
Pan et al. / J Zhejiang Univ SCIENCE A 2006 7(2):172-178 172

CW-HSTCP: Fair TCP in high-speed networks

PAN Xue-zeng (潘雪增)1, SU Fan-jun (苏凡军)†1, LÜ Yong (吕 勇)2, PING Ling-di (平玲娣)1
(1School of Computer Science, Zhejiang University, Hangzhou 310027, China)

(2School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)
†E-mail: suwang@zju.edu.cn; sufanjun@sina.com

Received Oct. 11, 2005; revision accepted Dec. 28, 2005

Abstract: The congestion control mechanisms of the current standard TCP constrain the congestion windows that can be
achieved by TCP in high-speed networks, which leads to low link utilization. HSTCP is one solution to solve this problem by
modifying the congestion control mechanism to have the characteristics of TCP friendliness in high loss rate environment and high
scalability in low loss rate environment. However, experiments revealed that HSTCP has severe RTT unfairness. After analyzing
the RTT unfairness in HSTCP with a model, we proposed CW-HSTCP, which added a fair factor to decrease the difference of
congestion window caused by different RTT. Fair factor of long RTT flows can cause a sharp window increment that is easy to
cause a bursty traffic, so a method called block-pacing was adopted. Simulation results showed that our new proposal could
alleviate the RTT unfairness while keeping advantages of HSTCP.

Key words: High-speed networks, HSTCP, Congestion control
doi:10.1631/jzus.2006.A0172 Document code: A CLC number: TP393

INTRODUCTION

The development of network technology led to
the appearance of many high-speed networks with
bandwidth larger than 1 Gbps, or even 10 Gbps.
Through high-speed networks, applications like sci-
entific collaboration, telemedicine, and real-time
environment monitoring can transfer high-bandwidth
real time data, images, and video captured from re-
mote sensors such as satellite, radars, and echocar-
diography. What is more, data intensive grid applica-
tion (Foster et al., 2001) and SAN (Phillips, 1998)
network can benefit from high-speed networks too.

TCP widely adopted as a data transfer protocol
in Internet now works well when transfer rates are in
the range of 100 bps to 107 bps and round-trip delays
are in the range of 1 ms to 100 s (Jacobson et al.,
1992), but it performs badly in high-speed networks.
TCP increases its congestion window by one at every
round trip time (RTT) and reduces it by half at a loss
event. In order for TCP to increase its window for full
utilization of 10 Gbps with 1500 byte packets, it re-

quires over 83333 RTTs. With 100 ms RTT, it takes
approximately 1.5 h, and for full utilization in steady
state, the loss rate cannot be more than 1 loss event
per 5×109 packets which is less than the theoretical
limit of the network’s bit error rates (Floyd, 2003).

Some efforts have been made to improve the
performance of TCP. The proposal in (Semke et al.,
1998) gets better TCP performance by auto-tuning the
buffer limit of the sender and receiver, although lim-
ited effects can be achieved in high-speed networks.
The proposal in (Sivakumar et al., 2000) uses parallel
TCP to transfer bulk data, but the number of the
connections is set by users, greedy action may result.
XCP (Katabi et al., 2002) is a router-assisted protocol,
which limits its scalability. Currently, the research
focus is modifying congestion control mechanisms of
TCP. Some recently proposed protocols are High-
Speed TCP (HSTCP) (Floyd, 2003), Scalable TCP
(STCP) (Kelly, 2003), BIC (Xu et al., 2004), LTCP
(Bhandarkar et al., 2004). HSTCP is a modification of
TCP’s current congestion control mechanisms for
high-speed links. HSTCP’s modification of the re-

Journal of Zhejiang University SCIENCE A
ISSN 1009-3095
http://www.zju.edu.cn/jzus
E-mail: jzus@zju.edu.cn

Pan et al. / J Zhejiang Univ SCIENCE A 2006 7(2):172-178 173

sponse function is realized by change of additive
increase and multiplicative decrease parameters.
Therefore, HSTCP has high scalability in high-speed
networks. STCP has similar idea. BIC views conges-
tion control as a searching problem in which the sys-
tem gives yes/no feedback through packet loss. It
consists of two parts: binary search increase and ad-
ditive increase. LTCP uses two dimensional conges-
tion control: at the macroscopic level, the layers are
added/dropped based on dynamic network conditions
and at the microscopic level, the congestion window
behavior is defined for operating at any given layer.

However, in (Xu et al., 2004), the author points
out that HSTCP has more severe RTT unfairness. We
define the RTT unfairness of two competing flows to
be the throughput ratio, which equals to the ratio of
bottleneck link utilization. Lakshman and Madho
(1997) studied RTT unfairness of standard TCP. It is
reported that under a DT (Drop Tail) queue TCP
throughput is inversely proportional to RTTα, where
1≤α≤2.

In this paper, we analyze the RTT unfairness
with a model proposed in (Chiu and Jain, 1989). To
resolve the RTT unfairness, a fair protocol named
CW-HSTCP is proposed, and we give a relative fair
criterion to evaluate the algorithm in Section V.
CW-HSTCP adds a fair factor to eliminate the dif-
ference of congestion window between flows with
different RTT. Block-pacing scheme is adopted to
avoid bursty traffics caused by fair factor of long RTT
flows.

Our proposal can greatly alleviate the severe
RTT unfairness, and keep the RTT unfairness below
the inverse ratio of RTT. With ns-2 simulator, we
show CW-HSTCP can get a stable fairness between
different RTT flows, and have friendliness to standard
TCP. What is more, CW-HSTCP only needs small
modification of the HSTCP algorithm. Compared
with BIC, our proposal is simple and keeps the ad-
vantages of HSTCP.

BACKGROUND: TCP AND HSTCP

Because our proposal builds on HSTCP, in this
section, we briefly introduce TCP and HSTCP (Floyd,
2003).

TCP uses a sliding window mechanism and
end-to-end acknowledgments to provide reliable data

transfer across a network (Stevens, 1994). Congestion
window (cwnd for short) represents the size of sliding
window used by the sender. In congestion avoidance
phase, TCP and HSTCP use the following algorithm
to adjust its congestion window:

In response to a new acknowledgement (ACK):

w←w+a(w)/w. (1)

In response to a congestion event:

w←w−b(w)×w, (2)

where w denotes congestion window size. The above
congestion control mechanisms are also called AIMD
(additive increase and multiplicative decrease), where
a(w) and b(w) are additive increase and multiplicative
decrease parameters respectively.

Therefore, RTT has a significant influence on
TCP performance. We can deduce from Eq.(1) that:

w(t+1)=w(t)+a(w)×∆t/RTT. (3)

This means that connection increases its sending
rate by a(w) packets per round-trip time. For standard
TCP, a(w)=1, b(w)=0.5, which is not sufficient for
high-speed networks, so HSTCP makes a(w) and b(w)
become the function of current congestion window
size.

In HSTCP, some parameters such as High_
Window, Low_Window, High_P, Low_P are defined.
We express them as H_W, L_W, H_P, L_P, where
H_W and L_W are the congestion window, and H_P,
L_P are the corresponding drop rate. When w≤L_W,
HSTCP uses the same values of a(w) and b(w) as
standard TCP. While when w>L_W, they will be
calculated as follows:

b(w)=(b(H_W)−0.5)(logw−log(L_W))

/(log(H_W)−log(L_W))+0.5,
a(w)=w2×p(w)×2×b(w)/(2−b(w)).

Then the value of a(w) and b(w) can be calcu-
lated from the default value H_W=83000, L_W=38,
H_P=10−7, L_P=10−3 and b(H_W)=0.1. We show
some of them in Table 1. STCP (Kelly, 2003) has
similar idea of setting a(w)=0.01w, b(w)=0.125.

HSTCP and STCP are realized in sender without
needing modifications of network devices, so they are
easy to implement in current TCP stacks.

Pan et al. / J Zhejiang Univ SCIENCE A 2006 7(2):172-178 174

SIMULATION TOPOLOGY AND RTT UNFAIR-
NESS ANALYSIS

Simulation topology and configuration

We adopted ns-2 simulator (version 2.26). The
topology and configuration are shown in Fig.1. The
buffer size of the router is set to the product of
bandwidth and the delay of the bottleneck link.

We use TCP SACK for the simulation, and

packet size is set to 1000 bytes. The maximal con-
gestion window is set to 106. FTP is the application
used to transmit data through the TCP connections.

To avoid phase effect (Floyd and Jacobson,
1992), some web flows and short-lived TCP flows are
used, together with 3~5 standard long-lived TCP
flows. They act as background traffic for the simula-
tion. The short-lived flows start and end randomly,
and the start times of other flows are set randomly in
the range of 20 s.

Simulations were run for 200 s, and we get the
data during the steady state. Two router queue man-
agement policies, DT (Drop Tail) and RED (Random
Early Detection) were used respectively.

RTT unfairness

To measure the RTT unfairness, simulations
involving five HSTCP flows with RTTs varying from
60 ms to 240 ms were run. We found that RTT un-
fairness under RED router was not severe. On the
contrary, when using DT router, the unfairness was
very severe, so we only emphasize the case of DT
router in this paper.

In Fig.2, the evolution of the congestion window
is given. Subsequently, in Table 2, we list the
per-flow bottleneck bandwidth utilization at different
time interval calculated as follows:

Utilization=(Transferred bits within ∆t)
/(∆t×Bandwidth).

Per-flow utilization reflects RTT unfairness of
HSTCP. From Fig.2 and Table 2, we can easily find
the severe RTT unfairness. Flow 1 with RTT of 60 ms,
increases congestion window rapidly. As time in-
creases, it gets more and more bandwidth. On the
other hand, long RTT flows such as Flow 4 or Flow 5
evolves their windows slowly and bandwidth utiliza-
tion decreases as time increases. On the whole, short

Table 1 The value of a(w) and b(w) in HSTCP

w a(w) b(w)
 38 1 0.50
 118 2 0.44
 221 3 0.41
 347 4 0.38

...
84035 71 0.10

...

Table 2 Per-flow bottleneck link utilization (%)

 Bandwidth utilization (%) Time intervals
∆t (s) Flow 1

(RTT=60 ms)
Flow 2

(RTT=80 ms)
Flow 3

(RTT=140 ms)
Flow 4

(RTT=200 ms)
Flow 5

(RTT=240 ms)
50∼100 38.98 20.96 18.24 2.38 1.06

100∼150 48.10 21.35 14.10 1.77 0.84
150∼200 52.97 21.39 11.56 1.52 0.80

2.5 Gbps
5∼100 ms

2.5 Gbps
5∼100 ms

1 Gbps
20 ms

s0

sl

sn dn

dl

d0

R2 R1

Forward

Backward

Fig.1 Simulation topology and configuration

…

…

Fig.2 The congestion window evolution of HSTCP under
DT router

8000

6000

4000

2000

0
200 50 100 150

Time (s)

cw
nd

 (p
ac

ke
ts

)

0

1

2

35 4

Pan et al. / J Zhejiang Univ SCIENCE A 2006 7(2):172-178 175

RTT Flow 1 and Flow 2 get most of the bandwidth.
The RTT unfairness of STCP is more severe.

Three STCP flows with RTT of 120 ms, 160 ms, 240
ms get 91%, 2.73%, 0.77% of the bandwidth respec-
tively.

Analysis with model

We analyze the congestion window evolution
using the model proposed in (Chiu and Jain, 1989),
which can easily deduce RTT unfairness.

The model assumed synchronized loss which
means multiple competing flows simultaneously en-
counter loss events. When DT routers are used, syn-
chronized loss will happen frequently as shown in
Fig.2.

Let wi and RTTi denote the congestion window
size and the RTT of Flow i (i=1, 2) respectively. As
shown in Fg.3, axes w1 and w2 denote congestion
window of Flow 1 and Flow 2. Point denotes the
congestion window size of the two flows. Efficiency
line denotes the bandwidth is fully utilized by Flow 1
and Flow 2. Throughput of Flow i equals wi /RTTi, so
the point (e.g., point A (w1,w2)) on efficiency line
denotes the state of bandwidth fully utilization. In
others words, w1/RTT1+w2/RTT2=bottleneck band-
width. RTT fair line denotes the state that standard
TCP with different RTT can achieve, namely,
w1:w2=RTT2:RTT1. The throughput ratio of the two
flows is (RTT2:RTT1)2.

We assume RTT1 >RTT2, and begin with a state

of w1>w2 denoted by point A. If the initial state is
w1<w2 (denoted by point G), the same result will be
obtained.

For standard TCP, a(w)=1, b(w)=0.5, because
point A is under the efficiency line, which means that

there is available bandwidth, so the congestion win-
dow will increase as line AB increases. According to
Eq.(3), within the same time interval, the ratio of
congestion window increment is ∆w1/∆w2=RTT2/
RTT1, therefore line AB is parallel to fairness line OD.
Point B is above the efficiency line, so congestion will
happen. According to Eq.(2), w1(t+1)/w2(t+1)
=w1(t)/w2(t), the congestion window will decrease
with line BC, whose extension line will pass point O.
Several iterations later, the congestion window of the
two flows will converge to a value (denoted by point
D).

However, for HSTCP, a(w) and b(w) become the
function of the congestion window. When w1>w2, we
will get a(w1)>a(w2) and b(w1)<b(w2). Therefore,
∆w1/∆w2>RTT2/RTT1, the congestion window of
HSTCP will increase with line AE (whose slope is
greater than that of line OD). And when congestion
happens, w1(t+1)/w2(t+1)>w1(t)/w2(t), so the conges-
tion window will decrease with line EF (whose ex-
tension line will not pass point O). The trend is far
from point D as time elapses. In other words, w1 will
become bigger and bigger, but w2 will become
smaller and smaller.

Let v(t) denote the throughput of TCP, then v(t)
=w(t)/RTT, so the RTT unfairness will become more
and more severe as time increases.

From the above analyses, we get the conclusion
that the high scalability of HSTCP in low loss rate
environment and synchronized loss when DT routers
are used aggravate the RTT unfairness.

In fact, when the window of a flow is small, it
will meet less congestion than flows with larger
window. For example, as shown in Fig.2, at 102 s,
Flow 1 and Flow 2 are affected by congestion, while
Flow 3 avoids synchronized loss. Therefore, to some
extent, the unfairness is alleviated. RED router can
avoid synchronized loss, so there is no severe RTT
unfairness when RED routers are adopted.

CW-HSTCP ALGORITHM

Based on our above analyses, we propose
CW-HSTCP (Constant window HSTCP) as a solu-
tion.

The main idea is adding a factor to compensate
the congestion window increment difference caused

w1

O w2

E
B

F
A

C
D

G

RTT fairness line
w1:w2=RTT2:RTT1

Efficiency line
w1/RTT1+w2/RTT2=bottleneck bandwidth

Fig.3 The analysis with model

Pan et al. / J Zhejiang Univ SCIENCE A 2006 7(2):172-178 176

by different RTT. Namely, a(w)′=η×a(w), where a(w)
was explained in Section II. The fair factor is based on
the value of RTT, calculated as η=c×RTT, where c has
the similar meaning as that in CR (Constant Rate)
algorithm (Floyd, 1991). For example, when c=10,
and RTT=100 ms=0.1 s, η=1.

Here we give a more detailed explanation. As-
sume there are two flows whose RTT are 100 ms, 200
ms respectively. Suppose at a time t1, the sizes of
their congestion window are both w. Before fair factor
is added, 100 ms later the window of Flow 1 will
become w+a(w), and will become w+a(w)+a(w
+a(w)) at time t1+200 ms. w+a(w)+a(w+a(w))
≈w+2×a(w). While for Flow 2, 200 ms later, con-
gestion window will be w+a(w). After fair factor is
added, we can reduce the difference of the congestion
window. If we set c=10, for Flow 1, η=1, while for
flow 2, η=2. So after an RTT time, the congestion
window of Flow 2 will be w+2×a(w) too. Therefore,
Flow 1 and Flow 2 will have the same congestion
window.

Because throughput v(t)=w(t)/RTT, under the
condition of the same congestion windows, v(t)1/v(t)2

=RTT2/RTT1. Namely, CW-HSTCP can keep RTT
unfairness to be inversely proportional to the RTT
ratio. When congestion windows are the same, the
value of a(w) and b(w) will be the same, so stable
fairness can be achieved.

After fair factor is added, long RTT flows will
have sharp congestion window increment after an
RTT, and because the packets are sent back-to-back,
so it is easy to cause a burstiness traffic that may
cause congestion and more packets loss. To solve this
problem, a block-pacing method is adopted. The
congestion window will be divided into several
“blocks”. After the packets in one block have been

sent out, other packets in another block will be sent
after a time interval. This can counteract the negative
effects caused by adding fair factor.

We set the number of the block based on fair
factor η. The details of the algorithm are shown in
Fig.4 [the details of a(w) and b(w) were introduced in
Section II, so we omit the code of them here], and
give a simple illustration of block-pacing algorithm in
Fig.5.

// Initial value
k=1; // the number of block
block=0; // the packets number in a block
number=0; // the number of packets that have been sent
On receiving a new ACK in congestion avoidance state:

increment=c*RTT*a(w)/cwnd;
// cwnd is the congestion window size
 if (increment>1)

increment=1;
// to avoid the increment larger than slow start

cwnd=cwnd+increment;
k=(int)c*RTT+1;
block=cwnd/k;

On congestion happening:
cwnd=cwnd*(1−b(w));
number=0;
time_0=now;

On sending date:
if (number>block)

time_1=now;
// now is the value of current time
if (k>cwnd)

k=cwnd;
delay=RTT/k−(time_1–time_0);

// delay is the time interval between two blocks
// (time_1–time_0) is the sending time of one block

output(delay); // send data after a time of delay
number=0; // begin a new count
time_0=time_1+delay;

else
output(); //send data directly
number++;

Fig.4 Pseudo-code of CW-HSTCP

Fig.5 A simple explanation of block-pacing (block number is 2)
(a) The sending process without block-pacing; (b) The sending process with block-pacing;

(a)

Pa
ck

et
 n

um
be

r

Time

RTT Pa
ck

et
 n

um
be

r

Time

Delay

RTT

(b)

Pan et al. / J Zhejiang Univ SCIENCE A 2006 7(2):172-178 177

A challenge in the implementation is the need for
the fine-grained timer to pace out the packets. This
problem was studied in (Aron and Druschel, 2002),
whose work showed that the soft timer technique
allowed the system timer to achieve 10 µs granularity
without significant system overhead.

PERFORMANCE EVALUATION

In this section, we evaluate the performance of
CW-HSTCP using simulations. The simulation to-
pology and configuration were described in Section
III.

We mainly focus on the property of bandwidth
utilization, RTT fairness, and TCP friendliness. We
present a relatively fairness criterion:

(1) The bandwidth requirement of standard TCP
should be met. In other words, standard TCP flow has
the room for bandwidth utilization.

(2) The fairness between different high-speed
TCP flows should be guaranteed.

Satisfying Condition (1) also means the protocol
has TCP friendliness, because standard TCP only
works well in high loss rate environment. The loss
rate we choose is 10−3, which is in correspondence to
the Low_P of HSTCP. If the total loss rate is lower
than 10−3, we say our protocol has the character of
TCP friendliness. To evaluate the fairness between
high-speed TCP flows, fair index (Chiu and Jain,
1989) is used as follows:

2
2

1 1

() ,
n n

i i
i i

f x x n x
= =

 =

∑ ∑

where xi (xi≥0) is the link utilization of Flow i.

Congestion window evolution

This simulation showed the congestion window
evolution after addition of the fair factor. Three
high-speed flows with RTT of 80 ms, 140 ms, 200 ms
(marked as 1, 2, 3 in Fig.6) were used. We set c=10.
As shown in Fig.6, different flows can get the same
congestion window, so a(w), b(w) will be the same,
and a stable fairness can be achieved. Comparison
between Fig.2 and Fig.6 shows our analyses in Sec-
tion III are correct.

Choice of parameter c and TCP friendliness
This simulation showed the effect of parameter c.

We list our simulation results in Table 3. We can find
that when c=5, the per-flow bandwidth utilization and
total bandwidth utilization of CW-HSTCP flows de-
crease together. This means that a too small value of c
will limit the scalability of HSTCP. However, when
c=20, short RTT CW-HSTCP flows will grasp more
bandwidth and fairness are decreased too. What is
more, background flows can get less bandwidth. In
other words, the friendliness of CW-HSTCP de-
creases. Therefore, c=10 is optimal.

The packet loss rates of background flows are
below 10−3 in 3 cases, so we say CW-HSTCP is TCP
friendly.

Fairness comparison of CW-HSTCP, HSTCP,
STCP and standard TCP

In this simulation, we compare the fairness of
CW-HSTCP, HSTCP, STCP and standard TCP.

Three flows with RTT being 80 ms, 140 ms, and
200 ms respectively were used, and different algo-
rithms, such as CW-HSTCP (c=10), HSTCP, STCP,
and standard TCP were adopted respectively. The
fairness index of high-speed flows was calculated at
different time scales. As shown in Fig.7, we can find
CW-HSTCP has better fairness property.

6000

0 50 100 150 200

8000

4000

2000

0

3

2

1

Fig.6 The congestion window evolution of CW-HSTCP
Time (s)

cw
nd

 (p
ac

ke
ts

)

Fig.7 The fairness of different algorithms

HSTCP
STCP

Standard TCP
CW-HSTCP

1

0
50 100 150 200

0.8
0.6
0.4

0.2

Time (s)

Fa
ir

in
de

x

Pan et al. / J Zhejiang Univ SCIENCE A 2006 7(2):172-178 178

When the number of CW-HSTCP flows increase,
such as five CW-HSTCP flows with RTT of 60 ms,
80 ms, 140 ms, 160 ms and 200 ms respectively, after
simulation and calculation, the fairness index of these
high-speed flows is 0.95. Therefore, CW-HSTCP has
better fairness property.

CONCLUSION AND FUTURE WORK

Through experiments, we found severe RTT
unfairness of HSTCP, and give a theoretic analyses
using model. Pointing to the RTT unfairness of
HSTCP, we propose CW-HSTCP as an improvement.
Fair factor is added to get the equal congestion win-
dow increment, and block-pacing scheme is used to
avoid the burstiness caused by sharp congestion
window increase of long RTT flows. Simulation re-
sults showed that our proposal has relatively better
fairness, and friendliness while keeping the advan-
tages of HSTCP, such as scalability in high-speed
networks.

In the future, we will study using the active
queue management mechanism to improve the per-
formance of HSTCP.

References
Aron, M., Druschel, P., 2002. Soft Timers: Efficient Micro-

second Software Timer Support for Network Processing.
ACM Transactions on Computer Systems, p.232-246.

Bhandarkar, S., Jain, S., Reddy, A.N., 2004. LTCP: A Layering
Technique for Improving the Performance of TCP in
Highspeed Networks. Internet draft: draft-bhandarkar-
ltcp-01.txt.

Chiu, D., Jain, R., 1989. Analysis of the increase and decrease
algorithms for congestion avoidance in computer net-
works. Computer Networks and ISDN, 17(1):1-14. [doi:

10.1016/0169-7552(89)90019-6]

Floyd, S., 1991. Connections with multiple congested gate-
ways in packet-switched networks part 1: one-way traffic.
ACM SIGCOMM Computer Communications Review,
21(5):30-47. [doi:10.1145/122431.122434]

Floyd, S., 2003. High Speed TCP for Large Congestion Win-
dows. RFC 3649.

Floyd, S., Jacobson, V., 1992. On traffic phase effects in
packet-switched gateways. Internetworking: Research
and Experience, 3(3):115-156.

Foster, I., Kesselman, C., Tuecke, S., 2001. The anatomy of the
grid: enabling scalable virtual organizations. Interna-
tional Journal on Supercomputer Applications,
15(3):200-222.

Jacobson, V., Braden, R., Borman, D., 1992. TCP Extensions
for High Performance. RFC 1323.

Katabi, D., Handley, M., Rohrs, C., 2002. Congestion control
for high bandwidth-delay product networks. ACM
SIGCOMM Computer Communications Review, 32(4):
89-102. [doi:10.1145/ 964725.633035]

Kelly, T., 2003. Scalable TCP: Improving performance in
high-speed wide area networks. ACM SIGCOMM Com-
puter Communications Review, 33(2):83-91. [doi:10.1145/
956981.956989]

Lakshman, T.V., Madho, U., 1997. The performance of TCP/IP
for networks with high bandwidth delay products and
random loss. IEEE/ACM Transactions on Networking,
5(3):336-350. [doi:10.1109/90.611099]

Phillips, B., 1998. Have storage area networks come of age.
Computer, 31(7):10-12. [doi:10.1109/2.689672]

Semke, J., Mahdavi, J., Mathis, M., 1998. Automatic TCP
Buffer Tuning. Proceedings of ACM SIGCOMM,
p.315-323.

Sivakumar, H., Bailey, S., Grossman, R.L., 2000. PSockets:
The Case for Application-level Network Striping for Data
Intensive Applications Using High Speed Wide Area
Networks. Proceedings of Super Computing, p.38.

Stevens, W.R., 1994. TCP/IP Illustrated, Volume 1: The Pro-
tocols. Addison-Wesley.

Xu, L., Harfoush, K., Rhee, I., 2004. Binary Increase Conges-
tion Control (BIC) for Fast Long-Distance Networks.
Proceedings of INFOCOM2004, p.2514-2524.

Bandwidth utilization (%)
c CW-HSTCP

(RTT=80 ms)
CW-HSTCP

(RTT=140 ms)
CW-HSTCP

(RTT=200 ms)
Background

flows Total
The fairness index

of CW-HSTCP

Loss rate of
background

flows
5 29.79 16.80 14.38 26.96 87.93 0.90 7×10−5~1×10−4
10 32.22 26.61 19.36 16.35 94.54 0.96 7×10−5~8×10−4
20 44.85 24.69 19.92 5.55 95.01 0.88 5×10−4~1×10−3

Table 3 The effect of c and the TCP friendliness

