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Abstract:    The problem of computing a piecewise linear approximation to a surface from its sample has been a focus of research 
in geometry modeling and graphics due to its widespread applications in computer aided design. In this paper, we give a new 
algorithm, to be called offset surface filtering (OSF) algorithm, which computes a piecewise-linear approximation of a smooth 
surface from a finite set of cloud points. The algorithm has two main stages. First, the surface normal on every point is estimated by 
the least squares best fitting plane method. Second, we construct a restricted Delaunay triangulation, which is a tubular 
neighborhood of the surface defined by two offset surfaces. The algorithm is simple and robust. We describe an implementation of 
it and show example outputs. 
 
Key words:  Cloud points, Surface reconstruction, Delaunay triangulation, Offset surface 
doi:10.1631/jzus.2005.AS0137                     Document code:  A                    CLC number:  TP391.72 
 
 
INTRODUCTION 
 

Given a set of points that lie on or near a smooth 
surface, we consider the problem of computing a 
piecewise linear approximation of this surface. The 
surface reconstruction is increasingly important in 
geometric modelling for generating surfaces from 
cloud points captured from real objects, often by laser 
range scanners but also by hand-held digitizers, 
computer vision techniques, edge detection from 
medical images, or other technologies. Industrial 
applications include reverse engineering, product 
design and the construction of personalized medical 
applications.   

The main issues in the surface reconstruction are 
how to deal with surfaces of arbitrary topology; to 
allow non-uniform sampling-featureless areas need 
fewer samples and to produce models with provable 
guarantees, e.g., smooth manifolds that accurately 
approximate the actual surface. There is a large body 
of related work concerning surface reconstruction.  

 

                                                        
 

The-state-of-the-art report by Mencl and Müller 
(1998) present a good classification of the existing 
works. Here, we can distinguish two main ap-
proaches. 

The first main approach is the implicit shape 
reconstruction. The surface to be reconstructed is 
considered as the zero set of an implicit function 
determined by the cloud points. This surface can be 
visualized directly using an implicit ray-tracer 
(Bloomenthal, 1997), or an intermediate explicit 
representation, such as a mesh of polygons, which can 
be extracted by the well-known iso-surface algo-
rithms such as Marching Cubes (Lorensen and Cline, 
1987). Such methods had been applied to the surface 
reconstruction by Hoppe et al.(1992), Bajaj et al. 
(1995), Bernardini et al.(1997), Curless and Levoy 
(1996), and Bossonnat and Cazals (2000) etc. The 
main issue in this kind of methods is what implicit 
function is used to fit the data points. Alexa et 
al.(2001) constructed the implicit function by a pro-
jection-based approach (MLS). Carr et al.(2001), 
Turk and Brien (2002) used globally supported radial 
basis functions (RBFs) to construct smooth surfaces 
from point cloud data. The level set method (Zhao and 
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Osher, 2002) is another good candidate for recon-
structing the implicit function. The current imple-
mentation of the above methods becomes expensive 
in time and memory if high accuracy reconstruction is 
required. The partition of unity approach (Ohtake et 
al., 2003) provides a reconstruction of implicit func-
tions from scatted point data. The main advantages of 
using implicit functions for surface reconstruction 
from scatted data are data repairing capabilities and 
opportunities to edit the resulting objects using stan-
dard implicit modelling operations. These approaches 
are desirable especially in the presence of noise. But 
they cannot avoid generating extra zero-level sets. 
This disadvantage makes them difficult for recon-
structing the surface with complex boundaries.          

The second main approach is to construct a tri-
angle mesh directly from the point cloud data. In this 
kind of approach, the methods may fall into two 
categories: sculpting-based approaches and re-
gion-growing approaches. Sculpting-based ap-
proaches are inspired by computational geometry. 
They output a set of facets from a geometric data 
structure such as the Delaunay triangulation of the 
points. Early result in this direction are the sculpting 
method of Bossonnat (1984) and the α-shapes of 
Edelsbrunner and Mücke (1994). Later on, Amenta et 
al.(1998) proposed a new Voronoi-based surface re-
construction algorithm with correctness guarantees 
under a given sampling condition. Efficient and ro-
bust codes are now available for computing Voronoi 
diagrams and Delaunay triangulations (Devillers, 
1998). These methods are fast. Other algorithms in 
this category are Gamma-graphs (Veltkamp, 1991), 
A-shapes (Melkemi, 1997), crust algorithm (Amenta 
and Bern, 1999; Amenta et al., 2000; 2001), Gabriel 
graphs (Attene and Spagnuolo, 2000), Umbrella Filter 
algorithm (Adamy et al., 2002), and Geometric con-
vection approach (Chaine, 2003) etc. Region-growing 
approaches construct the mesh starting with a seed 
triangle patch, and progressively adding new triangles 
attached to the partially constructed mesh. The con-
tributions of Bernardini et al.(1999), Huang and 
Menq (2002), and Lin et al.(2004) fall into this 
category. The advantages of the algorithms in this 
category are that they are very fast and can handle the 
processing of huge data sets, but suffer from the 
sampling deficiencies and the bad seed triangle. An-
other algorithm is that of Mencl (1995) which pro-

duces a triangulated surface by filling the contours of 
an extension of the Euclidean minimum spanning tree 
of the points. Floater and Reimers (2001) did well in 
parameterizing the scattered points and then compute 
the 2D Delaunay triangulations. The algorithm of 
Amenta et al.(1998) is the first one with provable 
guarantee in 3 dimensions. These theoretical results 
hold when the sampling is sufficiently dense. How-
ever the restrictive sampling conditions are rarely met 
in practical applications. Often, in practice, the re-
constructed surface may not be a manifold, may have 
additional holes, triangles. To ensure correct recon-
struction, a post-processing of the reconstructed sur-
face is often needed. Adamy et al.(2002) suggested a 
nice way to achieve topology correctness.    

In this paper, we present a new method for re-
constructing a piecewise linear surface from the point 
cloud. The sampling criteria presented here is admit-
tedly implicit. Namely, if one wishes to reconstruct a 
surface from sampled data, then the sampling of the 
surface must be sufficiently fine. The main idea in our 
method is to construct a restricted Delaunay triangu-
lation with the help of two offset surfaces. A primary 
advantage in using offsets versus existing work 
(Amenta and Bern, 1999; Amenta et al., 2000) relying 
upon the medial axis as approximating the medial axis 
is a difficult task (Amenta et al., 2001) whereas the 
method here requires no such computation. 
 
 
OUTLINE OF THE RECONSTRUCTION ALGO-
RITHM 
 

The inputted point cloud P is a finite set of points 
scattered in three-dimensional Euclidean space sam-
pled from a “compact, connected, orientable 2D 
manifold surface, embedded in ú3” (Hoppe et al., 
1992). And we assume that the sample is sufficiently 
dense. The outputted result is structural information 
in terms of a triangular mesh or complex connecting 
the scattered points. There are two main steps in our 
algorithm: 

(1) Normal estimation. Here we use the least 
squares best fitting plane to estimate the unit normal 
vector at every point in the inputted data. The main 
idea comes from Hoppe et al.(1992). First, a discrete 
local neighborhood of a point can be defined through 
the spatial relations of sampled points. Given a point 
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p∈P, we gather together the k points of P nearest to p. 
The obtained points set is denoted by Nbhd(p) and is 
called the k-neighborhood of p (We currently assume 
k to be a user-specified parameter). The centroid of 
Nbhd(p) is represented as a point o. Then we can 
obtain a symmetric 3×3 positive semi-definite matrix 

 
T

( )
( ) ( )

y Nbhd∈

= − −∑
p

CV y o y o  

 
If λ1≥λ2≥λ3 denote the eigenvalues of CV associated 
with unit eigenvectors v1, v2, v3, respectively. It fol-
lows that the plane  
 

T
3( ) : ( ) 0x − =T x o v  

 
through o minimizes the sum of squared distances to 
the set Nbhd(p). Thus v3 approximates the surface 
normal at point p. 

(2) The restricted Delaunay triangulation. We 
use the offsets to remove the triangles from Delaunay 
triangulation. Let T be the set of the triangles that 
remained. T contains only those triangles in which all 
three vertices are sample points. And then an ac-
ceptable piecewise linear manifold can be selected 
from T by a manifold extraction step. 
 

 
RESTRICTED DELAUNAY TRIANGULATION 
 

At first, we will briefly review some elementary 
facts about offsets and the restricted Delaunay 
triangulation, taken from (Wallner et al., 2001; 
Sakkalis et al., 2004; Edelsbrunner and Shah, 1994). 
Then we present a simple algorithm for constructing 
the restricted Delaunay triangulation.  
 
Offset surfaces 

Offset surface is useful in geometric modelling, 
such as in the construction of tolerance zones, the 
generation of tool paths for numerical control ma-
chining, and application to interval solids, etc. Let F 
be an orientable dimensional manifold surface em-
bedded in ú3, which is C2 (at each point of the mani-
fold where the second derivative exists and is con-
tinuous). Let λ∈ú, then the offsets F0(λ) of F can be 
defined as 

F0(λ)={x+λnx|x∈F}, 
 

where nx is the unit surface normal of F at x. 
An offset is in general more complex than its 

progenitor (the initial surface F). It may self-intersect 
locally when the absolute value of the offset distance 
exceeds the minimum radius of curvature in a con-
cave region. Also, an offset may intersect globally 
when the distance between two distinct points on the 
progenitor reaches a local minimum (Wallner et al., 
2001). Furthermore, Wallner et al.(2001) showed a 
method for determining the maximum offset distance 
such that the offset does not self-intersect. Sakkalis et 
al.(2004) proved that the offset F0(λ) is ambient iso-
topic to its progenitor F when the offset distance does 
not exceed a tolerance threshold calculated from F.  

In this paper we use the offset to construct the 
restrict Delaunay triangulation. Let P be the point 
cloud sampled from F, we have the point cloud sam-
pled from two offsets of F as follows 

 
Q={p±λnp|p∈P},                              (1) 

 
where np is the estimated unit surface normal of F at p, 
and λ=αρ. α is a positive user-defined value and less 
than 1. Usually, we use α=0.8. We use the threshold 
value ρ to approximate the maximum offset distance 
such that the offset does not self-intersect. In fact, 
calculating the maximum offset distance exactly is 
very complex work. And we do not need the precise 
maximum. We offer a practical way to determine the 
value ρ.  
 

1

( )
m

i
i

d mρ
=

 =  
 
∑ p , 

 
where 

0 1,
( ) min ,i i jj m j i

d
< < + ≠

= −p p p  i ∈p P . 

The value ρ is just an experimental result. Ex-
amples show that it is available from our algorithm. 

 
Construction of the restricted Delaunay triangu-
lation 

A Voronoi cell of p∈P is defined as the set of 
points x∈ú3 such that |p–x|≤|q–x| for any q∈P and 
p≠q. The collection of Voronoi cells is VP={Vp| p∈P}. 
VP is called the Voronoi diagram of P. Let DP denote 
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the Delaunay triangulation of P. The Delaunay tri-
angulation has an edge pq if and only if Vp, Vq share a 
face, has a triangle pqr if and only if Vp, Vq, Vr share 
an edge, and has a tetrahedron pqrs if and only if 
Vp,Vq,Vr,Vs share a Voronoi vertex.  

The Voronoi cell restricted to the surface F is 
Vp,F=Vp∩F. The restricted Voronoi diagram VP,F is 
defined as the collection of restricted Voronoi cells. 
The dual of the restricted Voronoi diagram defines the 
restricted Delaunay triangulation DP,F (Edelsbrunner 
and Shah, 1994). Edelsbrunner and Shah (1994) 
showed that the underlying space of DP,F is homeo-
morphic to F if a closed ball property holds. Amenta 
and Bern (1999) used the above result to prove that if 
P is a ε-sample of F with ε≤0.1, then DP,F contains 
triangles forming a piecewise-linear manifold ho-
meomorphic to F.  

Similar to the method in Amenta and Bern 
(1999), we also used restricted Delaunay triangula-
tion to reconstruct the underlying surface. However 
we obtain DP,F in an easier way. We calculate the 
Delaunay triangulation of P∪Q (defined in Eq.(1)), 
and then collect the triangles whose vertices all be-
long to P.  

 
T={t|t∈DP∪Q, all vertices of t belong to P}, 

 
where Q is defined in Eq.(1).   

We assume again that the sample is sufficiently 
dense. Then we use the set T to approximate the re-
stricted Delaunay triangulation DP,F. A simple geo-
metric interpretation of the above method is as fol-
lows (See Fig.1~Fig.5). Every Voronoi cell Vp, p∈P, 
in the Voronoi diagram VP∪Q is bounded by two off-
sets. Furthermore, the set contains all Voronoi cells, 
which intersect the surface F, just is the collection of 
cells  

 
V1={Vp|p∈P, Vp∈VP∪Q}. 

 
And thus the dual of V1 (See Fig.3 and Fig.4 for the 
illustration in two-dimensional space) contains the 
restricted Delaunay triangulation. Because the set T 
belong to the dual of V1, the triangle in T is bounded 
by two offsets. 

From Fig.1 to Fig.5, we illustrate our method in 
two-dimensional space. In Fig.1, the point cloud P 
and its two offsets Q are shown. In Fig.2, the Delaun- 

 
 

Fig.1  Illustration of the point cloud (⋅) and its two offsets 
(+) in two-dimensional space 
 

 
 

Fig.2  Illustration of DP∪Q in two-dimensional space 
 

 
 

Fig.3  Illustration of V1 in two-dimensional space 
 

 
Fig.4  The dual triangulation of V1 
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Fig.5  Illustration of T in two-dimensional space. And T is 
just the piecewise approximation to the curve 
 
 
ay triangulation is implemented on the points set. In 
Fig.3 and Fig.4, we draw the collection of Voronoi 
cells V1, containing all the restricted Voronoi cells. 
The dual of V1

 contains the piecewise approximation 
to the curve underlying the inputted point cloud. Fig.5 
is the reconstruction curve obtained by connecting the 
line segments in the set T. 

Now, we can present the pipeline of our algo-
rithm in detail: 

 
Complex T OSF (Points_set P) 

    { 
    To estimate the unit normal vector np at p∈P; 
    Q={p±λnp|p∈P};    //(λ is calculated in Section 3.1) 
    T={t|t∈DP∪Q, all vertices of t belong to P}; 
     return T;  
} 
 
 
IMPLEMENTATION 
  

During implementation of the algorithm, we 
faced some difficulty with the manifold extraction 
step (connecting the triangles to obtain a piecewise 
linear manifold). Treating the complex T as a trian-
gular mesh depends heavily on the assumptions that 
the surface is smooth, has no boundaries, and that the 
sampling is sufficiently dense. In practice the inputted 
data do not satisfy these assumptions. So a post 
processing of T is usually needed. Similar to the idea 
in Adamy et al.(2002), we also use the umbrella 
condition to mark the unwanted triangle. A vertex v 
satisfies the umbrella condition if there exists a set of 
triangles incident to v which form a topological disk. 
A triangle in T is marked as a ‘good’ triangle if its 

three vertices all satisfy the umbrella condition. A 
triangle in T is marked as a ‘bad’ triangle if one of its 
vertices does not satisfy the umbrella condition. All 
the ‘good’ triangles form an initial triangular mesh M1. 
Then we use region-growing approaches (Lin et al., 
2004) to construct the final mesh starting with M1, 
and progressively adding ‘bad’ triangles in T attached 
to the partially construction mesh. 
 
 
RESULTS 
 

We implemented our algorithm using C++ pro-
gramming language. Our implementation is based on 
the Computational Geometry Algorithms Library 
CGAL (available on http://www.cgal.org), which 
includes fast and robust Delaunay triangulations for 
two and three dimensions. We test our algorithm on 
several examples (See Fig.6~Fig.11) on a PC with 
Intel Pentium IV CPU 2.8 GHz and 1 G RAM mem-
ory. Additional information is listed in Table 1, which 
summarizes more detailed information about the 
runtimes and the number of output triangles for our 
algorithm. 

 
 

 
 

Fig.6  Knot 
 
 
 

 
 
 

Fig.7  Fandisk 
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Fig.8  Knee 
 

 
 

Fig.9  Rabit 

 

 
 

Fig.10  RockerArm 

 

 
 

Fig.11  Club 

Table 1  Performance of our algorithm for different objects, 
statistic in the table: the number of points in the point 
clouds, the number of triangles in the reconstructed mesh, 
the time of processing 
 

Objects Points No. Triangles No. Time (s) 
Knot     5759  11213  9.157  
Fandisk   25893  50378  47.052  
Knee   37888  75224  74.743  
Rabit   67038  134029  125.047  
RocherArm   40177  79729  80.414  
Club 209779  419319  480.538  

 
 
CONCLUSIONS AND FUTURE WORK 
 

In this paper, we present a new surface recon-
struction algorithm, called OSF algorithm. This al-
gorithm is suitable for dealing with arbitrary topology 
surface, to allow non-uniform sampling and espe-
cially for the sampled points from smooth surface. 
Our method can be treated as an extension to the 
Voronoi filtering by Amenta and Bern (1999). By 
adding poles, the Voronoi filtering introduced points 
in the normal direction. However, they used the far-
thest Voronoi point to estimate the normal direction. 
This will fail when the farthest Voronoi points reach 
to infinity, and so will cause big errors when the point 
clouds are sampled from open surfaces, especially 
when the point clouds are nearly on a plane. In our 
algorithm, we use the least squares best fitting plane 
method to approximate the normal vector. The com-
putation becomes local and more robust. Planned 
future work includes decreasing the runtime of our 
algorithm, studying the sampling according to the 
normal information, providing provable guarantees. 
 
References 
Adamy, U., Giesen, J., John, M., 2002. Surface reconstruction 

using umbrella filters. Comput. Geom, 21(1-2):63-86. 
Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levein, D., 

Silva, C.T., 2001. Point Set Surfaces. IEEE Visualization 
2001, p.21-28. 

Amenta, N., Bern, M., 1999. Surface reconstruction by Vo-
ronoi filtering. Discrete Comput. Geo., 22(4):481-504. 

Amenta, N., Bern, M., Kamvysselis, M., 1998. A New Vo-
ronoi-based Surface Reconstruction Algorithm. Proc. 
SIGGRAPH 1998, p.412-415. 

Amenta, N., Choi, S., Dey, T.K., Leekha, N., 2000. A Simple 
Algorithm for Homeomorphic Surface Reconstruction. 
Proceedings of the 16th Annual ACM Symposium on 
Computational Geometry (SCG’2000), p.213-222. 



Dong et al. / J Zhejiang Univ SCI   2005 6A(Suppl. I):137-143 

 

143

Amenta, N., Choi, S., Kolluri, R.K., 2001. The power 
crust, unions of balls, and the medial axis transform. 
Comput. Geom. Theory Appl., 19:127-153. 

Attene, M., Spagnuolo, M., 2000. Automatic surface recon-
struction from point sets in space. Computer Graphics 
Forum, 19(3):457-465. 

Bajaj, C., Bernardini, F., Xu, G., 1995. Automatic Recon-
struction of Surfaces and Scalar Fields from 3D Scans. 
Proc. SIGGRAPH ’95. 

Bernardini, F., Bajaj, C., Chen, J., Schikore, D., 1997. Trian-
gulation-based Object Reconstruction Methods. Proc. 
13th Annu. ACM Symp. Comput. Geom., p.481-484. 

Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, 
G., 1999. The ball-pivoting algorithm for surface recon-
struction. IEEE Trans. Visualization Compute Graphics, 
5(4):349-359. 

Bloomenthal, J.(Ed.), 1997. Introduction to Implicit Surfaces. 
Morgan Kaufmann, San Francisco, California. 

Bossonnat, J.D., 1984. Geometric structures of 
three-dimensional shape reconstruction. ACM Trans. 
Graphics, 3(4):266-286. 

Bossonnat, J.D., Cazals, F., 2000. Smooth Surface Recon-
struction via Natural Neighbor Interpolation of Distance 
Functions. Proceedings of SCG’2000 (ACM Symposium 
on Computational Geometry), p.223-232. 

Carr, J., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, 
W.R., Mccallum, B.C., Evans, T.R., 2001. Reconstruction 
and Representation of 3D Objects with Radial Basis 
Functions. Proc. SIGGRAPH 2001, p.67-76. 

Chaine, R., 2003. A Geometric Convection Approach of 3-D 
Reconstruction. Proc. of Eurographics and ACM 
SIGGRAPH Symp. on Geometry Processing, p.218-229 

Curless, B., Levoy, M., 1996. A Volumetric Method  for 
Building Complex Models from Range Images. Proc. 
SIGGRAPH ’96, p.303-312. 

Devillers, O., 1998. Improved Incremental Randomized De-
launay Triangulation. Proc. 14th Annual ACM Symp. 
Comput. Geom., p.106-115. 

Edelsbrunner, H., Mücke, E., 1994. 3D alpha shapes. ACM 
Trans. Graphics, 13(1):43-72. 

Edelsbrunner, H., Shah, N., 1994. Triangulating Topological 
spaces.   Proc.   10th   ACM   Symp.    Comput.    Geom.,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

p.285-292. 
Floater, M.S., Reimers, M., 2001. Meshless parameterization 

and surface reconstruction. Computer Aided Geometry 
Design, 18(2):77-92. 

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, 
W., 1992. Surface reconstruction from unorganized points. 
Comput. Graphics, 26(2):71-78. 

Huang, J., Menq, C.H., 2002. Combinational manifold mesh 
reconstruction and optimization from unorganized points 
with arbitrary meshes. Computer-Aided Design, 
34(2):149-165. 

Lorensen, W.E., Cline, H.E., 1987. Marching cubes: A high 
resolution 3D surface construction algorithm. Computer 
Graphics, 21(4):163-169. 

Lin, H.W., Tai, C.L., Wang, G.J., 2004. A mesh reconstruction 
algorithm driven by an intrinsic property of a point cloud. 
Computer-Aided Design, 36(1):1-9. 

Melkemi, M., 1997. A-shapes and Their Derivatives. Proc. 
13th Annual ACM Symp. Comput. Geom., p.367-369. 

Mencl, R., 1995. Surface Reconstruction from Unorganized 
Points in Space. Abstracts 11th European Workshop 
Comput. Geom., p.67-70. 

Mencl, R., Müller, H., 1998. Interpolation and Approximation 
of Surfaces from Three-dimensional Scatted Data Points. 
State of the Art Reports, Eurographics1998, p.51-67. 

Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., Seidel, H.P., 2003. 
Multi-level Partition of Unity Implicits. Proc. 
SIGGRAPH 2003. 

Sakkalis, T., Peter, T.J., Bisceglio, J., 2004. Isotopic approxi-
mations and interval solids. Computer-Aided Design, 
36:1089-1100. 

Turk, G., Brien, O.J., 2002. Modeling with implicit surfaces 
that interpolate. ACM Trans. on Graphics, 21(4):855-873. 

Veltkamp, R.C., 1991. The gamma-neighborhood graph. 
Comput. Geom., 1:227-246. 

Wallner, J., Sakkalis, T., Maekawa, T., Pottman, H., Yu, G., 
2001. Selfintersections of offset curves and surfaces. Int. J. 
Shape Modeling, 7(1):1-21. 

Zhao, H., Osher, S., 2002. Visualization, Analysis and Shape 
Reconstruction of Unorganized Data Sets. In: Osher, S., 
Paragios, N.(Eds.), Geometric Level Set Methods in Im-
aging, Vision and Graphics. Springer. 

 


