and electric loading 
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tric hollow cylinder, and the stress function φi and 
the electric potential φi are introduced for layer i. For 
symmetry, the components of stress and electric field 
strength can be expressed as 
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Use of Eq.(1) yields 
 

0,Dθ = 0rθγ =                       (9) 
 

It is easily found from Eq.(3) that the tempera-
ture field is related to temperature change only. So 
the temperature field should be found first. Suppos-
ing the piezoelectric hollow cylinder is homogene-
ously heated at the surface, and the temperature rise 
at the inner and outer surfaces keeps constant T1 and 
T2, respectively. That means we have the following 
thermal boundary conditions 
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For symmetry, the heat conduction Eq.(3) can 

be simplified as 
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The solution of the above equation is 
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Having the distribution of temperature, we will 

try to find the mechanical and electrical fields. Sub-
stituting Eqs.(7) and (8) into Eq.(2), it can be found 
that Eq.(2.1) is automatically satisfied and Eq.(2.2) 
becomes 
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The general solution of the above equation is 
 

Dr=a0/r                  (15) 
 
where a0 is an unknown constant to be determined. 
Keeping Eq.(1) in mind, the compatibility Eq.(5) can 
be rewritten as 
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Integration of the above equation yields 
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in which a1, c1, c2, c  are unknown constants to be 
determined. After substituting Eq.(17) into Eq.(7), 
the stress components can be expressed as 
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And from Eq.(1.1), the strain components can be 
expressed as 
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Further, the displacement components can be ob-
tained by the use of Eq.(1) as 
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where A1, A2 and B are unknown constants. Taking 
the condition of single-valued displacement into ac-
count, we can obtain 
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To find the electric potential Eq.(1.2) is expressed as 
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By the use of Eq.(4), the electric potential can 

be obtained as follows: 
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where F is another unknown constant. 
It is obvious that once the unknown parameters 

a0, a1, c1, c2, c, A1, A2, B and F are determined by 
using some suitable boundary conditions, the distri-

butions of all the mechanical and electrical fields in 
the cylinder can be found. 

For the loading case shown in Fig.1, the electric 
boundary conditions can be expressed as follows: 
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The mechanical boundary conditions are 
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Then all the above unknown constants can be deter-
mined as follows 
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In the above expressions, besides introducing 
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the denotations ∆[f(R)]ij=f(Ri)−f(Rj) such as ∆[Ri]12= 
R1

i−R2
i, the following symbols are also used 
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Now, all the unknown constants when a func-

tionally graded thick-walled hollow cylinder is sub-
jected to coupled thermal and electric loadings are 
determined. Therefore all the distributions of stress, 
strain, displacement and the electric potential of the 
functionally graded hollow cylinder can be found by 
the use of Eqs.(19), (20), (21) and (25), respectively. 

 
 
PARAMETER IDENTIFICATION 
 

Parameter identification as a kind of inverse 
problem plays an important role in precisely de-
scribing the internal behavior of materials. How to 
identify a non-homogeneous material has received 
more and more attention (Fang, 1999). In this section, 
the method to identify the pyroelectric constant q3 
will be discussed.  

For the case the cylinder loaded by a tempera-
ture rise only at the inner and outer surfaces, the 
electric potential at the outer surface can be given 
based on the results obtained in the last section as 
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So we have 
 

q3=(φ2−P)/λ                    (33) 
 
The above formula shows that once the electric 

potential at the outer surface of the cylinder is ob-
tained from a test, the pyroelectric constant q3 can be 
identified. 
 
 
NUMERICAL RESULTS AND DISCUSSIONS 
 

To give a clear explanation, numerical results 
have been carried out in this section. For comparison, 
two kinds of cylinders made of cadmium selenide 
will be considered. One is a functionally graded cyl-
inder, another is a double-layered cylinder. It is as-
sumed that both cylinders have the same geometric 
sizes. The radius of the inner and outer surfaces of 
the cylinders is taken as 10 mm and 20 mm, respec-
tively. For simplicity, the piezoelectric parameter g31 
of the functionally graded hollow cylinder is as-
sumed to be varying linearly as g31=m1r+m0. The 
piezoelectric parameters g31 of the inner and outer 
layers of the doubled-layered cylinder are taken as 
−41.66×10-3 m2/C and −70.00×10-3 m2/C, respec-
tively. So we can get m1=−28.33×10-1 and 
m0=−13.33×10-3. Moreover, the other material pa-
rameters of the cylinder are listed in Table 1. For 
both cylinders subjected to an electric potential 
V=100 V, the distributions of normal stresses σr and 
σθ are plotted in Fig.2. These figures show that the 
internal stresses are drastically reduced in the mate-
rials and devices with functionally graded properties. 
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CONCLUSION 
 

Based on the theory of elasticity, the present 
analysis provides some exact solutions for the func-
tionally graded piezothermoelastic hollow cylinder 
under coupled thermal and electric loadings. As a 
kind of inverse problems, the solutions obtained in 
the present paper can be used to determine the py-
roelectric constant q3. Numerical results showed that 
the stress mismatch can be avoided in FGM materi-
als and structures. 
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Table 1  Some material parameters of cadmium selenide (Kapuria et al., 1996) 

Elastic constant 
(×10-12 m2/N) 

Piezoelectric constant
(×10-3 m2/C) 

Dielectric imper-
meability constant

(×109 m/F) 

Thermal strain 
constant 

(×10-7 1/K) 

Pyroelectric 
coefficient 

(×103 N/(K⋅C))
s11 s13 s33 s44 g33 g15 ζ11 ζ33 µ11 µ33 q3 

23.20 −5.38 16.68 74.62 83.25 −12.48 11.91 10.62 −42.50 −27.49 −37.10 
 

Fig.2  The normal stress σr (a) and σθ (b) of the cylinder in different analytical models at V=100 V
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