
Jiang et al. / J Zhejiang Univ SCIENCE A 2006 7(6):945-951 945

Using bidirectional links to improve peer-to-peer
lookup performance

JIANG Jun-jie†1, TANG Fei-long1, PAN Feng1, WANG Wei-nong2

(1Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China)
(2Network Center, Shanghai Jiao Tong University, Shanghai 200030, China)

†E-mail: jiang.jj@gmail.com
Received Mar. 9, 2005; revision accepted May 27, 2005

Abstract: Efficient lookup is essential for peer-to-peer networks and Chord is a representative peer-to-peer lookup scheme based
on distributed hash table (DHT). In peer-to-peer networks, each node maintains several unidirectional application layer links to
other nodes and forwards lookup messages through such links. This paper proposes use of bidirectional links to improve the
lookup performance in Chord. Every original unidirectional link is replaced by a bidirectional link, and accordingly every node
becomes an anti-finger of all its finger nodes. Both theoretical analyses and experimental results indicate that these anti-fingers can
help improve the lookup performance greatly with very low overhead.

Key words: Distributed hash table (DHT), Peer-to-peer, Lookup performance
doi:10.1631/jzus.2006.A0945 Document code: A CLC number: TP393.02

INTRODUCTION

Peer-to-peer computing has become a popular
distributed computing paradigm. Efficient resource
lookup is essential for such systems.

As we know, most of the deployed peer-to-peer
systems are unstructured. Napster is based on a cen-
tral directory and was in popular use during early days.
Soon after, Gnutella and KaZaA were deployed
widely. However, all these popular unstructured
peer-to-peer systems suffer from unscalability.

Fortunately, there are new kinds of peer-to-peer
networks—the so-called structured peer-to-peer net-
works such as CAN (Ratnasamy et al., 2001) and
Chord (Stoica et al., 2003), which are based on dis-
tributed hash table (DHT). In a large-scale DHT sys-
tem, a lookup generally cannot be resolved by just one
node, so that a lookup always reduces to the routing of
the lookup message.

Chord is a based on DHT representative peer-to-
peer lookup service, in which every node maintains a
finger table as its routing table. There is a unidirec-
tional application layer link from a node to its each

finger node. Due to the dynamics of peer-to-peer
networks, a heartbeat mechanism is generally used to
perceive the churn and detect the availability of each
link. Such heartbeat messages are considered to be the
dominating maintenance overhead in Chord.

In this paper, we propose to replace each unidi-
rectional application layer link by a bidirectional link.
That is, for each original directed edge in the Chord
topology graph, a reverse edge is added so that every
node in Chord becomes an anti-finger of its each
finger node. Then each node should maintain an anti-
finger table in addition to its finger table, but the
additional maintenance overhead is very low because
a single heartbeat message could be used to maintain
a couple of links in opposite directions. The per-
formance analyses and experimental results in this
paper show that such anti-fingers can help improve
the lookup performance greatly.

CHORD OVERVIEW

In Chord, both data objects and nodes are as-

Journal of Zhejiang University SCIENCE A
ISSN 1009-3095 (Print); ISSN 1862-1775 (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

Jiang et al. / J Zhejiang Univ SCIENCE A 2006 7(6):945-951 946

signed an m bits identifier by using a consistent
hashing such as SHA-1. A node’s identifier is ob-
tained by hashing the node’s IP address and service
port number while a data object’s identifier is pro-
duced by hashing itself or its name. We will use the
term “node id” and “key” to refer to the identifier of a
node and a data object respectively. The node id of
node x is denoted by id(x). Sometimes, we also denote
a node using its node id. Consequently, Chord defines
a name space as a sequence of m bits and arranges the
name space on a scaled virtual ring modulo 2m, which
is called the Chord ring.

Along the Chord ring, all the identifiers includ-
ing node ids and keys are ordered. Key k is assigned
to the first node whose node id is equal to or follows k
clockwise along the Chord ring and the node is called
the successor node of k, denoted by succ(k). Also, the
successor node of a node x is the first node clockwise
from id(x) along the Chord ring, and is denoted by
succ(x).

In Chord, each node maintains a routing table,
called the finger table and each routing table entry is
called a finger of the node. The ith finger of node x,
denoted by x.finger(i), contains the identity of the first
node s, that succeeds x by at least 2i−1 along the Chord
ring clockwise, namely s=succ(id(x)+2i−1), 1≤i≤m.
The finger table of each node may contain m fingers at
most and in fact, the finger table size is log2N with
high probability, where N is the number of nodes in
the network.

A Chord ring with m=3 is shown in Fig.1. There
are four nodes in the network—0, 1, 3 and 6. In ad-
dition, there are four data objects, whose keys are 1, 2,
6 and 7 respectively. The four data objects are as-
signed to their keys’ successor nodes, i.e., nodes 1, 3,
6 and 0 respectively. In other words, the four data
objects are located at nodes 1, 3, 6 and 0 respectively.

Fig.1 also shows the finger tables of these nodes.
For example, we have the node id of the ith finger of
node 0, id(0.finger(i))=id(succ(0+2i−1)), 1≤i≤3. There-
fore, the node ids of these fingers are 1, 3 and 6 re-
spectively.

Chord just provides one operation: to lookup the
node responsible for a given key, i.e., the successor
node of the key. Therefore, a lookup for the key can
be resolved as long as the lookup message is routed to
the node.

The Chord lookup algorithm is similar to binary

search. As stated above, each node in Chord main-
tains a finger table consisting of m fingers at most. To
lookup a given key k, a node will check its finger table
and forward a lookup message to the finger that is
closest to but does not overshoot k clockwise. And
then the finger will do the same in an iterative or
recursive manner. After several iterations or recur-
sions, the lookup message will ultimately arrive at the
node that immediately precedes k. Then the node will
return the address of its successor node, which is also
the successor node of k. The lookup is resolved. It is
clear that in Chord, all the lookup messages are
passed clockwise along the Chord ring.

DESIGN OF BICHORD

BiChord construction

Two reasons inspire us to propose BiChord. The
first reason is that a single heartbeat message between
each pair of nodes can be used by the nodes to per-
ceive the arrival or departure of each other. Such a
message can be utilized to maintain a bidirectional
link. The second reason is that in Chord, all the
lookup messages are passed clockwise along the
Chord ring and we think it is inefficient, because to
lookup the keys located near but preceding the node,
the lookup messages will have to traverse almost the
whole Chord ring.

The principle of BiChord is quite simple. In
BiChord, a node needs to maintain a so-called anti-
finger table in addition to the finger table. When there

Fig.1 An example of Chord ring

F inger table Keys
Start Int . Succ.

2 [2 , 3) 3
3 [3 , 5) 3
5 [5 , 1) 6

1

F inger table Keys
Start Int . Succ.

4 [4 , 5) 6
5 [5 , 7) 6
7 [7 , 3) 0

2

Finger table Keys
Start Int. Succ.

.1 [1, 2) 1
2 [2, 4) 3
4 [4, 0) 6

7

Finger table Keys
Start Int. Succ.

7 [7, 0) 0
0 [0, 2) 0
2 [2, 6) 3

6

0
1

2
3 4

5

6

7

Jiang et al. / J Zhejiang Univ SCIENCE A 2006 7(6):945-951 947

is a link in Chord, we add a reverse link that links the
same two nodes but in the reverse direction. So if one
node A is a finger of the other node B, then node B
becomes an anti-finger of node A. There are no
changes to the responsibility of data objects. All the
data objects are still located at the successor nodes of
their keys. Therefore each node in BiChord maintains:
(1) finger table; (2) successor list; (3) anti-finger table.
The former two are the same as in Chord while the
last one includes the information about all the anti-
fingers of the node.

Fig.2 gives an example of BiChord. This exam-
ple is the BiChord version of the example in Fig.1. In
Chord, node 0 is the 3rd finger of node 3 and the 1st
and 2nd fingers of node 6. So nodes 3 and 6 are in-
cluded into the anti-finger table of node 0. The
original unidirectional links from nodes 3 and 6 to
node 0 are both replaced by a pair of symmetrical
links, i.e., a bidirectional link.

BiChord lookup algorithm

We take the finger table and the anti-finger table
as a whole and call it the routing table. In the routing
table, all the entries are ordered. To lookup a given
key k, a node will check its routing table to find a
certain table entry, namely one of its fingers or
anti-fingers, whose identifier is closest to k among all
the entries. Then the lookup message is forwarded to
this node. Ultimately, the lookup message will arrive
at the node closest to the key k among all the nodes in
the network. Since we have not changed the respon-
sibility of data objects, this node must be the prede-
cessor or successor node of key k. If the node is the
successor node of k, the lookup is resolved. Or else,

this node must be the predecessor node of k. Then it
can return the address of its successor node, which is
also the successor node of k. The lookup is resolved
likewise.

The pseudocode of BiChord lookup algorithm is
shown in Fig.3. Remote calls and variable references
are both preceded by the identifier of remote node,
while local variable references and procedure calls
both omit the identifier of local node. The mecha-
nisms to deal with the join and stabilization remain
unchanged from that in Chord.

PERFORMANCE ANALYSIS

The two main performance metrics we discuss
here are routing table size and lookup path length.
Moreover, we give a precise proof on the routing table
size in BiChord.

Theorem 1 Each node maintains a finger table with
at most m entries and with high probability (whp), the
size of finger table is O(logN), where m is the length
of identifier and N is the number of nodes in the
network.

// ask node n to find the successor of k
n.find_successor(k) {

if (k∈(id(predecessor), id(n)])
return n;

else
 if (k∈(id(n), id(successor)])

return successor;
 else {
 n′=closest_node(k);

 return n′.find_successor(k);
 }
}

// search the local routing table for the closest
// node to k, R denotes the routing table
n.closest_node(k) {

x=R(1);
for i=1 to ||R||

if (|R(i)−k|<|x−k|)
 x=R(i);

return x;
}

Fig.3 BiChord lookup algorithm
Fig.2 An example of BiChord

1
2

 4
5

7

F inger table Keys
Start Int . S u cc .

 1 [1 , 2)
2 [2 , 4 3
4 [4 , 0 6

7

F inger table Keys
Start Int . Succ .

7 [7 , 0) 0
0 [0 , 2) 0
2 [2 , 6) 3

6

Anti - finger table
 A nti - finger

3
6

F inger table Keys
Start Int . Succ.

4 [4 , 5) 6
5 [5 , 7) 6
7 [7 , 3) 0

2

0

6

3

Link

Reverse link

)
)

1

Jiang et al. / J Zhejiang Univ SCIENCE A 2006 7(6):945-951 948

Proof Since there are no differences between the
construction of finger table in BiChord and in Chord,
the number of entries in the finger table of each node
also remains unchanged. The finger table size in
BiChord is the same as that in Chord and it follows
that whp, the size of finger table in Chord is O(logN)
and is m at most (Stoica et al., 2003).
Theorem 2 With high probability, each node main-
tains an anti-finger table with O(log2N) entries, where
N is the number of nodes in the network. Also, the
expected anti-finger table size is O(logN).
Proof The expected distance between two succes-
sive nodes is 2m/N on the Chord ring, and whp, the
distance is L=O((2m/N)×logN).

We consider a node n. There are L continuous
identifiers between node n and its predecessor node p,
i.e., |id(n)–id(p)|=L, whp.

If node n is a finger of node x, we have n=
succ(id(x)+2i–1), 1≤i≤m. That is to say, id(x)+2i–1 is in
the range from id(p) to id(n). So id(x) is in the range
from id(p)–2i–1 to id(n)–2i–1. It’s clear that for a par-
ticular i, id(x) locates in this range with probability
|(id(n)–2i–1)–(id(p)–2i–1)|/2m. That is, node n is a fin-
ger of node x with probability |id(n)–id(p)|/2m. As
stated above, whp, |id(n)–id(p)|=L=O((2m/N)×logN).
Thus node n is a finger of node x with probability
O(logN/N) for any node x and a particular i. Thus whp,
for this particular i, there are O(logN) nodes that
finger node n because there are N nodes totally in the
network.

Since whp a node has O(logN) fingers, there are
O(log2N) unique nodes with finger node n, whp, and
so node n maintains an anti-finger table with O(log2N)
entries.

As shown in Theorem 1, whp, every node
maintains a finger table with O(logN) entries. So the
sum of the finger table size is O(N×logN) and on
average, each node is a finger of O(logN) nodes. Thus
the expected anti-finger table size is O(logN).
Theorem 3 If in a BiChord network, every node
maintains a correct finger table and a correct anti-
finger table, the BiChord lookup algorithm is con-
vergent.
Proof During each step of BiChord lookup algo-
rithm, if current node cannot find a routing table entry
closer to the desired key than itself, the node must be
the predecessor or successor node of the key and the
lookup is resolved because if not so, the predecessor

or successor node of this node must be closer to the
key.

Otherwise, the lookup message will be for-
warded to a finger or anti-finger of the current node
that is closest to the desired key among all the routing
table entries. Obviously, such a next hop node is
closer to the desired key than current node. In such a
case, the lookup message is routed to a closer node to
the desired key at each step. Ultimately, the lookup
message will arrived at the node preceding or suc-
ceeding the key, namely the predecessor or successor
node of the key and the lookup is resolved.

Since the anti-finger table brings much uncer-
tainty into the routing process, it’s rather difficult to
give an exact analytical result on the lookup path
length in BiChord. But the lookup efficiency is im-
proved distinctly. In Chord, each node maintains
information about a small number of other nodes
(fingers) and knows more about the nodes closely
following it along the Chord ring than the nodes far-
ther away, whereas in BiChord, each node maintains
not only such information but also information about
more nodes (anti-fingers). A node knows many things
about the nodes near it at sides clockwise and coun-
terclockwise instead of only the clockwise side. In-
tuitively, the fingers and anti-fingers of each node
partition the Chord ring finer and by these fingers and
anti-fingers, a node will locate the region of a desired
key more accurately at each step. Thus the nodes will
resolve a lookup within fewer steps.

EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of
BiChord by simulation. The simulator implements the
BiChord lookup algorithm shown in Fig.3. For com-
parison, we also implement Chord lookup algorithm.

Routing table size

The routing table size is an important perform-
ance metric. Although the anti-finger table brings
very low additional overhead, we still investigate the
anti-finger table size to evaluate the performance of
BiChord thoroughly. The finger table size is exam-
ined during the experiment too. From Theorem 1 and
Theorem 2, with high probability, the finger table and
anti-finger table sizes are O(logN) and O(log2N) re-

Jiang et al. / J Zhejiang Univ SCIENCE A 2006 7(6):945-951 949

spectively, and the expected finger table and anti-
finger table sizes are both O(logN), where N is the
total number of nodes in the network.

To understand the routing table size in practice,
we simulated a network with N=2k nodes. We varied k
from 3 to 14 and conducted a separate experiment for
each value of k. We measured the finger table and
anti-finger table sizes of every node during each ex-
periment.

Fig.4a plots the average sizes of finger table and
routing table as a function of k. As expected, they
both increase logarithmically with the number of
nodes. Fig.4b plots the probability density function of
the finger table and anti-finger table sizes for a net-
work with 212 nodes (k=12).

Fig.4a confirms that in BiChord, both the aver-
age finger table size and the average routing table size
are O(logN). Fig.4b shows that the finger table sizes

of most peer nodes are around logN while the distri-
bution of anti-finger table sizes is more dispersed.

Lookup path length

The routing performance of BiChord mostly
depends on the lookup path length. We also simulated
a network with N=2k nodes and 100×2k data objects
here. We varied k from 3 to 14 and conducted a
separate experiment for each value of k. During each
experiment, every node picked up a random set of
keys to lookup using Chord and BiChord lookup
algorithm respectively, and we measured each lookup
path length of the two algorithms.

Fig.5a plots the average lookup path length of
the two lookup algorithms as a function of k. Fig.5b
plots the probability density function of lookup path
length in the case of a 212 nodes (k=12) network.

Fig.5a indicates that BiChord has great improve-

0 20 40 60 80 100
0 0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

Table size
8 32 128 512 2048 8192

4

8

12

16

20

24

28

32

 Finger table
 Routing table

Si
ze

Number of nodes

(a)

(a)

Fig.4 Routing table size in BiChord. (a) Average sizes; (b) The probability density function of the finger
and anti-finger table sizes in the case of a 4096 nodes network

8 32 128 512 2048 8192
0

1

2

3

4

5

6

7

Lo
ok

up
 p

at
h

le
ng

th

Number of nodes

 Chord
 BiChord

0 2 4 6 8 10 12
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

Lookup path length

 Chord
 BiChord

(b)

(b)

Fig.5 Lookup path length in Chord and BiChord. (a) Average lookup path length; (b) The probability den-
sity function of lookup path length in the case of a 4096 nodes network

 Finger table
 Anti-finger table

Jiang et al. / J Zhejiang Univ SCIENCE A 2006 7(6):945-951 950

ment over Chord in average lookup path length.
Fig.5b shows more plainly that the average lookup
path length in BiChord is lower than that in Chord.

We also counted the number of anti-fingers that
act as lookup forward nodes during each BiChord
lookup and calculate the percentages of anti-fingers in
lookup forward nodes. Fig.6 plots such percentages
for each network size.

Fig.6 shows that about half of the lookup for-
ward nodes are achieved by anti-fingers and confirms
that the anti-fingers contribute much to the improve-
ments of lookup efficiency.

RELATED WORK

Chord provides an efficient peer-to-peer lookup
service based on DHT with provable correctness and
performance guarantee. By now, Chord has brought
up many novel distributed application systems. We
also have implemented an experimental system for
distributed text retrieval based on Chord (Jiang and
Wang, 2004). However, there is still some space for
improvement in Chord lookup efficiency.

There are two main ways to improve the lookup
efficiency in Chord. One is to optimize the logical
topology of Chord such as the denser finger technique
(Zhuang and Zhou, 2003). The other is to utilize the
underlying network topology information to reduce
the total routing latency such as geographic layout
and proximity neighbor selection (PNS) techniques
(Ratnasamy et al., 2002).

The denser finger technique places fingers of
node x at points id(succ(id(x)+(1+1/d)2i–1)) on the
Chord ring, (1 (1+1/) 2)m mi m d ′′≤ ≤ ∧ ≤ and d is a

tunable integer parameter. The number of fingers kept
by each node is now d times of that in original Chord
and the maximum lookup path length is reduced to
1/log(1+d) of the original length. However, the av-
erage lookup path length is logN/[(1+d)log(1+d)–
dlogd]. In our another work, we presented ChordPlus
lookup algorithm (Bai et al., 2005) which generalizes
Chord lookup algorithm to M-ary lookup. It also gets
some improvements in lookup path length.

However, work remains to route lookup mes-
sages in one way (clockwise) like in Chord. S-Chord
was proposed using symmetry to improve lookup
efficiency in Chord (Mesaros et al., 2003). That is,
each node maintains fingers at both its sides and these
fingers of node x are placed at points id(succ(id(x)+
4i–1)) and id(pred(id(x)–4i–1)) (1≤i≤m). S-Chord
shows the improvements in routing performance by
experiments. BiChord is rather different from the idea
of S-Chord. In S-Chord, each link is still unidirec-
tional like in Chord, but in BiChord, we add a reverse
link to the topology graph for each original unidirec-
tional link at very low additional maintenance over-
head and achieve significant improvements in routing
performance.

Exploiting the underlying network topology in-
formation has been considered for use in Chord too
(Dabek et al., 2001).

CONCLUSION

Chord is a scalable peer-to-peer lookup service
for Internet applications. The simplicity, provable
correctness and performance make it an attractive
substrate for distributed applications. However there
still remains some space for improvement in the
lookup efficiency in Chord.

This paper proposes BiChord, an improved
lookup service based on Chord. BiChord utilizes the
existing finger table in Chord and the heartbeat
mechanism to construct an anti-finger table at very
low additional overhead. By using the finger table and
anti-finger table, the lookup performance is improved
greatly. Theoretical analyses and experiment results
both confirm such improvements. Another byproduct
is that the fault-tolerance is enhanced due to more
routing table entries and the relaxed routing selection
policy.

8 32 128 512 2048 8192
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pe
rc

en
ta

ge
 o

f a
nt

i-f
in

ge
rs

Network size

Fig.6 Percentages of anti-fingers in lookup forward nodes

Jiang et al. / J Zhejiang Univ SCIENCE A 2006 7(6):945-951 951

References
Bai, H.H., Jiang, J.J., Wang, W.N., 2005. ChordPlus: a scal-

able, decentralized object location and routing algorithm.
Journal of System Engineering and Electronics, 15(4):
772-779.

Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.,
2001. Wide-area Cooperative Storage with CFS. Pro-
ceedings of the 18th ACM Symposium on Operating
Systems Principles. Chateau Lake Louise, Banff, Canada,
p.202-215.

Jiang, J.J., Wang, W.N., 2004. Text-Based P2P Content Search
Using a Hierarchical Architecture. Proceedings of the 7th
International Conference of Asian Digital Libraries.
Shanghai, China, p.429-439.

Mesaros, V., Carton, B., van Roy, P., 2003. S-Chord: Using
Symmetry to Improve Lookup Efficiency in Chord. Pro-
ceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications
(PDPTA’03). Las Vegas, Nevada, USA, p.1752-1760.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.,

2001. A Scalable Content-addressable Network. Pro-
ceedings of ACM SIGCOMM 2001. San Diego, CA,
p.161-172.

Ratnasamy, S., Shenker, S., Stoica, I., 2002. Routing Algo-
rithms for DHTs: Some Open Questions. Proceedings of
the 1st International Workshop on Peer-to-Peer Systems.
Cambridge, MA, USA, p.45-52.

Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek,
M.F., Dabek, F., Balakrishnan, H., 2003. Chord: a scal-
able peer-to-peer lookup protocol for Internet applica-
tions. IEEE/ACM Transactions on Networking, 11(1):
11-32.

Zhuang, L., Zhou, F., 2003. Understanding Chord Perform-
ance and Topology-aware Overlay Construction for
Chord. Project Report, available at http://www.cs.berkeley.
edu/~zl/doc/chord_perf.pdf.

JZUS-A focuses on “Applied Physics & Engineering”

 Welcome your contributions to JZUS-A
Journal of Zhejiang University SCIENCE A warmly and sincerely welcomes scientists all over

the world to contribute Reviews, Articles and Science Letters focused on Applied Physics & Engi-
neering. Especially, Science Letters (3−4 pages) would be published as soon as about 30 days (Note:
detailed research articles can still be published in the professional journals in the future after Science
Letters is published by JZUS-A).

 JZUS is linked by (open access):

SpringerLink: http://www.springerlink.com;
CrossRef: http://www.crossref.org; (doi:10.1631/jzus.xxxx.xxxx)
HighWire: http://highwire.stanford.edu/top/journals.dtl;
Princeton University Library: http://libweb5.princeton.edu/ejournals/;
California State University Library: http://fr5je3se5g.search.serialssolutions.com;
PMC: http://www.pubmedcentral.nih.gov/tocrender.fcgi?journal=371&action=archive

SCIENCE A
Journal of Zhejiang University

Editors-in-Chief: Pan Yun-he

ISSN 1009-3095 (Print); ISSN 1862-1775 (Online), monthly

www.zju.edu.cn/jzus; www.springerlink.com
jzus@zju.edu.cn

