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Abstract:    The congestion control mechanisms of the current standard TCP constrain the congestion windows that can be 
achieved by TCP in high-speed networks, which leads to low link utilization. HSTCP is one solution to solve this problem by 
modifying the congestion control mechanism to have the characteristics of TCP friendliness in high loss rate environment and high 
scalability in low loss rate environment. However, experiments revealed that HSTCP has severe RTT unfairness. After analyzing 
the RTT unfairness in HSTCP with a model, we proposed CW-HSTCP, which added a fair factor to decrease the difference of 
congestion window caused by different RTT. Fair factor of long RTT flows can cause a sharp window increment that is easy to 
cause a bursty traffic, so a method called block-pacing was adopted. Simulation results showed that our new proposal could 
alleviate the RTT unfairness while keeping advantages of HSTCP. 
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INTRODUCTION 
 

The development of network technology led to 
the appearance of many high-speed networks with 
bandwidth larger than 1 Gbps, or even 10 Gbps. 
Through high-speed networks, applications like sci-
entific collaboration, telemedicine, and real-time 
environment monitoring can transfer high-bandwidth 
real time data, images, and video captured from re-
mote sensors such as satellite, radars, and echocar-
diography. What is more, data intensive grid applica-
tion (Foster et al., 2001) and SAN (Phillips, 1998) 
network can benefit from high-speed networks too. 

TCP widely adopted as a data transfer protocol 
in Internet now works well when transfer rates are in 
the range of 100 bps to 107 bps and round-trip delays 
are in the range of 1 ms to 100 s (Jacobson et al., 
1992), but it performs badly in high-speed networks. 
TCP increases its congestion window by one at every 
round trip time (RTT) and reduces it by half at a loss 
event. In order for TCP to increase its window for full 
utilization of 10 Gbps with 1500 byte packets, it re-

quires over 83333 RTTs. With 100 ms RTT, it takes 
approximately 1.5 h, and for full utilization in steady 
state, the loss rate cannot be more than 1 loss event 
per 5×109 packets which is less than the theoretical 
limit of the network’s bit error rates (Floyd, 2003). 

Some efforts have been made to improve the 
performance of TCP. The proposal in (Semke et al., 
1998) gets better TCP performance by auto-tuning the 
buffer limit of the sender and receiver, although lim-
ited effects can be achieved in high-speed networks. 
The proposal in (Sivakumar et al., 2000) uses parallel 
TCP to transfer bulk data, but the number of the 
connections is set by users, greedy action may result. 
XCP (Katabi et al., 2002) is a router-assisted protocol, 
which limits its scalability. Currently, the research 
focus is modifying congestion control mechanisms of 
TCP. Some recently proposed protocols are High-
Speed TCP (HSTCP) (Floyd, 2003), Scalable TCP 
(STCP) (Kelly, 2003), BIC (Xu et al., 2004), LTCP  
(Bhandarkar et al., 2004). HSTCP is a modification of 
TCP’s current congestion control mechanisms for 
high-speed links. HSTCP’s modification of the re-
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sponse function is realized by change of additive 
increase and multiplicative decrease parameters. 
Therefore, HSTCP has high scalability in high-speed 
networks. STCP has similar idea. BIC views conges-
tion control as a searching problem in which the sys-
tem gives yes/no feedback through packet loss. It 
consists of two parts: binary search increase and ad-
ditive increase. LTCP uses two dimensional conges-
tion control: at the macroscopic level, the layers are 
added/dropped based on dynamic network conditions 
and at the microscopic level, the congestion window 
behavior is defined for operating at any given layer. 

However, in (Xu et al., 2004), the author points 
out that HSTCP has more severe RTT unfairness. We 
define the RTT unfairness of two competing flows to 
be the throughput ratio, which equals to the ratio of 
bottleneck link utilization. Lakshman and Madho 
(1997) studied RTT unfairness of standard TCP. It is 
reported that under a DT (Drop Tail) queue TCP 
throughput is inversely proportional to RTTα, where 
1≤α≤2. 

In this paper, we analyze the RTT unfairness 
with a model proposed in (Chiu and Jain, 1989). To 
resolve the RTT unfairness, a fair protocol named 
CW-HSTCP is proposed, and we give a relative fair 
criterion to evaluate the algorithm in Section V. 
CW-HSTCP adds a fair factor to eliminate the dif-
ference of congestion window between flows with 
different RTT. Block-pacing scheme is adopted to 
avoid bursty traffics caused by fair factor of long RTT 
flows.  

Our proposal can greatly alleviate the severe 
RTT unfairness, and keep the RTT unfairness below 
the inverse ratio of RTT. With ns-2 simulator, we 
show CW-HSTCP can get a stable fairness between 
different RTT flows, and have friendliness to standard 
TCP. What is more, CW-HSTCP only needs small 
modification of the HSTCP algorithm. Compared 
with BIC, our proposal is simple and keeps the ad-
vantages of HSTCP.  

 
 

BACKGROUND: TCP AND HSTCP 
 

Because our proposal builds on HSTCP, in this 
section, we briefly introduce TCP and HSTCP (Floyd, 
2003).  

TCP uses a sliding window mechanism and 
end-to-end acknowledgments to provide reliable data 

transfer across a network (Stevens, 1994). Congestion 
window (cwnd for short) represents the size of sliding 
window used by the sender. In congestion avoidance 
phase, TCP and HSTCP use the following algorithm 
to adjust its congestion window: 

In response to a new acknowledgement (ACK):  
 

w←w+a(w)/w.                              (1) 
 

In response to a congestion event:  
 

w←w−b(w)×w,                              (2) 
 

where w denotes congestion window size. The above 
congestion control mechanisms are also called AIMD 
(additive increase and multiplicative decrease), where 
a(w) and b(w) are additive increase and multiplicative 
decrease parameters respectively. 

Therefore, RTT has a significant influence on 
TCP performance. We can deduce from Eq.(1) that: 

 
w(t+1)=w(t)+a(w)×∆t/RTT.                 (3) 
 

This means that connection increases its sending 
rate by a(w) packets per round-trip time. For standard 
TCP, a(w)=1, b(w)=0.5, which is not sufficient for 
high-speed networks, so HSTCP  makes a(w) and b(w) 
become the function of current congestion window 
size. 

In HSTCP, some parameters such as High_ 
Window, Low_Window, High_P, Low_P are defined. 
We express them as H_W, L_W, H_P, L_P, where 
H_W and L_W are the congestion window, and H_P, 
L_P are the corresponding drop rate. When w≤L_W, 
HSTCP uses the same values of a(w) and b(w) as 
standard TCP. While when w>L_W, they will be 
calculated as follows: 

 
b(w)=(b(H_W)−0.5)(logw−log(L_W)) 

/(log(H_W)−log(L_W))+0.5, 
a(w)=w2×p(w)×2×b(w)/(2−b(w)). 
 

Then the value of a(w) and b(w) can be calcu-
lated from the default value H_W=83000, L_W=38, 
H_P=10−7, L_P=10−3 and b(H_W)=0.1. We show 
some of them in Table 1.  STCP (Kelly, 2003) has 
similar idea of setting a(w)=0.01w, b(w)=0.125.   

HSTCP and STCP are realized in sender without 
needing modifications of network devices, so they are 
easy to implement in current TCP stacks. 
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SIMULATION TOPOLOGY AND RTT UNFAIR- 
NESS ANALYSIS 
 
Simulation topology and configuration 

We adopted ns-2 simulator (version 2.26). The 
topology and configuration are shown in Fig.1. The 
buffer size of the router is set to the product of 
bandwidth and the delay of the bottleneck link.  

 
 
 
 
 
 
 
 
 
 
 
 
We use TCP SACK for the simulation, and 

packet size is set to 1000 bytes. The maximal con-
gestion window is set to 106. FTP is the application 
used to transmit data through the TCP connections. 

To avoid phase effect (Floyd and Jacobson, 
1992), some web flows and short-lived TCP flows are 
used, together with 3~5 standard long-lived TCP 
flows. They act as background traffic for the simula-
tion. The short-lived flows start and end randomly, 
and the start times of other flows are set randomly in 
the range of 20 s. 

 
  
 
 
 
 
 
 

Simulations were run for 200 s, and we get the 
data during the steady state. Two router queue man-
agement policies, DT (Drop Tail) and RED (Random 
Early Detection) were used respectively. 
 
RTT unfairness 

To measure the RTT unfairness, simulations 
involving five HSTCP flows with RTTs varying from 
60 ms to 240 ms were run. We found that RTT un-
fairness under RED router was not severe. On the 
contrary, when using DT router, the unfairness was 
very severe, so we only emphasize the case of DT 
router in this paper. 

In Fig.2, the evolution of the congestion window 
is given. Subsequently, in Table 2, we list the 
per-flow bottleneck bandwidth utilization at different 
time interval calculated as follows: 
 

Utilization=(Transferred bits within ∆t) 
/(∆t×Bandwidth). 
 
 
 
 

 
 
 
 
 
 
 
 
 

Per-flow utilization reflects RTT unfairness of 
HSTCP. From Fig.2 and Table 2, we can easily find 
the severe RTT unfairness. Flow 1 with RTT of 60 ms, 
increases congestion window rapidly. As time in-
creases, it gets more and more bandwidth. On the 
other hand, long RTT flows such as Flow 4 or Flow 5 
evolves their windows slowly and bandwidth utiliza-
tion decreases as time increases. On the whole, short  

 
 
 
 
 
 
 
 

Table 1  The value of a(w) and b(w) in HSTCP 
 

w a(w) b(w) 
     38  1 0.50 
   118  2 0.44 
   221  3 0.41 
   347  4 0.38 

... ... ... 
84035 71 0.10 

... ... ... 

Table 2   Per-flow bottleneck link utilization (%) 
 

            Bandwidth utilization (%) Time intervals 
∆t (s) Flow 1 

(RTT=60 ms) 
Flow 2 

(RTT=80 ms) 
Flow 3 

(RTT=140 ms) 
Flow 4 

(RTT=200 ms) 
Flow 5 

(RTT=240 ms) 
50∼100 38.98 20.96 18.24 2.38 1.06 

100∼150 48.10 21.35 14.10 1.77 0.84 
150∼200 52.97 21.39 11.56 1.52 0.80 

2.5 Gbps 
5∼100 ms 

2.5 Gbps 
5∼100 ms 

1 Gbps 
20 ms 

s0 

sl 

sn dn 

dl 

d0 

R2 R1 

Forward 

Backward 

Fig.1  Simulation topology and configuration 
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Fig.2  The congestion window evolution of HSTCP under
DT router 
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RTT Flow 1 and Flow 2 get most of the bandwidth. 
The RTT unfairness of STCP is more severe. 

Three STCP flows with RTT of 120 ms, 160 ms, 240 
ms get 91%, 2.73%, 0.77% of the bandwidth respec-
tively.  
 
Analysis with model    

We analyze the congestion window evolution 
using the model proposed in (Chiu and Jain, 1989), 
which can easily deduce RTT unfairness.  

The model assumed synchronized loss which 
means multiple competing flows simultaneously en-
counter loss events. When DT routers are used, syn-
chronized loss will happen frequently as shown in 
Fig.2. 

Let wi and RTTi denote the congestion window 
size and the RTT of Flow i (i=1, 2) respectively. As 
shown in Fg.3, axes w1 and w2 denote congestion 
window of Flow 1 and Flow 2. Point denotes the 
congestion window size of the two flows. Efficiency 
line denotes the bandwidth is fully utilized by Flow 1 
and Flow 2. Throughput of Flow i equals wi /RTTi, so 
the point (e.g., point A (w1,w2)) on efficiency line 
denotes the state of bandwidth fully utilization. In 
others words, w1/RTT1+w2/RTT2=bottleneck band-
width. RTT fair line denotes the state that standard 
TCP with different RTT can achieve, namely, 
w1:w2=RTT2:RTT1. The throughput ratio of the two 
flows is  (RTT2:RTT1)2.  

 
 
 
 
 
 
 
 
 
 
 
 

 
We assume RTT1 >RTT2, and begin with a state 

of w1>w2 denoted by point A. If the initial state is 
w1<w2 (denoted by point G), the same result will be 
obtained. 

For standard TCP, a(w)=1, b(w)=0.5, because 
point A is under the efficiency line, which means that    

there is available bandwidth, so the congestion win-
dow will increase as line AB increases. According to 
Eq.(3), within the same time interval, the ratio of 
congestion window increment is ∆w1/∆w2=RTT2/ 
RTT1, therefore line AB is parallel to fairness line OD. 
Point B is above the efficiency line, so congestion will 
happen. According to Eq.(2), w1(t+1)/w2(t+1) 
=w1(t)/w2(t), the congestion window will decrease 
with line BC, whose extension line will pass point O. 
Several iterations later, the congestion window of the 
two flows will converge to a value (denoted by point 
D).  

However, for HSTCP, a(w) and b(w) become the 
function of the congestion window. When w1>w2, we 
will get a(w1)>a(w2) and b(w1)<b(w2). Therefore, 
∆w1/∆w2>RTT2/RTT1, the congestion window of 
HSTCP will increase with line AE (whose slope is 
greater than that of line OD). And when congestion 
happens, w1(t+1)/w2(t+1)>w1(t)/w2(t), so the conges-
tion window will decrease with line EF (whose ex-
tension line will not pass point O). The trend is far 
from point D as time elapses. In other words, w1 will 
become bigger and bigger, but w2 will become 
smaller and smaller.  

Let v(t) denote the throughput of TCP, then v(t) 
=w(t)/RTT, so the RTT unfairness will become more 
and more severe as time increases. 

From the above analyses, we get the conclusion 
that the high scalability of HSTCP in low loss rate 
environment and synchronized loss when DT routers 
are used aggravate the RTT unfairness.  

In fact, when the window of a flow is small, it 
will meet less congestion than flows with larger 
window. For example, as shown in Fig.2, at 102 s, 
Flow 1 and Flow 2 are affected by congestion, while 
Flow 3 avoids synchronized loss. Therefore, to some 
extent, the unfairness is alleviated. RED router can 
avoid synchronized loss, so there is no severe RTT 
unfairness when RED routers are adopted. 
 
 
CW-HSTCP ALGORITHM 
 

Based on our above analyses, we propose 
CW-HSTCP (Constant window HSTCP) as a solu-
tion.  

The main idea is adding a factor to compensate 
the congestion window increment difference caused 

w1 

O w2 

E 
B 

F 
A 

C 
D 

G 

RTT fairness line  
w1:w2=RTT2:RTT1 

Efficiency line 
w1/RTT1+w2/RTT2=bottleneck bandwidth 

Fig.3  The analysis with model 
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by different RTT. Namely, a(w)′=η×a(w), where a(w) 
was explained in Section II. The fair factor is based on 
the value of RTT, calculated as η=c×RTT, where c has 
the similar meaning as that in CR (Constant Rate) 
algorithm (Floyd, 1991). For example, when c=10, 
and RTT=100 ms=0.1 s, η=1.  

Here we give a more detailed explanation. As-
sume there are two flows whose RTT are 100 ms, 200 
ms respectively. Suppose at a time t1, the sizes of 
their congestion window are both w. Before fair factor 
is added, 100 ms later the window of Flow 1 will 
become w+a(w), and will become w+a(w)+a(w 
+a(w)) at time t1+200 ms. w+a(w)+a(w+a(w)) 
≈w+2×a(w). While for Flow 2, 200 ms later, con-
gestion window will be w+a(w). After fair factor is 
added, we can reduce the difference of the congestion 
window. If we set c=10, for Flow 1, η=1, while for 
flow 2, η=2. So after an RTT time, the congestion 
window of Flow 2 will be w+2×a(w) too. Therefore, 
Flow 1 and Flow 2 will have the same congestion 
window.  

Because throughput v(t)=w(t)/RTT, under the 
condition of the same congestion windows, v(t)1/v(t)2 

=RTT2/RTT1. Namely, CW-HSTCP can keep RTT 
unfairness to be inversely proportional to the RTT 
ratio. When congestion windows are the same, the 
value of a(w) and b(w) will be the same, so  stable 
fairness can be achieved. 

After fair factor is added, long RTT flows will 
have sharp congestion window increment after an 
RTT, and because the packets are sent back-to-back, 
so it is easy to cause a burstiness traffic that may 
cause congestion and more packets loss. To solve this 
problem, a block-pacing method is adopted. The 
congestion window will be divided into several 
“blocks”. After the packets in  one  block  have  been 

 
 
 
 
 
 
 
 
 
 
 
 

sent out, other packets in another block will be sent 
after a time interval. This can counteract the negative 
effects caused by adding fair factor. 

We set the number of the block based on fair 
factor η. The details of the algorithm are shown in 
Fig.4 [the details of a(w) and b(w) were introduced in 
Section II, so we omit the code of them here], and  
give a simple illustration of block-pacing algorithm in 
Fig.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

// Initial value 
k=1; // the number of block 
block=0; // the packets number in a block 
number=0; // the number of packets that have been sent 
On receiving a new ACK in congestion avoidance state: 

increment=c*RTT*a(w)/cwnd; 
// cwnd is the congestion window size 
 if (increment>1) 

increment=1;  
// to avoid the increment larger than slow start 

cwnd=cwnd+increment; 
k=(int)c*RTT+1; 
block=cwnd/k; 

On congestion happening: 
cwnd=cwnd*(1−b(w)); 
number=0; 
time_0=now; 

On sending date: 
if (number>block) 

time_1=now;  
// now is the value of current time 
if (k>cwnd) 

k=cwnd; 
delay=RTT/k−(time_1–time_0); 

// delay is the time interval between two blocks 
// (time_1–time_0) is the sending time of one block 

output(delay); // send data after a time of delay 
number=0; // begin a new count 
time_0=time_1+delay; 

else 
output(  ); //send data directly 
number++; 

 
Fig.4  Pseudo-code of CW-HSTCP 

Fig.5  A simple explanation of block-pacing (block number is 2) 
(a) The sending process without block-pacing; (b) The sending process with block-pacing; 
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A challenge in the implementation is the need for  
the fine-grained timer to pace out the packets. This 
problem was studied in (Aron and Druschel, 2002), 
whose work showed that the soft timer technique 
allowed the system timer to achieve 10 µs granularity 
without significant system overhead.  
 
 
PERFORMANCE EVALUATION 
 

In this section, we evaluate the performance of 
CW-HSTCP using simulations. The simulation to-
pology and configuration were described in Section 
III. 

We mainly focus on the property of bandwidth 
utilization, RTT fairness, and TCP friendliness. We 
present a relatively fairness criterion: 

(1) The bandwidth requirement of standard TCP 
should be met. In other words, standard TCP flow has 
the room for bandwidth utilization. 

(2) The fairness between different high-speed  
TCP flows should be guaranteed. 

Satisfying Condition (1) also means the protocol 
has TCP friendliness, because standard TCP only 
works well in high loss rate environment. The loss 
rate we choose is 10−3, which is in correspondence to 
the Low_P of HSTCP. If the total loss rate is lower 
than 10−3, we say our protocol has the character of 
TCP friendliness. To evaluate the fairness between 
high-speed TCP flows, fair index (Chiu and Jain, 
1989) is used as follows: 
 

2
2

1 1

( ) ,
n n

i i
i i

f x x n x
= =

 =  
 
∑ ∑       

 
where xi (xi≥0) is the link utilization of Flow i. 

 
Congestion window evolution 

This simulation showed the congestion window 
evolution after addition of the fair factor. Three 
high-speed flows with RTT of 80 ms, 140 ms, 200 ms 
(marked as 1, 2, 3 in Fig.6) were used. We set c=10. 
As shown in Fig.6, different flows can get the same 
congestion window, so a(w), b(w) will be the same, 
and a stable fairness can be achieved. Comparison 
between Fig.2 and Fig.6 shows our analyses in Sec-
tion III are correct.  

 
 
 
 
 
 
 
 
 
 
 

Choice of parameter c and TCP friendliness 
This simulation showed the effect of parameter c. 

We list our simulation results in Table 3. We can find 
that when c=5, the per-flow bandwidth utilization and 
total bandwidth utilization of CW-HSTCP flows de-
crease together. This means that a too small value of c 
will limit the scalability of HSTCP. However, when 
c=20, short RTT CW-HSTCP flows will grasp more 
bandwidth and fairness are decreased too. What is 
more, background flows can get less bandwidth. In 
other words, the friendliness of CW-HSTCP de-
creases. Therefore, c=10 is optimal.  

The packet loss rates of background flows are 
below 10−3 in 3 cases, so we say CW-HSTCP is TCP 
friendly.  
 
Fairness comparison of CW-HSTCP, HSTCP, 
STCP and standard TCP 

In this simulation, we compare the fairness of 
CW-HSTCP, HSTCP, STCP and standard TCP.  

Three flows with RTT being 80 ms, 140 ms, and 
200 ms respectively were used, and different algo-
rithms, such as CW-HSTCP (c=10), HSTCP, STCP, 
and standard TCP were adopted respectively. The 
fairness index of high-speed flows was calculated at 
different time scales. As shown in Fig.7, we can find 
CW-HSTCP has better fairness property. 
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When the number of CW-HSTCP flows increase, 
such as five CW-HSTCP flows with RTT of 60 ms, 
80 ms, 140 ms, 160 ms and 200 ms respectively, after 
simulation and calculation, the fairness index of these 
high-speed flows is 0.95. Therefore, CW-HSTCP has 
better fairness property. 
 
 
CONCLUSION AND FUTURE WORK 
   

Through experiments, we found severe RTT 
unfairness of HSTCP, and give a theoretic analyses 
using model. Pointing to the RTT unfairness of 
HSTCP, we propose CW-HSTCP as an improvement. 
Fair factor is added to get the equal congestion win-
dow increment, and block-pacing scheme is used to 
avoid the burstiness caused by sharp congestion 
window increase of long RTT flows. Simulation re-
sults showed that our proposal has relatively better 
fairness, and friendliness while keeping the advan-
tages of HSTCP, such as scalability in high-speed 
networks.  

In the future, we will study using the active 
queue management mechanism to improve the per-
formance of HSTCP. 
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Bandwidth utilization (%) 
c CW-HSTCP 

(RTT=80 ms) 
CW-HSTCP 

(RTT=140 ms) 
CW-HSTCP 

(RTT=200 ms) 
Background 

flows Total 
The fairness index 

of CW-HSTCP 

Loss rate of 
background 

flows 
5 29.79 16.80 14.38 26.96 87.93 0.90 7×10−5~1×10−4 
10 32.22 26.61 19.36 16.35 94.54 0.96 7×10−5~8×10−4 
20 44.85 24.69 19.92   5.55 95.01 0.88 5×10−4~1×10−3 

 

Table 3  The effect of c and the TCP friendliness 


