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Abstract:

In this paper, we study a class of Finsler metric in the form F=aexp(f/a)+¢ff, where a is a Riemannian metric and £ is

a 1-form, ¢ is a constant. We call F’ exponential Finsler metric. We proved that exponential Finsler metric F is locally projectively

flat if and only if « is projectively flat and f is parallel with respect to . Moreover, we proved that the Douglas tensor of expo-
nential Finsler metric F vanishes if and only if f is parallel with respect to «. And from this fact, we get that if exponential Finsler
metric F is the Douglas metric, then F is not only a Berwald metric, but also a Landsberg metric.
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INTRODUCTION

One century ago, Hilbert announced his famous
23 problems. The Hilbert’s Fourth Problem is to
characterize the (not-necessarily-reversible) distance
functions on an open subset in R” such that straight
lines are shortest paths. Distance functions induced by
a Finsler metric are regarded as smooth ones. Thus
Hilbert’s Fourth Problem in the smooth case is to
characterize Finsler metric on an open subset in R”
whose geodesics are straight lines. Finsler metric on
an open domain in R” with this property are said to be
projectively flat. Hamel (1993) first found a simple
system of PDE’s to characterize projectively flat
Finsler metric on an open subset in R". That is, a

Finsler metric F=F(x,y) on an open subset in R" is
projectively flat if and only if it satisfies the following
partial differential equations

Foy'=F,. (1)

It is an important problem in Finsler geometry to
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study and characterize projectively flat Finsler metric
on an open domain in R". This problem is very dif-
ficult for general Finsler metric. Shen (2003) ob-
served that a Randers metric F=a+/f is locally pro-
jectively flat if and only if a is locally projectively flat
and fis closed. This fact is a direct consequence of
Bécso-Matsumoto’s theorem on Doulas metrics
(Bacs6 and Matsumoto, 1997). Shen and Civi
Yildirim (2005) studied the locally projectively flat
metric in the form F=(a+f)*/a. Senarath and
Thornley (2004) gave an equation in local coordinates
that characterizes projectively flat Finsler metric in
the form F=(a+f)*/a. These are some special forms
of (¢, f)-metric (see Section 2).

A natural problem is to study and characterize all
(o, P)-metrics which are projectively flat. In general,
this is very complicated. The fist step for us is to study
some special (&, f)-metrics such as

F=ais), s=pa,

where @(s)=exp(s)+es, €1s a constant. We call F ex-
ponential Finsler metric.

In this paper, we shall first prove the following:
Theorem 1 Let F=aexp(f/a)+&p be a Finsler met-
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ric on a manifold M. F is locally projectively flat if
and only if the following conditions hold:

(1) B is parallel with respect to «;

(2) ais locally projectively flat. That is, ¢ is of
constant curvature.

We say a Finsler metric on an open domain in R”
is “trivial”, if it satisfies the conclusion of Theorem 1.
Thus the above theorem tells us that in the class of
exponential Finsler metric, there is no non-trivial
projectively flat metrics.

A theorem due to Douglas states that a Finsler
metric F is projectively flat if and only if two special
curvature tensors are zero. The first is the Douglas
tensor. The second is the projective Weyl tensor for
n>3, and the Berwald-Weyl tensor for n=2. It is
known that the projective Weyl tensor vanishes if and
only if the flag curvature of F has no dependence on
the transverse edges (but can possibly depend on the
position x and the flagpole y). If the Douglas tensor of
F vanishes, we call F' a Douglas metric. Bacso and
Matsumoto (1997) proved that a Randers metric
F=a+p is a Douglas metric if and only if § is a closed
1-form. Matsumoto (1998) obtain that for n=dimM>=>3,
F=(c*+p%)/a is a Douglas metric if and only if

b, =z((1+ 2b° )a; —3bb;), )

where 7=t(x) is a scalar function. In this paper, we
shall also prove the following:
Theorem 2 Let F=aexp(f/a)+ef be a Finsler met-
ric on a manifold M. Then the Douglas tensor of F
vanishes if and only if f is parallel with respect to c.

It is known that if a Finsler metric is projectively
equivalent to a Berwald metric, then it is a Douglas
metric. However, it is still an open problem whether
or not every Douglas metric is (locally) projectively
equivalent to a Berwald metric. We have the follow-
ing:
Corollary 1 Let F=aexp(f/a)+ef be a Finsler metric
on a manifold M. If F' is the Douglas metric, then

(1) F is a Berwald metric;

(2) F is a Landsberg metric.

(@, f)-METRICS

Finsler metric under our consideration are spe-
cial (e, p)-metric, expressed in the following form:
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F=as), s=fla, 3)

where a=,/a,y'y’ is a Riemannian metric and

p=by'is a 1-form. g=¢(s) is a C* positive function on
an open interval (—by, by ) satisfying

#(s) = s4'(s) + (b* =5*)¢"(s)> 0, |s[<b<b,. (4)

It is known that F'is a Finsler metric if and only
if ||f]|s<bo for any xeM. Let G' and G denote the

spray coefficients of F and a, respectively, given by

G =& (]

L TR Vi

4 (5)
G; :7{[a2]xkyf yk _[az]x/ }’

where (¢"):=(g;) ', (g,):=([F’],,,/2) and (a)=

(ay) .
By Eq.(1), we have the following:
Lemma 1 (Chern and Shen, 2005)

coefficients G’ are related to G', by

The geodesic

G =G +a0s) +J{-20as, + 1, }
(24
,. (©)
+ H{=2Qas, + i} (b =52},
(04

where

P

$—sp"

_ #@-s4)

20(9—sg)+ (P —57)p")

H = A R
2((p—s¢) +(b* —5")gp")
s=pf/a, and b:=||fy|| 4

0=

Lemma 2 (Shen and Civi Yildirim, 2005) An («,
f)-metric F=ag(s), where s=f/c, is protectively flat
on an open subset UcR" if and only if

(amla2 -y )G, + a3Qs10

(7)
+Ha{=20as, + ry} iba —sy,§ =0,

where y,=an)'.
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EXPONENTIAL FINSLER METRIC

In this section, we consider a special (¢, f)-
metric in the following form:

F=aexp(f/a)+¢gp, ®)
where a=,/a,)'y’ is a Riemannian metric and f=by’
is a 1-form on M, ¢ is a constant. Let 5p>0 be the
largest number such that

l—s+b*—s*>0, |s|<b<b, )

where b,y depends on & such that exp(s)+e&s>0.

Lemma 3  If F=aexp(f/a)+ef is a Finsler metric,
then bp<I.
Proof If F=aexp(f/a)+epf is a Finsler metric, then

1-s+b>—s">0, |s|<b<by. Let s=b, then Vbh<by, bo<1.
By Lemma 1,

_a(l+eexp(=f/a))
= oy

- (exp(B/a) +¢&)(a - pa’

' 2(aexp(B/a)+ef)(1+b*)a’ —aﬁ—,b’z)’

a2

H = .
200+’ —af - )

0:

b

Remark 1+gexp(—f/a)#0. If 1+gexp(—f/a)=0, then
#(s)=exp(s)+e&s is a constant, thus F is a Riemannian
metric. Eq.(7) is reduced to the fowlling equation:

a4(1+gexp(—,5/a))s
a—ﬂ 10
a’(1+eexp(—f/ a))s,
- ba—sy) (10
a’ry,

i 20+ b’ —aff— )

(a,@° = ,y)G, +

(ba—sy,)=0.

Lemmad4 If (a,a’-y,y,)G"=0, then s a local-
ly projectively flat.
Proof If (a,,a” -y, )G =0, then

a’a,,G) =y,Gy, (11)

then there is a 7=7(x, y) such that

v.Gl =a'n, (12)
we get
amlG: :nyl' (13)
Contracting Eq.(13) with a” yields
G; = nyi’ (14)

thus «a is projectively flat.
Theorem 3 Let F’=aexp(f/a)+&p be a Finsler metric
on a manifold M. F is locally projectively flat if and
only if the following conditions hold:

(1) p is parallel with respect to «;

(2) ais locally projectively flat. That is, o is of
constant curvature.
Proof If Fis projectively flat. We rewrite Eq.(10) as
a polynomial in )’ and «, which is linear in ¢. This
gives

(a-B)A+b*)a’ —aff - B )a,.a” = y,9,)Gr
+at(1+cexp(-B/a) (1 +b*)a’ —af - 7)s,,
— o’ (1+eexp(-B/a))(ba —sy,)s, (15)

1
+§a3(a = Pry (b —sy,)=0.

Case 1
b yields

Assume that e£0. Contracting Eq.(15) with

(@ - B)(+ ) —af - f)b,a 3, f)G”
" %oﬂ(a _pBE - B,

+a'*(+eexp(-B/a)a’ —ap)s, = 0.
Namely

(16)

(A+bHa’ —af - p*)b,a’ -y, B)G + %az(b2a2

B, + (L+ gexp(- Bla)a’s, = 0. (17)

Replacing y with —y, we get

1+’ +afp - ﬂz)(bma2 -v,8G" +%0¢2(172052

B, — (1 +eexp(-f/a)a’s, =0.  (18)
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Combining Eqs.(17) and (18), we get

2ﬂ(bma2 _ymﬂ)G:

=a'Q+sexp(-f/a)+sexp(f/a)). (19)

Using Taylor expansion of exp(f/a), we can find that
the left side of Eq.(19) is an integral expression in y
and the right side of Eq.(19) is a fractional expression
in y, we get

5,=0, (b,a’ —y,AG," =0. (20)

Substituting Eq.(20) back into Eq.(17), we get r¢o=0.
Thus Eq.(15) becomes

(a— ﬂ)(amlaz - ymyl)G;+a4(1+5 exp(—f/a))s,,=0.
(21)

By the same derivation, we get

(am,()t2 -y, )Gl =0,s,=0. (22)

By Lemma 4, « is locally projectively flat. By s4=0
and rgo=0, we get b;;=0, thus £ is parallel with respect
to a.

Case2 &0, Eq.(15) becomes

(a- B+’ —af - f)Na,a” —y,y,)Gr
+a4((1 +b2)0£2 _aﬁ_ﬁ2)slo _a5 (bla _Syz)so

+%a%a—ﬂmu@a—$n=o. (23)

even

Because o' is a polynomial in )/, then the coeffi-

cients of « and the coefficients of ¢ must be zero. We
obtain

2(0+b*)a’ (a,,a’ - y,y,)G"
+a’r, (ba’ - By,)=2a’ Bs,,,
2-2+ba’ B+ p)a, - y,1)G
2((1+b)a’ —a' s,
=Q2a's, +a’ fry ) ba’ - By).

24)

(25)
Eq.(24)x(f/) yields

200+ 6% e’ Bla e - y,,)Gl

+a’ Bry,(ba’ — By)=2a"B’s,.  (26)

Contracting Eq.(25) and Eq.(26) with 5’ yields

2(1+b*)a’ b, a* -y, BGL

+052,8r00(b2 B = 2a4/32s0, 27)
2-Q2+b)a’ B+ p)b,a’ - y,8)G.
R2(1+b)a’ —a*p)s,

= (20{4s0 + a2,8r00)(b2a2 - B%). (28)
Eq.(27)+Eq.(28) yields
Bb,a’ = y,0)G; =a's,. (29)

Note that the polynomial ' is not divisible by 8, Thus
(b,a” —y, B)G" is divisible by . Therefore, there is

a scalar function r=t(x) such that

0,0 - y,P)G; =r(x)a’,
s, =7(x)p.

(30)
1)

Substituting Eqs.(30) and (31) back into Eq.(27), we
get

20+ b)) (x)a’ + a’ryy(b’a’ - p7) =2t (x)a’ B2,
namely

ny(b’a’ = ) =2t(x)a’ (B —(1+b°)a’). (32)

Note that the polynomial 5°c’—f” is not divisible by
az, then rq is divisible by o Therefore, there is a
scalar function A=A(x) such that

_ 2
Foo = AC7,

33)
ABPa® - B =2c(x)(B° — (1+b7)a?).

Because the polynomial b*c?—f* is not divisible by
ﬁ27(1+b2)a2, then 1=0, =0, thus we get r4p=0, so=0.
Substituting r9=0, and so=0 back into Egs.(25) and
(26), we get

(—2+b*)a’ B+ ) a,a -y, )G
+((1+b6)a’ —a'*B)s,, =0,

( erz)oﬂﬁ(armla2 -y, )G = a4,32s10.

(34)

(33)

Because
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-2+’ B+ B
1+’ p

1+’ —a'p’
_a4ﬂ2

#0,

we get (a,,a’ —y,y,)G"=0 and s,=0.

By Lemma 4, « is projectively flat. By s,=0 and
r90=0, we get b;;=0, thus f is parallel with respect to
a. Conversely, if f is parallel with respect to & and «
is locally projectively flat, by Lemma 1, we get

G =G..

Because « is locally projectively flat, thus £ is locally
projectively flat.

L, =0

g
Definition 1 Let

; o ; 1 oG" ,
D./kl S A kA (G - Y ),
0y’ oy oy n+1 0oy

D:=D},dx’' ® 0, ® dx" ®dx'.

(36)

It is easy to verify that D is a well-defined tensor
on TM,. We say D is the Douglas tensor.

The Douglas tensor is a non-Riemannian quan-
tity, namely, if F is a Riemannian metric, then

D’,,=0. A Finsler metric is called a Douglas metric if

Dj.k,=0. Study on Douglas metrics will enhance our

understanding on the geometric meaning of non-

Riemannian quantities.
} ) ) ) 1 m
Lemma 5 D),=0if and only if G' B
/ n+l oy

i

y:

75 (x)y’y", for some set of local function 77, (x).
Proof It is easy to verify.

It is known that the Douglas tensor is a projective
invariant, namely, if two Finsler metric " and F are
projectively equivalent, that is G'=G'+Py’, where
P=P(x, y) is positively y-homogeneous of degree one,

then the Douglas tensor of F is the same as that of F.
Thus if a Finsler metric is projectively equivalent to a
Berwald metric, then it is a Douglas metric. However,
it is still an open problem whether or not every

Douglas metric is (locally) projectively equivalent to
a Berwald metric.
For F=aexp(f/a)+ef, by Lemma 1, denote

P a’(s+exp(B/a))—2apfexp(f/a)—cafi— B’
- 2(ef+aexp(B/a))(1+b*)a’ —af - )

x(_z 1+ gj)ip;—ﬂ/a)) - Voo]a 37)
0 - a’(1+eexp(-B/a)) s
a-p
_ a'(+esexp(-f/a)) op'
(@=-p)(+b)a’ —af - )"
.. b (38)
20(1+b)a” —af - pf7)
We get a new spray
G:y"%—zéfaiyi, (39)
where
G=G/'+0'". (40)

Clearly, G and G are projectively equivalent. So we

only need to compute the Douglas tensor of G. We
have the following

Theorem 4 Let F=aexp(f/a)+ef be a Finsler metric
on a manifold M. Then the Douglas tensor of F' van-
ishes if and only if § is parallel with respect to «.
Proof  If the Douglas tensor of F' vanishes. By
Lemma 5, we get

& 1 0G

l_n+1 " “0

V' =rp)y
for some set of local function 7;-/( (x).
Substituting Eq.(40) back into Eq.(36), we get

83
oy'oy* oy’

18

D =D + - y
n+1 oy"

Jkl Jjkl

)s

where D', is the Douglas tensor of G, D, is the

Douglas tensor of ¢, because « is a Riemannian

metric, D', =0. We get
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i 1 00" i Jok (n+1)a2 2
nr1 oy STy (42) Haebha —ap— ™’
a,b’(a + gf exp(— ﬂ/a))
By Eq.(38), we get (@- By So
oo a(l + gexp(— ﬂ/a)) L& pb’a’ — B) (e +2B)(1+ sexp(— ﬂ/a))
o @-pr (n+Da-BYA+b)a’ —aB- B
@' Wa’ - Y a+2p) 1+ cexp(-f/ @) _(Pa 22 B)a+ 208,
(a—p)(1+b)a* —af - ) % (b —ap- )
a’ Y a’p 2 m
- 2N 2 (Y5 /(e = )" +2r,,0")
N+ —aﬂ—ﬂ2)[(a—ﬂ)2 % ”00] ((+b")a” —af - B) /
N (b2a22_ ﬂZZ Y + 2/}2) - 43) =2(n+Dby,, () y*. (45)
200+bHYa” —aff - )
where Denote T=h,y', (x)y’y".
Y=2p"-af-b'a’ Case 1  Assume ¢#0, with the same discussion in
+e(B —baf+ B la-af)exp(-Ba). Theorem 1, we get 5,=0.

Substituting so=0 back into Eq.(45), we get
Substituting Eqs.(38) and (43) back into Eq.(42), we

get (nthb’a’ (b’a’ - B )a+2p)p
() —af— )" (6 —ap- ) "
wlreepChia), - 22“ Prud”  _psnr. 46)
a=-p (1+b))a” —af - B°)
3 a*(l+eexp(-B/a))
20— ) (A +b)a’ —aff - B ) From Eq.(45)x ((1+b*)a” —aff — B*), we get
az i
D —af— ) TooD ((n+D®* +b )y =2+ DT (A +b7)
_alatsfexp(-fle) N “2B(+b)r,b" ot +(=(2+m)bry, B

n+a-py ¢

& (Ba — e+ 2p)1+ sexp(p ) #n+ DT+ 45"+ DT+ 2577, 87 )
+

2o+ e - P+ ) —ap- 7 H(@D? +2) 1+ T B = (1 + 30
IRy o G ) M 2B b" ) + (-4 + DT B+ g )
2(n+1)((A+b))a? —ap-p*) " (DT — 1) B =0, @7)
0.’2

_2 D1+ b2 — 2 (YSO/(Ol_ﬁ)2 N P .
(n+D)(A+0")a” —aff - B7) (1) If roo and T is divisible by ', namely, if there

+2r, b" ) Y =y (x)y v (44)  are two scalar functions A=A(x) and r=7(x) such that
m J
_ 2
Contracting Eq.(44) with b;, we get o = Ax)a”, (48)
T=1(x)a’, (49)
(n+1Da’(1+cexp(-B/a)) i then
a-p ’ = 2A(x)p. (50)

(n+1Da’*(1+gexp(— ﬂ/a))
(a L((1+b)a* —af - f° ) Substituting Egs.(48)~(50) back into Eq.(47), we get
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Aa’ + A’ B+ Aa’ B+ A’ B+ Aa’ B =0,
where
A ==2(n+H)(B*+1)’(x) + (n+ 1)b* (b* +1),
A, = 4(n+)(b* )z (x) — (2+n)b* A(x),
A, = 2(n+1)(2b° )z (x) — (4+(T+n)b* ) A(x),
A, =—4(n+tD)r(x)+51(x),
A, = -2(n+)7(x)+6A(x).

We get (4a’+A4,5)a’=— A p".

Because /8 is not divisible by ¢ and 4; o*+A4:°,
we get As=0. For the same reason, we get 4,=A4,=
A3=A4=0. By A4=A45=0, we get A=7=0. Thus ry=0,
T=0, r,,0b"=0, substituting back into Eq.(44), we get

a’(1+eexp(-f/a)) § 0
a-pf o

Because 1+eexp(—f/@)#0, thus s,=0. By s,=0 and
roo=0, f is parallel with respect to c.

(2) rop is not divisible by ¢ and T'is divisible by
o, namely, there is a scalar function 7=7(x) such that

T =7(x)a’. (51)

Substituting Eq.(51) back into Eq.(47), we get
Ba'+B,o’ +B,a*+B,a’ +Bsa’ +Ba+2 B*r,, =0,

where By, B,, ..., Bg are homogeneous in y of degree 0,
1,2, 3,4, 5 respectively. Thus

(Ba* + B,a’ + B))a’ =28,

Because £ is not divisible by &7, thus rq is divisible
by 7. This contradicts our assumption.

(3) T'is not divisible by &7, r is divisible by &7,
namely, there is a scalar function A=A(x) such that

Ty = A(x)at’. (52)

By the same method used in (2), we find that (3)
is impossible.

(4) T and ry are not divisible by .

By Eq.(46), we get

Yu et al. / J Zhejiang Univ SCIENCE A 2006 7(6):1068-1076

{[(n+D)b*ryy = 2n+)T(A+b>) +(n+1)br, — 28 -
(1+b)r, b" Ja > +(4b* +2)(n+1)T B — (n+3)b’r,, 3
280" =2((n+ DT —ry) B4, (53)
(—2+n)b’ry, +4(n+ DT+4D> (n+ DT +2fr,,b" o
=[4(n+ 1T —r,,15*. (54)

Because 4 is not divisible by ¢, (n+1)T—r¢ and
4(n+1)T—ry are divisible by . Therefore, there are
two scalar functions ¢=¢@(x) and p=¢(x) such that

(n+)T -1, =ga’,
4n+1)T -1, = pa’,
then T :(p—_¢a2. This contradicts our assumption.

3(n+1)
Case2 =0, by Eq.(45), we get

(n+Da® (n+Da’ o p?
a-p " (@-B1+b)a’ —aB-p) "
. (n+a’ b a’p s,

(1+0)a’ —af - B*) (a-pB)

L @YY a+2h)
(n+1)a-p1+b)a” —af - )

- > 0;2'8 2( Y 250+2rm0b'"]
(A+0%)a” —af - )\ (a - p)
LW N2 oy, (55)

(1+b)a’ —ap-p7) "

where Y=28"—af—b*c’.
(1) If o0 and T'is divisible by ¢, namely, if there
are two scalar functions A=A(x) and 7=7(x) such that

oo = A(x)a? (56)
T =7(x)a’, (57)

then
rb" =24(x)f. (58)

Substituting Eqs.(56)~(58) back into Eq.(55), we get

Ca’ +(C,s,+C,B)a’ +(C,Bs, + C; )a’
+C,Bsy + C. )’ +(C s, + C, Ha’
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+(C10ﬂ4s0 + ClllB5 )a’ + (C12ﬂ5s0 + C13186 )a’ =0,

where Cy, C;, ..., C;3 are homogeneous poloynomial
in y of degree 0. Especially,

C,=-2n—7-6b",

C, =4+ D)1 +b)r = (13+ (n+12)b°) 4,
C, =—6n+6b> —3—2nb*,

C, =(8+(n+7)b*)A—4(n+1)2+b)z,

Co=2n+7,
C, =74,
C,=2(n-1),

C,=2(n+1)r—64. (59)

Because ™" is a polynomial in ', We obtain

Ca® +(C,Bs, +C,)a’ +(C, s, + C,pHa’
+(C, L5, + Cy B’ =0,
(Cys, +C,B)a’ +(C,Bs, + C,p)a’

+(C10ﬂ450 + Cllﬁs )0!3 =0. (60)

By Eq.(60), we get

(C1a4 +(Cy s, + Cs 1) +(Cy s, + C9'B4))a2
=—(Cp,sy + Cl3ﬂ),35.

Because /32 is not divisible by o, we get

C,s,+C,6=0. (61)
For the same reason, we get
Cesy +C,B=Cisy +Cof=C,y5, +C,,=0. (62)
By Egs.(61) and (62), we get
(=2n—7-6b")s, +{4(n+1)(1+b*)r
13+ (n+12)b* 1213 =0, (63)

(=6n+6b> —=3—2nb%)s, +{[8+(n+7)b* 1A

—4(n+1)2+b*)r}f =0, (64)
2n+T)s, + 714 =0, (65)
(n=1s, +((n+1zr-31) =0, (66)
By Egs.(65) and (66), we obtain:
l:_2n+7s_0’ s0=—13(n+1)r'8. 67)
7 p 13n+14

Substituting Eq.(67) back into Eq.(63), we get
((4b°—6)n—21)t8=0. Because b<l, ((4b*-6)n-21)#0,
thus =0. Substituting =0 back into these equations,
we obtain /=0 and =0, then f is parallel with re-
spect to a. If one of 7y and T is not divisible by o or
T and 7y are not divisible by o, with the same dis-
cussion in Case 1, we get that £ is parallel with respect
to a.

Conversely, if f is parallel with respect to ¢, by

Lemma 1, we get G'=G!,. Because « is a Riemannian
S
metric, D, =0.

Theorem 5 (Shen, 2004)  For an («, f)-metric F=
a@d(f/a) on a manifold of dimension n>3, the fol-
lowing hold

(1) F is a Landsberg metric;

(2) F is a Berwald metric;

(3) p is parallel with respect to a.

By Theorem 4 and Theorem 5, we have
Corollary 2 F=qexp(f/a)+ef is a Finsler metric on
a manifold M. If F is the Douglas metric, then

(1) F is a Berwald metric;

(2) F is a Landsberg metric.
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