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Abstract:    In this paper a novel 3D model retrieval method that employs multi-level spherical moment analysis and relies on 
voxelization and spherical mapping of the 3D models is proposed. For a given polygon-soup 3D model, first a pose normalization 
step is done to align the model into a canonical coordinate frame so as to define the shape representation with respect to this 
orientation. Afterward we rasterize its exterior surface into cubical voxel grids, then a series of homocentric spheres with their 
center superposing the center of the voxel grids cut the voxel grids into several spherical images. Finally moments belonging to 
each sphere are computed and the moments of all spheres constitute the descriptor of the model. Experiments showed that 
Euclidean distance based on this kind of feature vector can distinguish different 3D models well and that the 3D model retrieval 
system based on this arithmetic yields satisfactory performance. 
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INTRODUCTION 
 

Recently, the development of 3D modelling and 
digitizing technologies has made the model generating 
process much easier. Also, through the Internet, users 
can download a large number of free 3D models from 
all over the world. All these lead to the necessity of a 
3D model retrieval system. Content-based 3D shape 
retrieval for broad domains like World Wide Web has 
recently gained considerable attention in the Com-
puter Graphics community (Zhang et al., 2001; Pat-
rick, 2004). One of the main challenges in this context 
is the mapping of 3D object into compact canonical 
representations referred to as descriptor or feature 
vector, which serve as search keys during the retrieval 
process. The descriptor decisively influences the per-
formance of the search engine in terms of computa-
tional efficiency and relevance of the results. In this 
paper, we propose an improved method to extract the 
feature vector of the 3D model based on multi-level 

spherical moments, with experiments showing that 
this method can distinguish well different models and 
yield comparatively perfect performance.  

The outline of the rest of this paper is as follows. 
In the next section we review relevant previous work. 
In Section 3 we describe a method for descriptor 
extraction based on multi-level spherical moments. In 
Section 4 experiments and results are presented in 
detail. Finally we give the conclusions and describe 
future work in Section 5.  
 
 
PREVIOUS WORK 
 

Paquet et al.(1997; 1998) made the initial re-
search and got remarkable results in the 1990s. From 
then on, many researches have been carried out and 
various approaches have been proposed. In general, 
they can be divided into four types: shape-based re-
trieval, topology-based retrieval, image-based re-
trieval and surface-attributes-based retrieval. Ankerst 
et al.(1999) directly syncopated 3D model with some 
mode, then calculated the proportions of points 
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number of each unit to that of the whole model, thus 
shape histograms were formed. In his paper, Anderst 
introduced three methods to syncopate 3D models: 
shell model, sector model and spider Web model. So 
we can retrieve model through comparison of shape 
histograms. Suzuki et al.(2000) put forward a dif-
ferent method called point density to syncopate 3D 
models. This method did not form feature vector 
simply by syncopated units but classified the synco-
pated units, so the feature vector dimension and 
computational quantity decreased greatly. Osada et 
al.(2002) investigated a 3D model retrieval system 
based on shape distributions. The main idea was to 
calculate and get large numbers of statistical data 
which could serve as shape distributions to describe 
the features of models. The key step was to define the 
functions which could describe the models. He de-
fined five simple and easy-to-compute shape func-
tions: A3, D1, D2, D3 and D4. Because this method 
was based on a large number of statistical data, it was 
robust to noise, resampling and predigestion. Vranic 
and Saupe (2001a)’s method first voxelized the 3D 
model, then applied 3D Fourier transform on these 
voxelizations to decompose the model into different 
frequencies, finally chose certain number of coeffi-
cients of frequency as this model’s feature vector. 
Another approach  investigated by Vranic and Saupe 
(2001b; 2002) was spherical harmonics analysis, also 
called 2D Fourier transform on unitary sphere. This 
method needed sampling and harmonics transform, so 
the process of feature extraction was slow. Chen and 
Ouhyoung (2002a) developed a Web-based 3D model 
retrieval system in which a topology method using 
Reeb graph (Hilaga et al., 2001) was introduced 
which can be constructed to different precisions, so 
that in this way multi-resolution retrieval was avail-
able. There are also many researches on image-based 
retrieval (Jobst, 2000; Min et al., 2002; Chen et al., 
2003) of which Chen at Taiwan University made 
outstanding contribution. In Chen et al.(2003)’s sys-
tem, several images taken from different views 
around, are used to represent a 3D model, which are 
then transformed into descriptors, after which the 
matching of any two 3D models is achieved by 
matching two groups of 2D images by those de-
scriptors. One hundred images belonging to 10 light-
fields for each model are required, with the calcula-
tion time being enormous.   

OUR METHOD 
 

The main idea of our method is to sample at the 
3D model surfaces and calculate the moments of the 
sampling points, which together server as the feature 
vector of the model. The more sampling points we 
take, the more accurately the points could approach 
the original model. A common method is that the 3D 
model is placed in a spherical coordinate frame with a 
sampling step following. When sampling, similar to 
the ray casting method, a collection of rays are pro-
jected in the directions per longitude and latitude: 

π 2π( , ),  =( +0.5) ,  =( +0.5)i j i ji j
N N

θ ϕ θ ϕ  (i, j=0, 1, …, 
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3, …) as the (p, q, r) (0≤p+q+r≤m) rank moment 
while r(uij) is the distance between the sampling point 
uij and the center of the model. As m increased from 2 
to 6 the dimension of the corresponding feature vec-
tors increased from 10 to 20, 35, 56 and 84 (the di-
mension was (m+1)(m+2)(m+3)/6). But using this 
kind of moment will yield only imperfect perform-
ance, mainly because if m was too small, the feature 
vector was not discriminating enough for the retrieval; 
on the other hand if m was too big, the feature vector 
was unsteady since any tiny variation on the surface 
would make the high-level moments change drasti-
cally. Another problem was that the sampling was not 
uniform which will be explained in the following 
subsection.  

The main aim of the paper is to solve the two 
problems mentioned above. For the first problem, we 
can adopt multi-level moments instead of a single 
series of moments. The main idea is to map the 3D 
model onto several concentric spheres and then to 
calculate the moments of all the spherical surfaces. 
The advantage is obvious: To avoid high-level mo-
ments while having enough number of moments to 
represent the feature of 3D model. As for the second 
problem, we change the sampling method and make 
the sampling points distribute more uniformly. In a 
later subsection, we will expatiate it in detail. 
 
Sampling on the spherical surface 

As mentioned above, the sampling points ob-
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tained by spherical coordinate are in fact not uniform 
at all, as shown in Fig.1a, the points of intersection are 
just the sampling points. As we know that regular 
polyhedra are uniform and have facets which are all 
of one kind of regular polygon and thus better tes-
sellations may be found by projecting regular poly-
hedra onto the unit sphere after bringing their center 
to the center of the sphere. A division obtained by 
projecting a regular polyhedron has the desirable 
property that the resulting cells all have the same 
shapes and areas (Horn, 1984). Also, all cells have the 
same geometric relationship to their neighbors. So if 
we choose the centers of the cells as the sampling 
points, their distributing will satisfy the requirement of 
uniformity. Unfortunately there are only five regular 
polyhedra: tetrahedron, hexahedron, octahedron, do-
decahedron, and icosahedron. And even the icosahe-
dron, with twenty triangular cells, provides too coarse 
sampling, as shown in Fig.1b. If we desire still finer 
sampling, splitting each facet of a given tessellation 
further into more triangular facets is a possible way. 
For example we can divide the triangular cells into 
four smaller triangles according to the well known 
geodesic dome constructions. Fig.1c is the subdivision 
of an icosahedron. In this case the icosahedron has 
been subdivided twice, so now it has 20×4×4=320 
spherical triangles, that is to say we can get 320 sam-
pling points by this means, which is adequate to rep-
resent the distributing situation of one radius. 

 
 
 
 
 
 
 
 
 
 
 
 
 
To see the distributing uniformity of these sam-

pling points, we must compute the maximal differ-
ence among the areas of these triangular facets. Ob-
viously, they are all spherical equilateral triangles. 
The calculation obtained is simplified.  

Fig.2a is an observation of the icosahedron with 

radius of its circumcircle being 1 using the mode of 
parallel projection, and Fig.2b shows the coordinates 
of its twelve vertices. As all the cells are the same and 
have the same geometric relationship to their 
neighbors, we need only choose one cell on the 
spherical surface divided by the icosahedron as an 
example to discuss, as shown in Fig.2c. Obviously, 
the triangles with their serial number being respec-
tively 1, 2, 3 have the same areas, so we just calculate 
the difference between them and the 4th triangle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2a shows that the 1st, 2nd, 3rd vertex can be 

used to construct a spherical triangle on its circum-
circle, so we can suppose that the spherical triangle in 
Fig.2c is just the one. So the coordinates of this 
spherical triangle are respectively (−0.934172, 
0.178411, 0), (−0.57735, −0.755761, 0) and 
(−0.467086, −0.178411, −0.809017). We can easily 
calculate the coordinates of the 4th triangle shown in 
Fig.2c, which are respectively (−0.934172, 
−0.178411, 0), (−0.866025, 0, 0.5) and (−0.645641, 
−0.577266, −0.499927). The area of the 4th spherical 
triangle in Fig.2c is then 0.159 and that of the other 
three is all 0.157. There is only 1.27% difference 
between them and if we split it once more the dif-
ference will be slighter, so we can regard them as 
equal. Since the sampling points are the centers of 
these triangles, we can assume that the disturbing is 
approximately uniform. 
 
Mapping the 3D model onto a series of concentric 
spheres 

From Subsection 3.1, we get an approximately 
uniform sampling, so that we can now see the surface 
of the sphere as a spherical image with each triangle 
being a pixel. The next step is to map the 3D model 

Fig.1  Sampling on the spherical surface. (a) Sampling 
based on spherical coordinate; (b) Tessellations of the 
sphere using regular icosahedron; (c) Tessellations of 
the sphere using a frequency four geodesic tessellation 
based on the icosahedrons 

(a) (b) (c) 

Fig.2  (a) Icosahedron; (b) Coordinates of icosahe-
dron’s twelve vertices; (c) Divide the triangular cells 
into four smaller triangles according to the well known 
geodesic dome constructions 

(a) (b) (c) 

−0.934172 0.178411 0 
−0.577350 −0.755761 0 
−0.467086 −0.178411 0.809017 
−0.467086 −0.178411 −0.809017 
−0.288675 0.755761 0.5      
−0.288675 0.755761 −0.5      

0.288675 −0.755761 0.5      
0.288675 −0.755761 −0.5      
0.467086 0.178411 0.809017 
0.467086 0.178411 −0.809017 
0.577350 0.755761 0 
0.934172 −0.178411 0 
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onto a series of concentric spheres. A simple method 
is to directly calculate the intersection between the 3D 
model and the concentric spheres, that is to say if a 
point on the surface of the 3D model falls into the 
trigonal pixel, the value of this pixel is 1, otherwise 0. 
But this method has two shortcomings: first, the cal-
culation is very complicated as the surface of the 3D 
model is irregular; second, only the triangles on the 
3D model which intersect these spheres have effect on 
the resulting spherical images, an inevitable conse-
quence of which is that this method may not be robust 
when the model is remeshed or in difference LOD. To 
overcome these two shortcomings, we adopt the fol-
lowing three steps to achieve the aim: (1) Pose nor-
malization; (2) Voxelization; (3) Mapping.  

1. Pose normalization 
3D models have arbitrary position, orientation 

and scaling in 3D space. In order to capture its in-
variant feature, a feasible scheme is to place the 
model in a canonical coordinate frame to get the pose 
normalized. Then, if a model is scaled, translated or 
rotated, the placing into the canonical frame would be 
still the same which makes the moments comparable 
since the extracted feature is not invariant to position, 
orientation and scaling. 

The pose normalization step is done through 
PCA (Principal Component Analysis) also known as 
Karhunen-Loeve transform (Chen and Chen, 2002; 
Chen and Ouhyoung, 2002b; Tangelder and Velt-
kamp, 2003). Let P={P1, P2, …, Pn} (Pi=(xi, yi,  
zi)∈ú3, i=1,2,…,n) be the set of vertices on the sur-
face of this model. The goal of pose normalization is 
to find an affine map: τ: ú3→ú3 in such a way that a 
model of any translation, rotation and scaling can be 
put normatively by this transformation. The transla-
tion invariance is accomplished by finding the bary-
center of the model: 
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        So the point Pc(xc, yc, zc) is the center of this 
model, we move Pc to coordinate origin. Thus for 
each point Pi=(xi, yi, zi)∈P, a corresponding trans-
formation c c c( , , )i i i ix x y y z z′= − − −P  is performed. 
Based on the transformation we define points set 

1 2{ , ,  ...,  }.nP ′ ′′ ′= P P P  Then we calculate the covari-

ance matrix C: 
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This step must be done after the translation of Pc 

to coordinate origin. Obviously the matrix C is a real 
symmetric one, therefore its eigenvalues are 
non-negative real numbers. Then we sort the eigen-
values in non-increasing order and find the corre-
sponding eigenvectors. The eigenvectors are scaled to 
Euclidean unit length and we form the rotation matrix 
R which has the scaled eigenvectors as rows. We 
rotate all points in P′ and a new point set is formed: 

 

{ | , ,  0,  ...,  ).i i i iP P i n′′ ′′ ′ ′′′ ′= = ∈ =P P P R P  
 

When this step has been done, the model is ro-
tated so that the x-axis maps to the eigenvector with 
the biggest eigenvalue, the y-axis maps to the eigen-
vector with the second biggest eigenvalue and the 
z-axis maps to the eigenvector with the smallest ei-
genvalue. 

But this method often does not provide robust 
normalization in many cases. We must notice that the 
distribution of points may not be uniform, for exam-
ple, a large quadrangle in the surface of a model can 
be decomposed into two triangles and four points 
while some fine detail needs hundreds of triangles and 
points. Thus the result of pose normalization will not 
be perfect. We can easily modify the method de-
scribed above. A feasible way is that the points set P 
is taken uniformly from the surface of a model with 
Montecarlo arithmetic (Osada et al., 2001) instead of 
the original set of vertices. Fig.3 is an example of a 
3D model before and after PCA. 

2. Voxelization 
After the model has been pose-normalized, the 

following step is to rasterize its surface into a 
2N×2N×2N voxels grid, assigning a voxel a value of 1 
if it was within one voxel of a point on the boundary, 
and a value of 0 otherwise. The model is now com-
posed of regular voxels. At the same time it is aligned  
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so that its center of mass is at the center of the grid, 
and so that its bounding sphere has radius N, as shown 
in Fig.4. 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

 
3. Mapping 
Now we can use N concentric spheres with their 

radii being from 1 to N to syncopate the voxelized 3D 
model, as shown in Fig.5. If one of these voxels in-
tersects a trigonal pixel described above on these 
concentric spheres, then the value of this pixel is 1, 
otherwise 0. Thus N spherical images are formed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The advantage of this method is two fold. First, 

the computation is reduced as the trigonal pixels and 
the cubic voxels are all regular, the process of inter-
section is greatly simplified. Second, the voxels have 
certain volume, so slight change on 3D model will not 

result in great difference on the spherical images, that 
is to say, this method is more robust than the direct 
one as described above. Fig.6 shows three spherical 
images with different radii. 
 
 
 
 
 
 
 
 
 
 
 
 
Feature extraction  

Now that we have obtained N spherical images, 
the next step is to calculate their moments and extract 
the feature vectors based on these moments. For each 
image, we calculate the moments as following: 

1

0

p q rK
pqr i i i i

p q r
i

gray x y zsm
R

−

+ +
=

= ∑  (0≤p+q+r≤m). K is the 

count of trigonal pixels on a sphere image, gray is the 
value of pixels, (xi, yi, zi) is the center of the ith pixel 
while R is the radius of this sphere. The denominator 
Rp+q+r makes the moments independent from radius so 
all spherical images with different radii play a coequal 
role. Then for each sphere there are (m+1)(m+2) 
×(m+3)/6 moments, so we can construct a feature 
vector of the model which has N(m+1)(m+2)(m+3)/6 
dimensions by using moments of all the spheres. The 
similarity of the two models can be realized by com-
paring the feature vectors using Euclidean distance. 

Since different spherical moments represent dif-
ferent physical meanings, they have different scopes 
of values and cannot be compared directly. We must 
place these moments at the same status so that they 
play the same roles in comparison to feature vectors. 
To achieve this aim, a method based on Gauss uniti-
zation is used. The steps are as follows:  

(1) Calculate the average value smaver of the 
N(m+1)(m+2)(m+3)/6 spherical moments; 

(2) Calculate the covariance σ of the N(m+1) 
×(m+2)(m+3)/6 spherical moments; 

(3) Then we use aver 1 2
3

ism sm
σ
− + 

 
 to replace 

smi itself.  

Fig.4  Rasterization of the 3D model 

(a) (b) (c) 

Fig.6  Spherical images N=32. (a) R=5; (b) R=10; (c) R=15 

Fig.5  Syncopation of 3D model 

Fig.3  An effect of PCA. (a) Original model; (b) Uni-
form sampling; (c) Model after PCA 

(a) (b) (c) 
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Provided that these spherical moments accord 
with Gauss distribution, then for each spherical mo-
ment smi (i=0, 1, …, N(m+1)(m+2)(m+3)/6−1), the 
probability that the moment falls into the range of [0,1] 
is over 99%.  
 
 
EXPERIMENTS AND RESULT 
 

According to the method described in Section 3, 
we have developed a 3D mechanical parts retrieval 
system using Visual C++ on a PC with Pentium IV 
1.8 G CPU and Windows 2000 Server Operation 
System consisting of two parts: off-line process 
module and on-line retrieval process module, as 
shown in Fig.7. In the off-line process, features of 3D 
models are extracted and stored in database. To effi-
ciently search a large collection online, an indexing 
data structure and searching algorithm is available 
with B+ Tree. In the on-line process, users select a 3D 
part as the query mode, then system engine compares 
the distances between the query and the models in the 
parts library, so that finally several models most 
similar to the input one are returned. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the experiments, we have collected 965 

models from Web in total with 2341 points and 3981 
triangles per model on average. The models are not all 
well defined trigonal meshes, many of them contain 
cracks, self-intersections, missing polygons, etc. To 
fairly test the performance, we use the Princeton 
Shape Benchmark (PSB), which is a defacto criterion  

 

of 3D model database and is introduced in (Shilane et 
al., 2004) in detail, to test our system. It is a collection 
of 1814 models which are manually divided into 161 
classes, each containing at least 4 models. The per-
formance can be decided by two measures: precision 
and recall. “precision” measures the system ability to 
retrieve only models that are relevant while “recall” 
measures the system ability to retrieve all models that 
are relevant. Let C be the number of relevant models 
in the database, containing the number of models of 
the class to which the query model belongs. Let N be 
the number of relevant models that are actually re-
trieved in the top A retrievals. Then, recall and pre-
cision are defined as follows: precision=N/A, re-
call=N/C.  

In this method, we need choose two appropriate 
parameters: the dimension of voxel grid N and the 
upper limit of moment rank m. 

As for N, if N is small, the partition is too coarse 
and large distortion appears; on the other hand, if N is 
big, the computation is large though the voxelized 
model can commendably approximate the original 
model. The same discussion is applicable to m, since 
the number of moments belonging to one spherical 
image accords with O(m3) complexity, so m cannot be 
too big, as at the same time high-rank moments are 
unstable. In our experiments we tested 12 cases, in 
which N={16, 24, 32, 40} and m={1, 2, 3}, thus the 
dimension of the feature vector ranges from 64 to 800. 
For each case, we tested various kinds of models 
including animals, plants, cars, characters, and so on; 
from each kind we choose ten models as the query 
models and test the results. Results show that when 
N=32 and m=2 the arithmetic yields optimal per-
formance, and in this case the dimension of the fea-
ture vector is 320, and Fig.8 is the corresponding 
Precision-Recall (P-R) plot. Fig.9 shows a compara-
tively successful retrieval of dogfish, and the first 
model is the input one.  

To test the time for feature extraction, we use 
mesh simplification tool QSlim developed by Garland 
and Shaffer (2002), to make the 3D model composed 
of about 1000, 5000 and 9000 triangles respectively 
while remaining the basal shape. We tested 100 
models in the database, with the average time con-
sumed being presented in Table 1.  
 

User  

Feature  
vectors library 

Feature  
vector 

Feature extraction 
3D model 

Models  
library 

Off-line process 
On-line process 

Feature  
vector 

Feature extraction Distance comparison 

Query  
result 

Input model 

Fig.7  Architecture of 3D model retrieval system 
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CONCLUSION AND FUTURE WORK 
 

In this paper, we propose a multi-level spherical 
moment method for 3D model retrieval. For more 
uniform sampling, we constructed a segmentation of 
spherical surface based on icosahedron. Then we 
voxelized the 3D model to make the process of map-
ping easier and to improve its robustness. Experi-
ments showed that our method yields fairish per-
formance while costing acceptable time.  

As for further work, we plan to orderly organize 
and delaminate the models library to store similar 

models in the same categories, so the system can 
quickly eliminate the obvious dissimilar models and 
accelerate the retrieval rate. We consider using Arti-
ficial Neural Network to achieve this so that each 
input model can automatically find its category and be 
stored in corresponding position.  
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Fig.8  P-R plot when N=32 and m=2 
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