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Abstract:    In this paper, the authors propose a refined Branch-and-Bound algorithm for affine-transformation based image 
registration. Given two feature point-sets in two images respectively, the authors first extract a sequence of high-probability 
matched point-pairs by considering well-defined features. Each resultant point-pair can be regarded as a constraint in the search 
space of Branch-and-Bound algorithm guiding the search process. The authors carry out Branch-and-Bound search with the 
constraint of a pair-point selected by using Monte Carlo sampling according to the match measures of point-pairs. If such one 
cannot lead to correct result, additional candidate is chosen to start another search. High-probability matched point-pairs usually 
results in fewer loops and the search process is accelerated greatly. Experimental results verify the high efficiency and robustness 
of the author’s approach. 
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INTRODUCTION 
 

Image registration is aimed at establishing the 
correspondence between (or among) two (or more) 
images of the same scene taken at different times, 
from different viewpoints, and/or by different sensors. 
Image registration is a classical problem that has wide 
applications in a variety of fields (Brown, 1992), such 
as computer vision, pattern recognition and medical 
image analysis, etc.  

Image registration has been studied for three 
decades. Most registration methods contain four ma-
jor components (Brown, 1992; Zitova and Flusser, 
2003):  

1. Feature space. Determining which feature to 
match is the first step in image registration. Some 

features such as image pixels, edges, points and re-
gions are in common use. How to detect the feature 
other than image pixels is a subsequent problem. 
Furthermore, besides the position of the feature, can 
any additional attributes of the feature be provided?  

2. Similarity measure. Image registration aims at 
establishing the best correspondence among images. 
It is an optimization process so the target function 
must be determined. The function, called similarity 
measure which measures the similarity between fea-
tures of two images, depends on feature space. For the 
feature being image pixels correlation coefficient, 
mutual information is in regular use. For points as the 
feature Euclidean distance, Hausdorff distance and 
partial Hausdorff distance can be used.  

3. Search space. It is important to determine 
which kind of transform would make the images 
matched. Search space, in which we will search the 
transform aligning the images, depends on applica-
tion. In image based modelling, global transform does 
not exist that match the images taken from different 
viewpoints (Zhang, 1998). But if the camera field of 
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view is small and the object size is small enough with 
respect to the distance from the camera to the object 
that exists in the remote sensor images, the images 
can be registered by an affine transformation (Zhang, 
1998). In this case, the search space is an affine 
transformation group.  

4. Search strategy. Search strategy deals with 
how to find the optimum transformation in the search 
space. The usual search strategies are Relaxation 
Labelling (Price, 1985), Branch-and-Bound (Mount 
et al., 1998) and RANSAC [Random Sample Con-
sensus (Fischler and Bolles, 1981)], etc.  

In this paper, we are not going to discuss feature 
detection in detail because it is beyond the scope of 
this study. Our focus is on the search strategy, and it is 
assumed that the feature points have been extracted. 
The search space is set to affine transformation group 
because the images to be registered are taken by re-
mote sensor. Our problem can also be regarded as 
point-pattern matching problem which has wide ap-
plications in such fields as machine vision, computa-
tional biology and computational geometry.  

 
 

PROBLEM FORMULATION 
 

A general point pattern matching problem can be 
defined mathematically as given below: 
Problem P(d,D,T )    Given two point-sets A,B⊂úd 

and ε>0, find a transform T∈T for which D(T(B),A)≤ε. 

Where T is a transformation space, D is a distance 
function which can be Euclidean distance, Hausdorff 
distance or partial Hausdorff distance. 

For our application in image registration, our 
problem is P(2,D,T ), where T is an affine transfor-
mation group, and distance function D is chosen as 
partial Hausdorff distance.  
 
 
PREVIOUS WORK 
 

 
 
 
 
 
 

al., 1999) and Single Grid methods described in 
(Gavrilov  et  al.,  1999)  limited  their  transformation 
space to isometric transformation. The algorithm 
proposed by Chang et al.(1997) is good for its ro-
bustness and computational efficiency, but it only 
deals with affine transformation without shear. Re-
laxation matching algorithm (Price, 1985) and 
RANSAC method (Fischler and Bolles, 1981) can 
deal with affine transformation, but they also have 
some shortcomings. Relaxation can be viewed as 
moving around in a multidimensional space, search-
ing for the global maximum of match quality. It can 
correct some false initial matching derived from local 
features. But if the error rate of initial matching is 
high which usually happens in remote sensing image 
registration, it is difficult to obtain correct result. 
RANSAC method is famous for its robustness. But its 
search space increases rapidly with the growth of the 
size of the point sets.  

 
 

BRANCH-AND-BOUND ALGORITHM 
 

Our method is based on the Branch-and-Bound 
framework. Before the introduction of the framework, 
we present some key concepts below. 

 
Partial Hausdorff distance 

Partial Hausdorff distance is adopted as similar-
ity measure in this paper due to its robustness. For two 
point sets A and B, their Hausdorff distance is defined 
by 
 

H(A,B)=max(h(A,B),h(B,A))                (1) 
where 

( , ) max min || ||
b Ba A

h A B a b
∈∈

= −             (2) 

 
Hausdorff distance is perfect in mathematics. 

But it is sensitive to noise. Partial Hausdorff distance 
can overcome this drawback (Rucklidge, 1995). It is 
defined by  

 
Hk(A,B)=max(hk(A,B),hk(B,A))             (3) 

where 
th( , ) min || ||k
a A b B

h A B K a b∈ ∈
= −            (4) 

 
where Kth is the function which returns the kth largest 
element of the set. The distance mentioned in the rest 

There are numerous algorithms on the point 
pattern matching problem. Most algorithms arising 
from computational geometry only address the 
transformation space composed of translation, rota-
tion and scaling or its sub-space. Basic Alignment 
(Garder and Lawton, 1996), Multiple Grid  (Indyk  et 



Jin et al. / J Zhejiang Univ SCI   2005 6A(Suppl. I):94-99 

 

96

of this paper is regarded as partial Hausdorff distance 
if it is not specified otherwise.  
 
Affine transformation cell 

We discuss affine transformation mainly, but the 
idea can also be used for other global transform. A 6D 
vector can denote an affine transformation. Let 
a=(a1,a2,…,a6). Its behavior on the point P(x,y) is 
defined by  

 
x′=a1x+a2y+a3,      y′=a4x+a5y+a6           (5) 

 
Affine transformation cell [l, h] is a set of affine 

transformations whose elements are between l and h, 
where l≤h (li≤hi, i=1,2,…,6). A cell’s (short for affine 
transformation cell) respondence on a point P is a 
rectangle point set whose left-upper vertex is lP and 
right-button vertex is hP. This rectangle point set is 
called uncertainty region. In this way, each cell is 
associated with a collection of uncertainty regions. 
Let dT (a,b) denote the distance between the uncer-

tainty region T b and the point a which is the mini-

mum distance between a and any part of T b, where 

a∈A, b∈B and T is a cell. So we can define partial 

Hausdorff distance Hk(T ) between point set A and 

uncertainty region set T B: 
 

 th th( ) max( min ( , ), min ( , ))k
a A b Bb B a A

H K d a b K d a b∈ ∈∈ ∈
= T TT  

   (6) 
 

In addition, t is any transformation in the cell 
T =[l, h] (in our experiment t=(l+h)/2). The distance 

between tB and A is denoted by ( ).k
hiH T  It is obvious 

that ( )k
hiH T  is upper bound of Hk(T ). 

 
Basic branch-and-bound algorithm 

We have two point sets A and B to be registered. 
Branch-and-Bound algorithm searches a transforma-
tion t by cell decomposition so that the distance be-
tween A and tB is small enough (Rucklidge, 1995). 
The algorithm is described as follows:  

Step 1: Initialize T0 and push T0 into priority 
queue Q. Initialize Hb and ε.  

Step 2: If Q is not empty, pop T  from Q, other-

wise go to Step 6.  
Step 3: Compute Hk(T ). If Hk(T )>Hb, go to Step 

2.  
Step 4: Compute ( ).k

hiH T  If ( ) ,k
hi bH H<T  

( )k
b hiH H← T . If Hb<ε, go to Step 6. 

Step 5: Decompose T  into Tl and Th, and push 
the two cells into Q. Go to Step 2.  

Step 6: If Hb<ε, the algorithm successfully end, 
otherwise the algorithm fails.  

There are two points which need to be clarified. 
One is how to set the priority of the elements of the 
queue Q. As mentioned above, T B is a set of uncer-
tainty regions. We define the size of an uncertainty 
region to be its longest side and define the size of a 
cell to be largest size among T B. The size of a cell is 
chosen as the priority of the cell. The second problem 
is how to decompose a cell in Step 5. To determine 
which component to split, we determine which of the 
six components of the cell contributes most to the size 
of the uncertainty region, and then we split the cell 
through its midpoint along this dimension.  

 
Bound alignment  

Mount et al.(1998) proposed Bound Alignment 
method to accelerate the search of Branch-and-Bound 
algorithm. The method is that we check the number of 
the “alignable” uncertainty regions before computing 

( )k
hiH T in Step 4. An uncertainty region is said to be 

“alignable” if there is at most one point of A in the 
region. The point in A is denoted by PA(U) which is 
associated with the uncertainty region U and the point 
in B associated with U is denoted by PB(U). If the 
number of the “alignable” uncertainty regions is be-
yond a threshold set at the beginning, we say the cell T

 is “alignable” and perform alignment process for the 
cell, where the alignment process matches PA(U) with 
PB(U) for each “alignable” uncertainty region and 
from it an affine transformation can be solved. In the 
end, we verify whether the affine transformation is 
what we desired.  

 

 
BRANCH-AND-BOUND WITH CONSTRAINT 
 

The method introduced in Section 2 only uses 
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the position information on feature point. The ad-
vantage of these methods is they have the most ex-
tensive applications. In practical application of image 
registration, more information can be utilized. For 
example, the variance and entropy of the neighbor of 
a point, the correlation coefficient and mutual infor-
mation between the neighbors of a pair of points and 
so on are available in many applications. On some 
particular occasions, user interaction can be provided. 
We make use of the information on feature point 
besides its position in order to accelerate the search 
process. This information can be abstracted as match 
measure between pair-point.  

According to these match measures, high match 
measure pair-points are selected by using Monte 
Carlo sampling. It is different from RANSAC in that 
for each sampling only one pair-point is selected. If a 
pair-point is really matched, there are some con-
straints in the cell. Suppose that P(x,y) in B and 
P′(x′,y′) in A are matched pair-point, we have the 
constraint on the transformation a:  

 
x′=a1x+a2y+a3,      y′=a4x+a5y+a6          (7) 

For a1 
a1=(x′−a2y−a3)/x                          (8) 

 
For current cell T =[l, h], due to l2≤a2≤h2, 

l3≤a3≤h3 and the coordinates of image pixels being 
positive, we have 
 

a1≥(x′−h2y−h3)/x,      a1≤(x′−l2y−l3)/x         (9) 
 
According to this, it is possible to reduce the interval 
[l1, h1] 
 

l1←max(l1,(x′−h2y−h3)/x),       
h1←min(h1,(x′−l2y−l3)/x)               (10) 

 
Similarly, for other components we have  
 

l2←max(l2,(x′−h1x−h3)/y), 
h2←min(h2,(x′−l1x−l3)/y) 
l3←max(l3, x′−h1x−h2y), 
h3←min(h3, x′−l1x−l2y) 
l4←max(l4,(y′−h5y−h6)/x), 
h4←min(h4,(y′−l5y−l6)/x)  
l5←max(l5,(y′−h4x−h6)/y), 
h5←min(h5,(y′−l4x−l6)/y) 

l6←max(l6, y′−h4x−h5y), 
h6←min(h6, y′−l4x−l5y)                                  (11) 

 
This process should be performed repeatedly 

until all components of the cell keep unchanged. 
Usually it is repeated one to three times. Thus we get 
a smaller cell T ′ than the original cell T. 

But the pair-point sampled is uncertainly 
matched in fact (the pair-point being matched with 
high probability). We cannot discard the part of T−T ′. 

It is pushed into the queue Q. But T−T ′ is usually not 
a cell. It can be expressed by the sum of some cells. 

Suppose T=[l, h] and T ′=[l′, h′]. The  T−T ′ is 

expressed by the sum of T1, T2, …, T12, where Ti 
(i=1,2,…,12) is solved by the following procedure:  

 
For k=1 to 6 

ˆ ,  =l l ˆ =h h ; 
ˆ ,  k kh l′= T2k−1=[ ˆ,l ĥ ]; 

k̂ kl h′= , k kh h′ = , T2k=[ ˆ,l ĥ ]; 

k kl l′= , k kh h′= ; 
End 

 
The priority of these cells is set to low value 

before they are pushed into Q. We call this process 
constrained refinement.  

So far by incorporating basic Branch-and-Bound 
algorithm, Bound Alignment and constrained re-
finement, our method is described as follows:  

Step 1: Initialize T0 and push T0 into priority 
queue Q. Initialize Hb and ε. Compute the match 
measure of any pair-point between point sets A and B 
which will be used for Monte Carlo sampling in Step 
2.  

Step 2: Get a pair-point (P′, P) by using Monte 
Carlo sampling.  

Step 3: If Q is empty, go to Step 9. Or else pop T 

from Q and check T  whether it is with respect to the 
current pair-point. If yes, do resampling and get a new 
pair-point update (P′, P).  

Step 4: Perform the constrained refinement 
process due to the constraint of (P′, P).  

Step 5: Compute Hk(T ). If Hk(T )>Hb, go to Step 
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3.  
Step 6: Check whether T

  
is alignable. If yes, 

perform the Bound Alignment process and return a 
transform t. Then compute the distance between tB 
and A. If the distance is smaller than ε, the algorithm 
successfully ends. Or else, go to Step 3.  

Step 7: Compute ( ).k
hiH T  If ( )k

hi bH H<T , 

( )k
b hiH H← T . If Hb<ε, go to Step 9.  

Step 8: Decompose T  into Tl and Th, and push 
the two cells into Q. Go to Step 2.  

Step 9: If Hb<ε, the algorithm successfully ends. 
Or else, the algorithm fails.  

 
 

IMPLEMENT AND EXPERIMENT 
 

As in (Mount et al., 1998) we use k-d tree (Ex-
actly, we use the library ANN (library for Approxi-
mate Nearest Neighbor Searching), see 
http://www.cs.umd.edu/mount/ANN) method to 
compute the partial Hausdorff distance between two 
point sets. Aside from adding Monte Carlo sampling 
and constrained refinement to Branch-and-Bound 
with Bound Alignment, the implementation was the 
same for our method and that in the previous work so 
that the comparison between the two methods is ob-
jective and justice. In our experiments the process of 
Monte Carlo sampling is not included when timing 
our programs because it may have different imple-
mentation with respect to different application and its 
computational cost is usually low.  

We compare CPU clock between our method 
and Bound Alignment method. The CPU clock cost 
by our programs strongly depends on the computer 
platform and concrete implementation involves 
choosing some thresholds, so the CPU clock listed in 
Table 1 is only for comparison.  

 
 

SYNTHESIS EXPERIMENTS 
 

In our synthetic experiments the point set B is 
randomly generated. Part of A is generated by 
transformation of part of A with the addition of small 
noise. The other part is randomly generated. In these 
experiments, the sequence of pair-point is selected 
manually instead of by Monte Carlo sampling. The 
series number of the first matched pair-point is denot- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

ed by NFM. To simulate reality application we time 
our programs in various NFMs. As shown in Table 1, 
our method improves the search efficiency signifi-
cantly. Even if NFM is 4, our method has a big ad-
vantage over Bound Alignment in CPU clock and the 
times of decomposition (ToD). We also test the pro-
gram under condition that NFM is bigger than 4. We 
find the overhead resulting from Constrained Re-
finement process is small compared to the whole 
program. Suppose the overhead is big (we cannot 
assure that the overhead is always small), we can save 
CPU time by taking the strategy that the constrained 
refinement is no longer performed if the optimum 
transformation has not be abstained after the several 
pair-points are sampled.  

 
Aerial photo image registration  

In this experiment we had two aerial photo Vis-
ual/Infrared images registered. The corner points as 
feature points were extracted by SUSAN method 
(Smith and Brady, 1997). The images with the corner 
points are shown in Fig.1a and Fig.1b. The mutual 
information between the neighbors of the corner 
points is computed. And according to it, the match 
measures are computed that will be used in Monte 
Carlo sampling process. In this experiment the CPU 
time cost of our method is 0.12 s and that of Bound 
Alignment is 1.5 s (the computer platform was the 
same as that in Synthetic Experiments). The regis-
tered image is shown in Fig.1c, and Fig.1d is fusion 
result. In fusion stage, a pseudo-color image fusion 
method (Pohl and van Genderen, 1998) was used. 

Table 1  The comparison between our method (con-
strained refinement) and Bound Alignment 

Constrained refinement Bound alignment Inlier NFM 
CPU clock ToD CPU clock   ToD 

1   125   84 
2   516 160 
3   765 212 

1/3 

4 
 

  813 
 

223 
 

1625 1075 

1   188 113 
2   453 163 
3   625 188 

1/2 

4 
 

  656 
 

188 
 

3672 1793 

1   203 118 
2   766 258 
3 1125 324 

2/3 

4 1188 380 

5360 1075 
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CONCLUSION 
 

Branch-and-Bound algorithm is often used in 
image registration and integer programming (Fre-
derick and Gerald, 1995). But the computational 
complexity of the algorithm is higher than polynomial 
complexity. Its computational bottleneck is a great lot 
of cell de-compositions and the computation of partial 
Hausdorff distance for each cell. The constraint of 
pair-point can reduce the search transformation space. 
But the reduced space cannot be expressed in analysis, 
it can be discretely solved with the help of 
Branch-and-Bound algorithm. In this way, Con-
strained Refinement process is harmoniously com-
bined with Branch-and-Bound algorithm and Bound 
Alignment. Our method is simple and effective. 
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(a)                                                                                           (b)  

Fig.1  Registration and fusion between visual and infrared images. (a) Visual image with corner points;
(b) Infrared Image with corner points; (c) The registered image; (d) The fusion image 

(c)                                                                                           (d)  


