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Abstract:    In this paper we propose a novel method for video quality prediction using video classification. In essence, our ap-
proach can serve two goals: (1) To measure the video quality of compressed video sequences without referencing to the original 
uncompressed videos, i.e., to realize No-Reference (NR) video quality evaluation; (2) To predict quality scores for uncompressed 
video sequences at various bitrates without actually encoding them. The use of our approach can help realize video streaming with 
ideal Quality of Service (QoS). Our approach is a low complexity solution, which is specially suitable for application to mobile 
video streaming where the resources at the handsets are scarce. 
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INTRODUCTION 
 

Video content will be the main contributor to the 
future traffic in multimedia applications. Camcorders, 
digital cameras and lately mobile phones with video 
capturing capabilities have resulted in a wide 
spreading of multimedia to the masses. Quality of the 
captured/rendered videos is likely to be the major 
determining factor in the success of the new multi-
media applications as well as product differentiation.  

Video processing chain includes video capturing, 
video pre-processing, video encoding, video trans-
mission, video decoding, video post processing, and 
video display. Video quality evaluation can be greatly 
beneficial to the design of each of the components in 
the creation-to-consumption processing chain, estab-
lish a benchmark, and hence improve the end user 
experience (Video Quality Experts Group, http:// 
www.vqeg.org; Wang et al., 2003). Video quality is 
affected by multiple stages of processing, amongst 
which video compression is one of the major deter-
mining factors. Video compression techniques exploit 
two types of redundancies in videos, namely spatial 

and temporal redundancies (ITU-T H.264, 2003). 
There is a trade-off between the quality of the video 
and the amount of bits used to represent the video, i.e., 
the compression ratio. The higher the compression 
ratio is, the worse the end quality usually results.  

Our paper considers the video coding artifacts 
and is aimed at predicting the video quality at various 
coding bitrates. In essence we are mainly aiming at 
two goals: (1) To predict video quality scores of raw 
video sequences compressed at different bitrates 
without actually encoding them. The encoding pa-
rameters such as the bitrate can be determined and 
tuned to achieve a target decoded video quality. How 
to determine the optimal coding parameters is critical 
to stream videos over heterogeneous networks with 
Quality-of-Service (QoS) (Zhang et al., 2005). (2) To 
estimate the decoded quality of compressed video 
bitstreams without referencing to the original un-
compressed videos, which ultimately leads to the 
development of a No-Reference (NR) objective 
quality metric that may serve many applications such 
as monitoring the video quality in the middle of the 
transport network (Cheng and Lubin, 2005).  
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In this paper, we propose a novel approach that 
uses video classification for video quality prediction. 
We extract and examine the spatial and temporal 
features of an arbitrary video sequence. We create a 
database that includes sample video sequences with 
various spatial and temporal characteristics. The 
quality scores of these sample video sequences at 
different bitrates are known and used to predict the 
quality of a test video sequence outside the database. 
We implement video classification through the use of 
the extracted features and pattern match of a test 
video sequence to a known video class. We predict 
the quality of the test video sequence using the known 
quality scores of the best-matched video sequences. 
Our contribution is the overall architecture that uses 
video classification for the prediction of compressed 
video sequences.  

 
 
PROPOSED ARCHITECTURE 
 

The architecture of our proposed method is de-
picted in Fig.1. 

 
 
 
 
 
 
 
 
 
 
 
Quality metrics: This block measures the coding 

distortions present in the compressed sequences. 
Common coding distortions such as blockiness and 
blurriness will be measured using metrics and will act 
as input to the pattern classifier. 

Video classification: This block extracts features 
from the video sequence used for grouping the se-
quences into different categories based on the tem-
poral and spatial characteristics. This block plays a 
key role in predicting the quality scores at different 
coding bitrates. The features extracted from this block 
are fed to the pattern classifier. 

Pattern matching: The pattern classifier takes the 

results from the video classification block and the 
quality metric as inputs and uses them to match the 
properties of an arbitrary video sequence to the sam-
ple sequences in the database. The quality score cor-
responding to the best match in the database is used to 
measure the quality of the sequence under test. 

Database: The database contains the necessary 
knowledge regarding the sample video sequences, 
including the features extracted from the video se-
quences, the video quality scores such as PSNR or 
other objective quality metrics, and achievable bi-
trates. The features extracted from the sample se-
quences in the database are used as training vectors 
for the pattern matching block. 

 
 

VIDEO SPATIAL AND TEMPORAL FEATURE 
EXTRACTION 
 

Video features that differentiate video sequences 
can be extracted from the source unprocessed video 
sequences. Video features can be roughly classified 
into spatial features and temporal features. Feature 
extraction is key in video classification. Simple and 
effective feature extraction algorithms are preferred.  

 
Spatial feature extraction 

Spatial feature extraction is to characterize spatial 
regions with different contents. A video frame may be 
partitioned into blocks of size N×N. A commonly 
used spatial feature is the variance of each block av-
eraged over the entire video sequence:  
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where ( , )k

mx i j   denotes the pixel value in location (i, j) 

of the mth block in the kth frame, k
mx denotes the mean 

of the pixel values of the mth block in the kth frame, 
M denotes the number of blocks per frame, and K 
denotes the number of frames under investigation 
from the video sequence.  

Also, each block can be classified into classes of 
flat-area, texture, fine-texture, and edge based on the 
Texture Masking Energy (TME) of the block, as was 
done in (Tan et al., 1996): 

Fig.1  Proposed architecture for video quality predic-
tion using video classification 
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where ( , )k
mx i j  denotes the DCT coefficient in loca-

tion (i, j) of the mth block in the kth frame. The func-
tion ˆ ( )H f  is the HVS relative sensitivity function 
with respect to the spatial frequency f, where f is re-
lated to the spatial position (i, j) as follows: 
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and we may choose fs=32. ˆ ( )H f  can then be obtained 

as ˆ ( )=| ( )| ( )H f A f H f , where 
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where δ =11.636 degree−1. Note that E,

k
mT  is a sum of 

the energy of the mth block in the kth frame weighted 
by the reciprocal of the square of the sensitivity 
function ˆ ( ).H f  This implies that the TME provides a 
metric measuring the insensitivity, or equivalently, 
the capability of the block being resistant to noise. We 
may further divide each N×N block into four (N/2)× 
(N/2) sub-blocks, and obtain the TME for each sub- 
block E, ( ),k

mT h  h=1, 2, 3, 4 in a similar way. Since the 
TME represents the insensitivities of a block and its 
sub-portions to noise, we use both E,

k
mT  and E, ( )k

mT h  

to classify the mth N×N block in the kth frame into 
one of the four major categories: texture, fine-texture, 
edge, and flat-area.  

(1) Blocks classified as flat-area have a smooth 
appearance or there is not much deviation in the pixel 
values from the mean; 

(2) Blocks classified as texture contain coarser 
texture areas in a video frame; 

(3) Blocks classified as fine-texture are coarser 
than the flat regions but have finer texture then the 
blocks classified in the texture category; 

(4) Blocks classified as edges mainly contain 
edge pixels in a video frame. 

The normalized numbers of blocks for different 
categories in a video frame can be averaged over 
different frames and features are hence obtained to 
characterize the spatial content in a video sequence. 
Let  S 

k(flat-area),  S 
k(texture),  S 

k(fine-texture),  and 
S 

k(edge), denote the number of blocks classified as 
flat-area, texture, fine-texture, and edge in the kth 
frame respectively, then four spatial features can be 
obtained as: 
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Temporal feature extraction 

Temporal features can be obtained using block- 
based motion estimation. An example of temporal 
feature extraction is to characterize the motion vector 
associated with a macroblock of size N×N as well as 
the amount of prediction error. Each macroblock in a 
video frame can be classified into one of the follow-
ing four categories: zero-motion, low-prediction-error, 
medium-prediction-error, and high-prediction-error.  

Blocks classified as zero-motion are those with 
zero motion vectors and small-enough prediction 
errors. The prediction error, which can be either the 
sum of absolute difference (SAD) or the mean square 
error (MSE), is compared to a threshold to decide 
whether the prediction error is sufficiently small.  

Blocks classified as low, medium, and high- 
prediction-error are those with non-zero valued mo-
tion vectors. The motion prediction error is compared 
to two thresholds, where blocks with prediction error 
smaller than the lower threshold are classified as 
low-prediction-error, blocks with prediction error 
falling between the two thresholds are classified as 
medium-prediction-error, and blocks with prediction 
error larger than the higher threshold are classified as 
high-prediction-error. 

The normalized numbers of blocks for different 
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categories in a video frame that can be averaged over 
different frames and features are hence obtained to 
characterize the temporal content in a video sequence. 
Let S 

k(zero), S 
k(low), S 

k(medium), and S 
k(high) de-

note the number of blocks classified as zero-motion, 
low-prediction-error, medium-prediction-error, and 
high-prediction-error in the kth frame respectively, 
then four temporal features can be obtained as 
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Different features obtained from Eqs.(1)~(9) can 

be combined to create new features. For example, a 
feature can be obtained by adding FS,texture in Eq.(3) to 
FS,edge in Eq.(5), since blocks classified as texture and 
edge usually play a more significant role in quality 
judgement.  

Another issue for video feature extraction worthy 
to mention is the complexity of the feature extraction 
method. A simpler method is obviously preferred. 
Therefore, low complexity should be retained in the 
method design. For example, block-based motion 
estimation should better be maintained only at the 
macroblock level and a smaller search window is 
preferred. Also, a video sequence usually contains 
hundreds of frames and a portion of the video se-
quence may be used for feature extraction, instead of 
evaluating the entire sequence. It is better to go 
through the entire sequence first and extract the key 
frames that include scene changes. Hence, a selection 
of video frames is accordingly determined for feature 
extraction.  

 
 

VIDEO QUALITY PREDICTION USING VIDEO 
CLASSIFICATION 
 

As shown in Fig.1, pattern matching is imple-
mented after features are extracted for a test video 
sequence. Pattern matching is used to match the fea-

tures extracted from the test sequence to the features 
extracted from the sample video sequences in the 
database. The closest matches found in the database to 
the test sequence are used to predict the quality of the 
sequence under test.  

The closest match is obtained using the k-Nearest 
Neighbor algorithm (k-NN). The weighted Euclidean 
distances between the features of the test sequence 
and each of the sequences in the database is calculated 
to measure the closeness of the test sequence to the 
sequences in the database. The best match can be 
obtained as follows, where the weights can be ob-
tained by training: 
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In the above equation, n denotes the number of 
features selected to construct the feature space, 

( ) ( ) ( ) T
1 2[ ,  ,  ..., ]i i i

nf f f  denotes the feature vector ex-
tracted from the ith sample video sequence in the 
database, (test ) ( test) ( test ) T

1 2[ ,  ,  ...,  ]nf f f  denotes the fea-
ture vector extracted from the test video sequence, Di 
denotes the weighted distance between the ith sample 
video sequence and the test sequence in the feature 
space, and [ω1, ω2, …, ωn]T denotes the weights, 

where 
1

1.n
jj

ω
=

=∑  It is expected that the test se-

quence behaves in a similar manner as the matched 
sequences. The Euclidean distances are arranged in an 
ascending order so that k closest neighbors are hence 
obtained. The quality score of the test sequence is 
predicted from the quality scores of these k sample 
video sequences in the database.  

One issue that needs to be addressed is the 
number of closest neighbors used to predict the qual-
ity of the test sequence (k). We may choose a fixed 
number of neighbors (k) or use an adaptive scheme 
based on the closeness of the sequences from the 
database to the test sequence in terms of the Euclidean 
distance.  

The prediction of the quality scores is obtained 
from the nearest neighbors identified. We take a 
weighted sum of the quality scores corresponding to 
the nearest neighbors. The weights are inversely 
proportional to the distances from the test sequence:  
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where Q is the predicted value, k is the number of 
closest matches identified, Qi’s are the quality scores 
of the sequences from the database corresponding to 
the closest matches identified, and ti’s are the weights, 
which are inversely proportional to the Euclidean 
distance between the test sequence and the closest 
sequences identified using pattern matching. 
 
Derivation of weights for the weighted Euclidean 
distance 

In order to facilitate the k-NN search strategy to 
identify the closest matches for the test sequence to 
the sample sequences in the database, we need to 
determine an optimum set of weights as in Eq.(10). 
We developed a method to obtain the optimum set of 
weights over different compression bitrates for the 
prediction of video quality scores as follows.  

Step 1: Initial guess for different compression 
bitrates. 

We randomly choose 75% of our video sequences 
as training sequences and the remaining as test. We 
first pursue the optimal weights for the lowest bitrate 
scenario, i.e. 64 kbps, with some random initial guess 
such that the average absolute error between the true 
quality scores and the predicted quality scores is 
minimized. For the same training set and test set we 
pursue the optimal weights for subsequent bitrate 
scenarios with the initial guess as the optimal weights 
from the previous bitrate scenario. A nonlinear con-
straint is added to guarantee that the correlation be-
tween the optimal weights and the initial guess or the 
optimal weights for the previous bitrate scenario is 
above 0.85. This may lead to sub-optimal solutions 
but will help obtain a better correlation. 

Step 2: Refinement of the weights to the opti-
mum.  

We use a leave-one-out procedure and pursue the 
optimal weights for each test sequence using the re-
sults derived from the first step. We also add a con-
straint such that the optimal weights should have a 
correlation greater than 0.85 with the initial guess. 
This guarantees that the variance between the weights 
for all the sequences is small. We choose the mean of 
the weights for all the test sequences as the final 
weights. 

EXPERIMENTAL RESULTS 
 

All the video sequences in our experiments are in 
the format of YUV 4:2:0 CIF.  

 
Feature extraction  

1. Spatial feature extraction  
The spatial features that were extracted from one 

frame of Canoa and Football sequences are shown in 
Fig.2. Each 8×8 block is classified into one of the four 
categories: Flat, Fine-texture, Texture and Edge 
blocks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
2. Temporal feature extraction  
As seen from Table 1, Canoa has many blocks 

that result in high motion prediction errors and thus 
coding Canoa is relatively more difficult. In contrast, 
News has a larger percentage of blocks with zero 
motion vectors and hence is easy to code. Football is 
of high motion, however, the relative number of 
blocks with high prediction errors is smaller than that 
of Canoa. 

(b)  

(a)      

Fig.2  Spatial feature extraction using block classifica-
tion (Flat: no mark; Fine-texture: diagonal lines; Tex-
ture: crosses; Edges: square blocks). (a) Canoa; (b)
Football  
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3. Feature selection 
We restricted the number of features to 6 for the 

k-NN search strategy. The features that were chosen 
are: (1) Number of low pass or flat blocks;  (2) Total 
number of blocks that have texture and the number of 
blocks that have edges; (3) Number of blocks with 
zero motion vectors; (4) Number of blocks with low 
prediction error; (5) Number of blocks with medium 
prediction error; and (6) Number of blocks with high 
prediction error. 
 
VQM scores prediction  

VQM, known as Video Quality Metrics, is an 
objective video quality metric developed by 
NTIA/ITS that has demonstrated a good correlation 
with the subjective quality scores in many scenarios 
(5,446,492, 1995; 5,596,364, 1997; 09/431,160, 
1999). We obtained the VQM quality scores of vari-
ous video sequences using NTIA/ITS’S VQM soft-
ware at different bitrates. The scores are in the range 
of 0~1 where 1 represents the highest impairment and 
0 indicates no impairment. The weights for different 
features were obtained using the algorithm described 
in Section 4.1, and are shown in Table 2. 

 
 
 
 
 
 
 
 
 
 
 
It can be observed from Table 2 that temporal 

features “Zero MV” and “ Low prediction error” are 
the most important. We then examine the reliability of 
our proposed approach for video quality prediction at 

different coding bitrates. We adopt the leave-one-out 
strategy in our experiments to measure the prediction 
error. That is, each sequence was excluded from the 
sample database and selected as a test sequence. The 
prediction of the eliminated sequence was obtained 
using the quality scores of the remaining sample se-
quences in the database. The absolute percentage 
error incurred in the prediction is shown in Table 3 for 
sequences coded at various bitrates.  

We defined the prediction error as the absolute 
difference between the original scores obtained using 
the VQM software and the scores predicted using our 
approach. It is observed that a larger prediction error 
is resulted for lower bitrate scenarios as compared to 
higher bitrates. The prediction error significantly 
reduces as we move from lower bitrates to higher 
bitrate scenarios. Table 4 shows the correlation be-
tween the original quality scores calculated using the 
VQM software and the predicted scores across dif-
ferent bitrates. We see a higher correlation for the 
higher bitrate scenarios as compared to the lower 
bitrates. We argue that the high prediction error in-
troduced at lower bitrates may be caused by the in-
consistency in calculating the quality scores by the 
VQM software. We know for a fact that the sequence 
News is easier to code as compared to the sequence 
Football, owing to its low spatial and temporal ac-
tivities. The quality scores as calculated by the VQM 
software for News and Football at 64 kbps however 
are 0.6619 and 0.4657 respectively, suggesting that 
News has worse quality as compared to Football. At 
higher bitrates in contrast, the scores for News are 
lower than that of Football, suggesting that News has 
a better quality. Subjective testing always implies that 
News demonstrates a better quality than Football at a 
specific coding bitrate. Hence we argue that the in-
consistency of the VQM software results in a lower 
correlation in the lower bitrate scenarios. 

Table 7 (Column 2) shows the correlation be-
tween the original and predicted scores over different 
bitrates across various sequences. The high correlation 
suggests that the predicted scores for a specific se-
quence follow the same trend over different bitrates. 
 
Prediction of PSNR’s 

Similar to Section 5.2, we predicted the PSNR 
values for various video sequences at different bi-
trates and obtained the results as shown in Table 5, 

Table 1  Temporal feature extraction using block clas-
sification (MV: motion vector; PE: prediction error) 

Sequence Zero MV Low PE Medium PE High PE
Canoa 0 0 0.187991 0.812009
F1owergarden 0.207351 0.118967 0.538721 0.134961
Football 0.256173 0.015432 0.317621 0.410774
News 0.907127 0.004209 0.069585 0.019080
 

Table 2  Weights at different bitrates for VQM score 
prediction (MV: motion vector; PE: prediction error)

Rate 
(kbps) 

Flat 
regions 

Zero 
 MV 

Low  
PE 

Medium 
PE 

High 
PE 

Texture 
+Edge

  64 0.0643 0.6231 0.1920 0.0635 0.0247 0.0324
128 0.1052 0.7346 0.0857 0.0197 0.0273 0.0276
256 0.0851 0.5028 0.2639 0.0632 0.0465 0.0384
512 0.0622 0.0779 0.6521 0.0780 0.0578 0.0721
768 0.0673 0.0427 0.7214 0.0777 0.0500 0.0409
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Table 6, and Table 7 (Column 3). It is observed that 
using our approach, the predicted PSNR values are 
well correlated to the true values regardless of the 
variety across encoding bitrates and video content, 
which is different from the case for VQM scores 
prediction discussed in Section 5.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CONCLUSION 
 

We have proposed a video quality prediction 
approach using video classification. We extract a 
variety of spatial and temporal features from an arbi-
trary   video   sequence   and   group   different   video  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Prediction error for VQM scores at different bitrates (p: kbps) 

p=64 p=128 p=256 p=512 p=768 
Sequence 

Original Predicted Original Predicted Original Predicted Original Predicted Original Predicted
Akiyo 0.4992 0.6402 0.3195 0.4048 0.1591 0.2478 0.1051 0.1519 0.0755 0.1143
Bridge-close 0.6133 0.5771 0.4676 0.5611 0.3718 0.4679 0.3718 0.2745 0.2503 0.2472
Bridge-far 0.2155 0.6438 0.2030 0.5173 0.1917 0.3832 0.1572 0.2566 0.1317 0.2265
Canoa 0.4567 0.4774 0.4521 0.4789 0.4536 0.4715 0.3900 0.3658 0.2856 0.3071
Coastguard 0.6482 0.5340 0.6536 0.4662 0.5971 0.4090 0.3555 0.3270 0.2664 0.2531
Container 0.5227 0.6490 0.3874 0.4319 0.2945 0.2744 0.1945 0.1494 0.1568 0.0998
Crew 0.6361 0.5102 0.6331 0.3818 0.5941 0.2700 0.3950 0.1656 0.2847 0.1900
F1 0.4503 0.5629 0.4477 0.5239 0.4394 0.4061 0.3423 0.3112 0.2619 0.2064
Flower 0.4106 0.5094 0.4139 0.4635 0.3863 0.4750 0.2187 0.3419 0.1586 0.2416
Football 0.4657 0.4891 0.4607 0.4968 0.4708 0.4548 0.3908 0.3810 0.2911 0.3079
Foreman 0.5364 0.5674 0.5286 0.4771 0.3464 0.4373 0.1931 0.2602 0.1375 0.2546
Hall 0.5378 0.4223 0.3507 0.4115 0.2697 0.4183 0.1822 0.2149 0.1474 0.1777
Highway 0.7396 0.4261 0.5615 0.3610 0.3765 0.2601 0.2898 0.1898 0.2390 0.1727
Husky 0.3181 0.4658 0.3258 0.4792 0.3216 0.4774 0.3073 0.4024 0.2953 0.3168
Ice 0.4497 0.6531 0.4236 0.4688 0.2269 0.2549 0.1142 0.1662 0.0749 0.1391
Irene 0.6456 0.5403 0.5113 0.4149 0.2975 0.2588 0.1841 0.1479 0.1367 0.1033
Mobile 0.4856 0.4436 0.4853 0.4644 0.4825 0.4385 0.4204 0.3834 0.3328 0.3076
Mother 0.6626 0.5729 0.3908 0.3762 0.2351 0.2254 0.1415 0.1365 0.1017 0.1069
News 0.6619 0.5721 0.4544 0.3892 0.2890 0.2801 0.1535 0.1802 0.1024 0.1234
Paris 0.6352 0.6054 0.5840 0.4733 0.4171 0.4003 0.2684 0.1736 0.1975 0.1231
Rugby 0.4305 0.5004 0.4245 0.5070 0.4351 0.4942 0.4028 0.3859 0.3298 0.2950
Silent 0.7106 0.6184 0.4904 0.5060 0.2714 0.3123 0.1711 0.2132 0.1181 0.1240
Soccer 0.5037 0.4647 0.5004 0.4597 0.4719 0.4552 0.3126 0.3204 0.2349 0.2502
Tempete 0.5828 0.4759 0.5871 0.4497 0.5252 0.4500 0.3377 0.3159 0.2518 0.2945

Table 4  Correlation coefficients for VQM prediction at 
different bitrates 
Bitrate (kbps) 64 128 256 512 768
Correlation 
coefficient −0.424 −0.1617 0.47299 0.69967 0.7723

 

Table 5  Weights at different bitrates for PSNR predic-
tion 
Rate 

(kbps)
Flat 

regions
Zero 
MV

Low 
PE 

Medium 
PE 

High 
PE 

Texture 
+Edge

  64 0.0643 0.6231 0.1920 0.0635 0.0247 0.0324

128 0.1052 0.7346 0.0857 0.0197 0.0273 0.0276

256 0.0851 0.5028 0.2639 0.0632 0.0465 0.0384

512 0.0622 0.0779 0.6521 0.0780 0.0578 0.0721

768 0.0673 0.0427 0.7214 0.0777 0.0500 0.0409
 

Table 6  Correlation coefficients for PSNR prediction at 
different bitrates 
Rate (kbps) 64 128 256 512 768 
Correlation 0.83 0.829 0.9022 0.911426 0.90337
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sequences with regard to these features. We exploit 
the k-NN strategy and predict the quality score of a 
test video sequence from those of its closest neighbors 
in the feature space. The significance of our approach 
is that it can be deployed to obtain the quality score 
for a compressed video without the availability of the 
 
 
 
 
 
 
 
 
 
 
 
 
 

original video sequence, as long as we know the 
group the sequence belongs to. Also, our approach 
can be used for the prediction of video qualities at 
different bitrates without actually coding the se-
quences. This is specially useful for video streaming 
with QoS. The coding bitrate can be identified first 
according to the video content present in a video se-
quence so that the coding parameters can be tuned to 
achieve the ideal decoded video quality. 
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Table 7  Correlation coefficients for VQM prediction 
and PSNR prediction across different contents 

Sequence VQM prediction PSNR prediction

Akiyo 0.9976 0.9970 
Bridge-close 0.8437 0.9650 
Bridge-far 0.9371 0.9744 
Canoa 0.9656 0.9213 
Coastguard 0.9456 0.9503 
Container 0.9982 0.9990 
Crew 0.8128 0.8939 
F1 0.9359 0.9878 
Flower 0.9761 0.9863 
Football 0.9610 0.9923 
Foreman 0.9589 0.9938 
Hall 0.7923 0.8844 
Highway 0.9924 0.9463 
Husky 0.9834 0.9296 
Ice 0.9621 0.9532 
Irene 0.9987 0.9948 
Mobile 0.9889 0.5871 
Mother 0.9978 0.9947 
News 0.9983 0.9986 
Paris 0.9807 0.8312 
Rugby 0.9507 0.8420 
Silent 0.9866 0.9745 
Soccer 0.9970 0.9819 
Tempete 0.9819 0.9786 
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