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Abstract:    A novel mobile robot simultaneous localization and mapping (SLAM) method is implemented by using the Rao- 
Blackwellized particle filter (RBPF) for monocular vision-based autonomous robot in unknown indoor environment. The particle 
filter combined with unscented Kalman filter (UKF) for extending the path posterior by sampling new poses integrating the current 
observation. Landmark position estimation and update is implemented through UKF. Furthermore, the number of resampling steps 
is determined adaptively, which greatly reduces the particle depletion problem. Monocular CCD camera mounted on the robot 
tracks the 3D natural point landmarks structured with matching image feature pairs extracted through Scale Invariant Feature 
Transform (SIFT). The matching for multi-dimension SIFT features which are highly distinctive due to a special descriptor is 
implemented with a KD-Tree. Experiments on the robot Pioneer3 showed that our method is very precise and stable. 
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INTRODUCTION 
 

A key prerequisite for a truly autonomous robot 
is that it can simultaneously localize itself and accu-
rately map its surroundings (Kortenkamp et al., 1998), 
which is known as Simultaneous Localization and 
Mapping (SLAM), which, when phrased as a state 
estimation problem, involves a variable number of 
dimensions. Murphy and Russell (2001) adopted 
Rao-Blackwellized particle filters (RBPFs) as an 
effective way for representing alternative hypotheses 
on robot paths and associated maps. Montemerlo and 
Thrun (2003) extended this method to efficient 
landmark-based SLAM using Gaussian representa-
tions of the landmarks and were the first to success-
fully implement it on real robots. More recently, 
RBPF is widely used to build map (Sim et al., 2005; 
Davison, 2003; Stachniss et al., 2005). 

We focus mainly on investigating real-time mo-
nocular vision based SLAM for indoor environments, 
and constructing map with 3D feature landmarks 
structured from the Scale Invariant Feature Transform 
(SIFT) feature matching pairs. These SIFT features are 
invariant to image scale, rotation and translation as 
well as partially invariant to illumination changes and 
affine or 3D projection, and their description is im-
plemented with multi-dimensional vector (Lowe, 
2004). This combination can result in many highly 
distinctive landmarks from environment, which sim-
plifies the data association problem to only distin-
guishing unique landmarks. We present a fast and 
efficient algorithm for matching features in a KD-Tree 
at time cost of O(log2N) (Moore, 1991); our approach 
applies RBPF to estimate a posterior of the path of the 
robot, and each landmark is estimated and updated by 
the unscented Kalman filter (UKF) (Merwe et al., 
2000), and UKF is used to sample new poses inte-
grating the current observation. Furthermore, the 
number of resampling steps is determined adaptively, 
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which greatly reduces the particle depletion problem. 
Experimental results indicated superior performance. 
 
 
RAO-BLACKWELLIZED MAPPING 
 

Consider the case of a mobile robot moving 
through an unknown environment consisting of a set 
of landmarks θ. The robot moves according to a 
known motion model p(st|st−1, ut), where st denotes 
the robot state at time t, and the control input ut car-
ried out in the time interval [t−1, t]. As the robot 
moves around, it takes measurements of its environ-
ment. A measurement zt is related to the position of a 
landmark through observation model p(st|ut, θ, st−1).  

The SLAM problem is that of simultaneously 
inferring the location of all landmarks and the path 
followed by the robot based on a set of measurements 
and inputs. Ideally, one would like to recover the 
posterior distribution p(st,θ|zt, ut, nt), where the nota-
tion st=s1,s2,…,st (and similarly for other variables). 
Doucet et al.(2000) provided an implementation of 
RBPF for SLAM: 
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This can be done efficiently, since the factoriza-

tion decouples the SLAM problem into a path esti-
mation problem and individual conditional landmark 
location problems, and the quantity p(θn|st, zt, nt) can 
be computed analytically once st and zt are known. 
The posterior p(st|zt, ut, nt) over the potential robot 
trajectories uses a particle filter in which an individual 
map is associated to each particle. Each map is con-
structed given the observations zt and the trajectory st 
represented by the corresponding particle. 
 
 
RBPF FOR MONOCULAR VISION BASED SLAM 
 

RBPF calculates the posterior over robot paths 
p(st|zt, ut, nt) by a particle filter. The remaining M 
posteriors over landmark locations p(θn|st,nt, zt, ut) are 
calculated and updated with UKF. Each UKF condi-
tioned on robot paths estimates a single landmark 
pose. Each particle is of the form ( ) ,( ) ( )

1,={ , ,i t i i
t tS s µ  

( ) ( ) ( )
, ,1, ,..., , },i i i

m t m tt µ∑ ∑  where (i) indicates the index of 

the particle; st,(i) is its path estimate, and ( )
,

i
m tµ  and 

( )
,

i
m t∑  are the mean and variance of the Gaussian rep-

resenting the mth landmark location respectively. 
Together, all these quantities form the ith particle 

( ) ,i
tS  of which there is a total of N in the posterior. 

Our RBPF update is performed in the following steps: 
1. Sampling new poses using UKF 
Here we need to calculate the posterior over 

robot paths p(st|zt, ut, nt) approximated by a particle 
filter. Each particle in the filter represents one possi-
ble robot path st from time 0 to time t. Since the map 
landmark estimates p(θn|st, zt, nt) depend on the robot 
path, the particles sampling step is very important. 
However, most methods use the state transition prior 
p(st|st−1, ut) to draw particles. Because the state tran-
sition does not take into account the most recent ob-
servation zt, especially when the likelihood happens 
to lie in one of the tails of the prior distribution or if it 
is too narrow, as shown in Fig.1. If an insufficient 
number of particles are employed, there may be a lack 
of particles in the vicinity of the correct state, leading 
to divergence of the filter. This is known as the par-
ticles depletion problem. 
 
 
 
 
 
 
 
 
 
 
 

In our methods, the ith new pose st
(i) is drawn 

from the posterior p(st|st−1,(i), ut, zt, nt), which takes the 
measurement zt into consideration, along with the 
landmark nt, and st−1,(i) is the path up to time t−1 of the 
ith particle. An effective approach to accomplish this 
is to use an EKF generated Gaussian approximation: 
 

1,( ) ( ) ( )( | , , , ) ~ ( ; , ),  1,2,...,t i t t t i i
t t t tp s s u z n N s s P i N− =  

                                        (2) 
 

EKF approximates the distribution through the 

Prior Likelihood 

Fig.1  Moving the samples in the prior to regions of 
high likelihood is important if the likelihood lies in one 
of the tails of the prior 
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first-order Taylor-series expansion of the nonlinear 
observation function g(

tnθ , st) around the mean st: 
 

( , ) ~ ( , ) ( , ).
tt t tt tt n t n s nz g s g s g sθ θ θ′= + ∆         (3) 

 

The first-order mean and covariance used in the 
EKF is given by zt= ( ,

tng θ st), tzP = '( ,
tng θ st)T '( ,

t ts nP g θ  

st) which often introduces large errors. However, the 
unscented transformation (UT) is an elegant way to 
accurately compute the mean and covariance up to the 
third order of the Taylor series expansion of g(

tnθ , st) 

(Merwe et al., 2000). Let L be the dimension of st, the 
UT computes mean and covariance as follows: 

(1) Deterministically generate 2L+1 sigma 
points Si={χi,Wi}: 
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where γ is a scaling parameter that controls the dis-
tance between the sigma points and the mean st, α is a 
positive scaling parameter that controls the higher 
order effects resulted from the non-linear function g, 
β is a parameter that controls the weighting of the 0th 
sigma point α=0, β=0 and γ=2 are the optimal values 
for the scalar case (Merwe et al., 2000). 
( ( ) )

ts iL Pλ+  is the ith column of the matrix square 

root. Note that the 0th sigma point’s weight is dif-
ferent for calculating mean and covariance. 

(2) Propagate the sigma points through the 
nonlinear transformation: 
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(3) Compute the mean and covariance as follows: 
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Now we follow UKF algorithm to extend the 
path st,(i) by sampling the new poses st

(i) from the 
posterior p(st|st−1,(i), ut, zt, nt): 

(1) Calculate the sigma points according to 
Eq.(4): 
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(2) Using motion model to predict: 
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(3) Incorporating new observation zt, along with 

the landmark nt: 
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(4) Sampling new pose st

(i) and extending the 
path st,(i): 
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2. Updating the observed landmark estimate 
In this step, we update the posterior over the 

landmark estimates represented by the mean ( )
, 1,i

n tµ −  

and the covariance ( )
, 1 .i

n t−∑ The updated values ( )
,
i

n tµ  and 
( )

,
i

n t∑  are then added to the temporary particle set Ŝt 

along with the new sampling pose ( ) .i
ts  The update 

depends on whether or not a landmark n was observed 
at time t. For n≠nt, the posterior over the landmark 
remains unchanged. For the observed feature n=nt, the 
update is specified as follows: 
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The probability p(
tnθ |st−1,(i), zt−1, nt−1) at time t−1 

is represented by a Gaussian with mean ( )
, 1,i

n tµ − and the 

covariance ( )
, 1 .i

n t−∑ For the new estimate at time t to 
also be Gaussian, we need to generate Gaussian ap-
proximation for the perceptual model p(zt| ( ) ,i

ts
tnθ , nt). 

Our methods also use UT to approximate the 
non-linear measurement function g(

tnθ , ( )i
ts ). This can 

accurately compute the mean and covariance up to the 
third order of the Taylor series expansion: 

(1) Calculate the sigma points according to 
Eq.(4): 
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(2) Using observation model to compute the 
mean and covariance of the observation as follows: 
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(3) Under this approximation, the posterior for 
the location of landmark nt is indeed Gaussian. The 
new mean and covariance are obtained using the 
following update: 
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3. Selective resampling 
Next, we resample from temporary set of parti-

cles S̃t, then form the new particle set St. The necessity 
to resample arises from the fact that the particles in 
the temporary set S̃t do not yet match the desired 
posterior. Resampling is a common technique in par-
ticle filtering to correct for such mismatches, and 
avoid particles degeneracy. By weighing particles in 
S̃t, and resampling according to those weights, the 
resulting particle set indeed approximates the target 
distribution. To determine the importance weight of 
each particle, let Ft={f1,...,fk} be the k SIFT feature 
key-points observed at time t, in which there are n 
key-points matching with the landmarks in the map 
database: 

11={ ~ ,..., ~ };
nl f n fMatch f L f L  and there are 

m key-points matching the SIFT key-points which 
observed at time t−1 and are not added to the map 
database: 

11={ ~ ,..., ~ }.
n n mv n f n m fMatch f V f V
+ ++ +  Then 

the log-likelihood of the observation zt being obtained 
is: 
 

( )log ( | )= log ( | )+ log ( | ),i
t t l l v vp z m p F Match p F Match

                                (15) 
 

where Fl={f1,...,fn}, Fv={fn+1,...,fn+m}. The log-like-
lihood logp(Fl|Matchl) and logp(Fv|Matchv) are given 
respectively by: 
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where log( | )
j jf fp L  indicates the log-likelihood of the 

match between the feature fj and the landmark ,
jfL  

log( | )
j jf fp L  indicates the log-likelihood of the match 

between the current feature fj and the feature 
jfV  at 

prior time t−1. The log( | )
j jf fp L  is represented as 

follows: 
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jj f l j j j jp f L p I I S I I−= − − −  

        T T( ) ,
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where 
jfC  is the 3D landmark covariance, J is the 

Jacobian matrix of the projection equation. The ob-
servation innovation pl is constant (in our case, pl=3.0), 
which is selected so as to prevent outlier observations 
from significantly affecting the observation likelihood. 
In the same way, log( | )

j jf fp L  is also represented as: 
 

log ( | ) 0.5min( , ( , )

                        ( , )),
j j

j
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f j

p f V p dist I H

dist I H
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+
      (19) 

 

where 
jfI  is the image coordinate of the feature 

jfV , 

jfH  is the epipolar line on the image plane corre-

sponding to 
jfV at time t, and Hj is the epipolar line on 

the image plane corresponding to the feature fj at time 
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t−1, dist(⋅) is the function of the distance between 
point and line. Then p(zt| ( )i

tm ) can be used to evaluate 
the ith particle weight: 
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After the resampling, all particle weights are 

then reset to ( ) =1/ .i
tw N  However, resampling can 

delete good samples from the sample set, in the worst 
case, the filter diverges. Accordingly, it is important 
to find a criterion when implementing a resampling 
step. Liu and Chen (1998) introduced the so-called 

number of particles ( ) 2
,eff

1

1 ( )
N

i
t t

t

N w
=

= ∑ to estimate 

how well the current particle set represents the true 
posterior. Our approach determines whether or not a 
resampling should be carried out according to Nt,eff. 
We resample each time Nt,eff drops below a given 
threshold which was set to 0.5N where N is the 
number of particles. In our experiments we found that 
this technique drastically reduces the risk of replacing 
good particles, because the number of resampling 
operations is reduced and resampling operations are 
only performed when needed. 
 
 
IMPLEMENTATION DETAILS 
 
Motion model 

The motion model p(st|ut,st−1) predicts the 
movement and status over time of the robot. When a 
control u, consisting of forward and angular velocity 
is applied to the robot, we employ Eq.(2) to predict 
the robot moves:  
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(21) 
 
where (xt

i, yt
i, φt

i) is the robot’s location and bearing at 
time t, for all particles i=1, …, N, vt is the line velocity, 
ωt is the angular velocity at time t, ∆T is the time step 

and εt is noise in terms of a normal distribution N(0,Pt). 
 
SIFT feature extraction 

SIFT was proposed in (Lowe, 2004) as a method 
for extracting and describing key-points, which are 
robustly invariant to common image transforms. The 
SIFT algorithm has four major stages:  

(1) Scale-space extrema detection. The first 
stage searches over scale space using a Difference of 
Gaussian function to identify potential interest points.  

(2) Key-point localization. The location and 
scale of each candidate point is determined and 
key-points are selected based on measures of stability.  

(3) Orientation assignment. One or more orien-
tations are assigned to each key-point based on local 
image gradients.  

(4) Key-point descriptor. A descriptor is gener-
ated for each key-point from local image gradients 
information at the scale found in Stage 2. An impor-
tant aspect of the algorithm is that it generates a large 
number of highly distinctive features over a broad 
range of scales and locations. 
 
KD-Tree based feature matching 

This section describes KD-Tree algorithm for 
determining the matching SIFT features pairs of 
successive images captured by a monocular vision 
system mounted on the robot. Every time the CCD 
camera vision system is triggered, it captures the 
consecutive digital images of pixels and after SIFT 
feature extracting, generates SIFT feature match pairs 
in adjacent images through KD-Tree based feature 
matching algorithm. The match pairs are used for the 
landmarks’ 3D structure. Given a SIFT key-points set 
E, and a target key-point vector d, then a nearest 
neighbor of d, d′ is defined as: 
 

1 2
2

1

,| | | |,

| | ( ) ,k
i ii

d d
=

′′ ′ ′′∀ ∈ ⇔ ≤ ⇔

 ′ ′⇔ = ⇔ ∑

d E d d d d

d d
          (22) 

 
where di is the ith component of d. The KD-Tree 
based SIFT feature matching algorithm is described 
as follows: A KD-Tree is constructed using all 
key-points of the image It. For each key-point kp in 
the next image It+1, finding the two most nearest 
neighbors kp1 and kp2 based on nearest neighbor al-
gorithm in a KD-Tree. As proved in our experiment, 
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if |kp1−kp|/|kp2−kp| is bigger, then the matching qual-
ity between kp and kp1 is much higher, otherwise the 
matching quality is lower. So we can use the follow-
ing equation to judge the matching for two key-points: 
 

1 2| | | | ,kp kp kp kp λ− − <                 (23) 
 
where λ is constant, and 0<λ<1 (in this paper λ is 
evaluated as 0.7), if this equation is satisfied, then the 
matching is successful, and simultaneously eliminates 
the false matching.  
 
3D structure 

After the SIFT feature matching, we obtain the 
feature matching pairs. For any pair of matching SIFT 
feature points p1(u1,v1,1) and p2(u2,v2,1), using the 
pinhole camera model (Ma and Zhang, 1998) to con-
struct the landmarks’ 3D world coordinates P(Xw, 
Yw,Zw) of corresponding SIFT feature matches, and 
all the landmarks are in a single world model. 
 
Observation model 

In this section we consider the observation 
model p(zt|st, θ, nt) of the landmark 

tnθ  which is of the 

following form: 
 

( | , , ) ( , ) ,
tt t t n t tp z s n g sθ θ δ= +            (24) 

 
where δ=[δX, δY, δZ]T is noise in terms of a normal 
distribution N(0, Rt). 

As shown in Fig.2, the estimate of the robot po-
sition through motion model, and the computation of 
landmark’s 3D spatial position P(Xw,Yw,Zw) through 
the structure for the matching SIFT image feature 
pairs p1(u1,v1) and p2(u2,v2), which allow the land-
mark’s measurement to be predicted as p′(u′,v′) ac-
cording   to   measurement   function  ( )( , ),

t

i
n tg sθ   and  

 
 
 
 
 
 
 
 
 
 

p′(u′,v′) is the projection of 3D spatial point P(Xw, 
Yw,Zw) on the image plane. The uncertainty in this 
prediction, represented in the covariance matrix Σ, 
gives the shape of the Gaussian probability distribu-
tion over image coordinates and choosing a number of 
standard deviations defines an elliptical window 
within which the feature should lie with high prob-
ability. For further analysis, we can obtain the Jaco-
bian , tnθG for updating the observed landmark esti-

mation: 
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EXPERIMENTAL RESULTS 
 

Experiments were performed on a Pioneer 3-DX 
mobile robot incorporating an 800 MHz Intel Pentium 
processor as shown in Fig.3. Motor control is 
achieved by the on-board computer, while a 2.6 GHz 
PC connected to the robot by a wireless link provides 
the main processing power for vision processing and 
the SLAM software. A monocular color CCD camera 
with effective field of view of about 50° is used for 
detecting the landmarks. The test environment was a 
robot laboratory with limited space as shown in Fig.3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
The following experiment was carried out online, 

i.e., the continuous images are captured and processed, 
and the map is kept and updated on the fly while the 
robot is moving around. The robot goes around in the 

Fig.3  Pioneer 3 is running in the test environment
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Fig.2  Observation model 
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laboratory for one loop and comes back. At each 
frame, it keeps track of the landmarks in the map, 
adds new ones and updates existing ones if matched. 
Fig.4 shows some frames of the 320×240 image se-
quence (180 frames in total) captured while the robot 
is moving around. At the end, a total of 4068 SIFT 
landmarks with 3D positions are gathered in the map, 
which are relative to the initial coordinates frame. The 
typical time required for each iteration is around 
0.35~0.45 s, in which most of time is spent on the SIFT 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

feature extraction stage. The runtime of our RBPF 
SLAM algorithm with different numbers land- marks 
is shown in Fig.5. Other performance of our SLAM 
algorithm with different numbers of particles is also 
shown in Fig.5. Fig.6 shows the bird’s-eye view of all  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                             (b) 

(c)                                             (d) 

(e)                                             (f) 

(g)                                             (h) 

Fig.4  Frames of an image sequence with SIFT features
marked: (a) 4th frame; (b) 19th frame; (c) 70th frame;
(d) 79th frame; (e) 110th frame; (f) 124th frame; (g)
142nd frame; (h) 169th frame 

Fig.6  Bird’s-eye view of the SIFT landmarks (blue dot)
in the map. The coordinate (0,0) indicates the initial
robot position, the dashed line indicates the estimated
robot path. The arrow indicates the direction of robot’s
movement 
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Fig.5  Performance of our RBPF SLAM algorithm with
different numbers of particles. (a) Robot position error
affected by the number of particles; (b) Landmark po-
sition error affected by the number of particles 
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these landmarks. Consistent clusters are observed 
corresponding to objects such as chairs, shelves, 
cartons and posters in the scene. 

At last we compare our method with traditional 
EKF method, with our method showing superior 
performance as shown in Fig.7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 

This article described a novel algorithm for 
SLAM problem using monocular CCD camera to 
extract SIFT features. Being invariant to image scale, 
rotation and translation as well as partially invariant 
to illumination changes and affine or 3D projection, 
and their description is implemented with multi-  
dimensional vector, highly distinctive SIFT features  

 
 

are good natural visual landmarks for tracking over a 
long period of time from different views. These 
tracked landmarks are used for concurrent robot pose 
estimation and 3D map building with promising re-
sults shown. Further experiments in larger environ-
ments are planned to evaluate the scalability of our 
approach. 
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Fig.7  Comparison of our RBPF SLAM algorithm and
EKF for error and memory requirement. (a) Robot
position error affected by odometry noise; (b) Robot
position error affected by the number of landmarks 
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