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Abstract:    Computing the distance between two convex polygons is often a basic step to the algorithms of collision detection and 
path planning. Now, the lowest time complexity algorithm takes O(logm+logn) time to compute the minimum distance between 
two disjoint convex polygons P and Q, where n and m are the number of the polygons’ edges respectively. This paper discusses the 
location relations of outer Voronoi diagrams of two disjoint convex polygons P and Q, and presents a new O(logm+logn) algo-
rithm to compute the minimum distance between P and Q. The algorithm is simple and easy to implement, and does not need any 
preprocessing and extra data structures. 
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INTRODUCTION 
 

To compute the minimum distance between two 
convex polygons or polyhedrons is often a main step 
of many applications, such as collision detection 
(Choi et al., 2006; Li et al., 2003), path planning. In 
order to reduce the time complexity of the algorithm 
as much as possible, the convex property must be 
applied fully. 

Edelsbrunner (1985) proposed an algorithm for 
computing the minimum distance between two dis-
joint convex polygons. The algorithm takes 
O(logm+logn) time, and it is the lowest time com-
plexity algorithm existing so far. Dobkin and 
Kirkpatrick (1990) took advantage of hierarchical 
representation of a convex polyhedron to obtain the 
minimum distance between two convex polyhedrons 
in O(logmlogn) time and got the minimum distance 
between two convex polygons in O(logm+logn) time. 

Whereas, this algorithm needs O(m+n) preprocessing 
time to establish the hierarchical representation of 
convex polygon or polyhedron, and is complex to 
implement. 

Now collision detection using Voronoi diagram 
has become one of the most effective methods. Vo-
ronoi diagram is one of the most important geomet-
rical structures and research topics in discrete com-
puting geometry, which divides the space into several 
regions called Voronoi region (VOR) according to the 
nearest attribute of given objects such as points, line 
segments, circular arcs, and so on. The outer Voronoi 
diagram of a polygon is the union of all Voronoi re-
gions outside the polygon (Fig.1b). The outer Vo-
ronoi diagram of a convex polygon is very special: 
each Voronoi edge is perpendicular to one of the 
convex polygon edges (Fig.1a). 

Lin and Canny (1991) first calculated the 
minimum distance between two disjoint convex 
polyhedrons using adjacent properties of outer Vo-
ronoi diagram of convex polyhedrons. Their method 
is a feature-based method and well suited to repetitive 
distance computing as the polyhedrons move in a 
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sequence of small, discrete steps. Once initialized, the 
excepted running time of the algorithm is constant. 
Some improvements were made later (Lin et al., 1994; 
Cohen et al., 1995; Ponamgi et al., 1997; Hudson et 
al., 1997; Mirtich, 1998), such as stability, which 
makes the method become one of the most effective 
methods for solving the collision detection problem at 
the present time. However, the time complexity of 
this category of algorithms is O(m+n). Guibas et 
al.(2000) combined the ideas of feature-based meth-
ods and hierarchical data structures, and presented an 
algorithm for computing the minimum distance be-
tween two disjoint convex polyhedrons, which takes 
O(logm+logn) time. However, just as Dobkin and 
Kirkpatrick (1990)’s method, it costs O(m+n) pre-
processing time to establish the hierarchical repre-
sentation of a convex polyhedron or polygon. 

This paper analyzes the properties of outer Vo-
ronoi diagram of two disjoint convex polygons and 
their mutual location relation, and presents a new 
algorithm for computing the minimum distance be-
tween two disjoint convex polygons, which can be 
completed in O(logm+logn) time. The algorithm is 
simple and easy to implement, and does not need any 
preprocessing and extra data structures. 
 
 
ALGORITHM DESCRIPTION 
 

Let P and Q be disjoint convex polygons, whose 
vertex or edge is called object in the paper. The ver-
tices of P are p1, p2, …, pn in anticlockwise direction, 
and the vertices of Q are q1, q2, …, qm in anticlockwise 
direction, where n and m are the number of vertices  
of P and Q respectively. If suffix is beyond n or m, 
compute the module. C(p′,p″) indicates the polygon 
chain between two objects p′ and p″ in anticlockwise 
direction. 

Definition 1    Assume p∈P and q∈Q. If the distance 
between p and q is the minimum distance between P 
and Q, then <p,q> is called a Minimum Distance 
Object Pair (MDOP) of P and Q. 

The MDOP <p,q> of P and Q has three types: 
(1) <vertex, vertex> (Fig.2a); 
(2) <vertex, edge> (Fig.2b); 
(3) <edge, edge>: p and q are edges, and p//q. 

This case must contain the cases of <vertex, vertex> 
or <vertex, edge> (Figs.2c∼2f). Hence, we just take 
the first and second types into consideration. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If p and q are vertices, the distance between them 

is their Euclid distance. If p is a vertex and q is an 
edge, the line perpendicular to q passing through p 
intersects with the edge q at q*, the distance between 
the vertex p and q* is the distance between p and q. p 
and q* are called realizing point pair. Similarly, we 
can define the distance between two parallel edges p 
and q, but the number of realizing point pair (p*, q*) is 
infinite. 

Our minimum distance algorithm is mainly for 
finding the MDOP of P and Q. The first step of the 
algorithm is to decide the initial search ranges con-
taining the MDOP by binary search technique, and 

p q 

p q p q 

p q p q 

p q 

(a) (b) (c) 

(d) (e) (f) 

Fig.2  Three types of MDOP <p,q> 
(a) p, q are vertices; (b) p is vertex, q is edge; p, q are edges 
in (c)∼(f); (c) contains <vertex, edge>; (d) contains <ver-
tex, vertex> and <vertex, edge>; (e) contains <vertex, 
vertex> and <vertex, edge>; (f) contains <vertex, vertex> 

(a) (b) 

Fig.1  Polygon (solid line) and its outer Voronoi dia-
gram (dot line). (a) Convex polygon; (b) Simple polygon 
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then shorten the search ranges gradually also using 
binary search technique till an MDOP is found. 

According to the example shown in Fig.3, the 
process of finding an MDOP <p,q> is described 
briefly as follows: 

(1) First compute the initial search ranges (two 
polygon chains) P′=C(p′,p″) and Q′=C(q″,q′), where 
P′ and Q′ include the objects p and q of the MDOP 
respectively. 

(2) Find the middle vertices pa and pb on P′ and 
Q′ respectively, and halve P′ and Q′ into sub-polygon 

chains: 1P′′=C(p′, pa) and 2P ′′ =C(pa, p″), 1Q ′′=C(qb, q′) 

and 2Q ′′=C(q″, qb); 
(3) According to the location relation of pa, qb 

and their Voronoi regions, we can determine at least 

one sub-chain among 1 ,P′′ 2 ,P ′′ 1Q ′′ and 2 ,Q ′′ which 
does not contain any object of MDOP, and discard it. 
The searching procedure is carried out the remaining 
chains that contain the MDOP objects. 

(4) Repeat the processes above until the MDOP 
is found. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ANALYSIS OF LOCATION RELATIONS 
 

The key of the algorithm is how to compute the 
location relation of pa and qb. In this section, we first 
give some related notions, analyze some related 
properties, and then introduce the method of com-
puting the location relation of pa and qb. 

 
Basic notions and properties 
Definition 2    For an MDOP <p,q> of P and Q, let p* 

and q* be the realizing point pair of minimum distance 
between p and q, then the perpendicular bisector of 
the line segment p*q* must be a separate line of P and 
Q, where P is on its left and Q is on its right. This 
separate line is called median line l (Fig.4). 
 
 
 
 
 
 
 
 
 
 
 
 

The median line l defined here is used to analyze 
the properties of outer Voronoi diagrams of P and Q. 
In fact, it does not need to be computed in the algo-
rithm of finding the MDOP of P and Q. 

Suppose that pe and ps are the highest and lowest 
vertices in the direction l (O’Rourke, 1994). P1 is the 
chain formed by the objects from ps to pe on P. P1 is 
monotone with respect to the median line l. Similarly, 
the objects from the highest vertex qs in the direction l 
to the lowest vertex qe on Q form a monotone chain Q1. 
It is obvious that P1 and Q1 contain the MDOP objects 
of P and Q (Fig.4). 

P1 is divided into three parts by p of MDOP <p, 
q>: the upper part Pu, the middle part Pm={p} and the 
lower part Pd. Similarly, Q1 can be divided by q to Qu, 
Qm={q}, and Qd. 

To describe it conveniently, for any vertex object 
o=pi on P, let VOR(o) denote the Voronoi region of o, 
and VE(o)1, VE(o)2 denote its two Voronoi edges 
respectively, where VE(o)1 is the ray from pi perpen-
dicular to pi−1pi, VE(o)2 is another ray from pi per-
pendicular to pipi+1. For any edge object o=pi−1pi, 
VE(o)1 and VE(o)2 denote its two Voronoi edges, 
where VE(o)1 and VE(o)2  are the rays perpendicular to 
pi−1pi from pi−1 and pi respectively (Fig.5). Let lu, li1, 
li2 and vu

* respectively denote unit vectors of l, VE(o)1, 
VE(o)2 and v*=q*−p*. “A×B>0” denotes that the pro-
jection of cross product of A and B in the direction of 
Z is more than zero. 
Lemma 1    If p of MDOP <p,q> is a vertex object, 
then for any vertex object o∈P1, there are (Fig.5a):  

    Fig.4  Median line l of P and Q 
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Fig.3  Example of two disjoint convex polygons 
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(1) If o∈Pu, then  
li2⋅lu>li1⋅lu>0 and *

uv ×li2> *
uv ×li1>0; 

(2) If o∈Pd, then  
li1⋅lu<li2⋅lu<0 and *

uv ×li1< *
uv ×li2<0; 

(3) If o=p∈Pm, then  
         li1⋅lu<0 and li2⋅lu>0, *

uv ×li1<0 and *
uv ×li2>0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Lemma 2    If p of MDOP <p,q> is an edge object, 
then for any vertex object o∈P1, there are (Fig.5b):  

(1) If o∈Pu and o is not the end-point of p, then  
li2⋅lu>li1⋅lu>0 and *

uv ×li2> *
uv ×li1>0; 

(2) If o∈Pd and o is not the start-point of p, then 

li1⋅lu<li2⋅lu<0 and *
uv ×li1< *

uv ×li2<0; 
(3) If o is the start-point of p, then 

         li1⋅lu<0 and li2⋅lu=0, *
uv ×li1<0 and *

uv ×li2=0; 
(4) If o is the end-point of p, then 

         li1⋅lu=0 and li2⋅lu>0, *
uv ×li1=0 and *

uv ×li2>0. 

 
Terminate condition of searching process 

In the following, Theorem 1 shows the method 
of deciding whether <p,q> is an MDOP of P and Q, 
which gives a terminate condition of searching the 
MDOP (Lin and Canny, 1991; Mirtich, 1998). 
Theorem 1    P and Q are two convex polygons. (p*, 
q*) is the realizing point pair, p*∈p∈P and q*∈q∈Q. 
p*∈VOR(q) and q*∈VOR(p), if and only if <p,q> is 
the MDOP of P and Q. 
 
Compute new search range 

Let two vertex objects pa∈P1, qb∈Q1 are the 
middle vertices of the current search range P′ and Q′, 

and divide P′, Q′ into equal sub-polygon chains 1P′′= 

C(p′, pa), 2P ′′ =C(pa, p″) and 1Q ′′=C(qb, q′), 2Q ′′=C(q″,  
qb). If we can make sure that pa∈Pu, Pm or Pd, or 
qb∈Qu, Qm or Qd, the new search range can be de-
termined as follows: 

(1) If pa∈Pm and qb∈Qm (Fig.6a), then <pa,qb> is 
an MDOP <p,q> (by Theorem 1); 

(2) If pa∈Pm and qb∉Qm (Fig.6b), then pa is the 
object of MDOP <p,q>. We search the object q in Q′ 
by dividing Q′ into two sub-polygon chains by its 
middle vertex qb repeatedly, such that p=pa∈VOR(q) 
and q*∈VOR(p), where (p*,q*) is realizing point pair. 

(3) If qb∈Qm and pa∉Pm (Fig.6c), then qb is one 
object of MDOP <p,q>, we also search the object p in 
P′ by binary search technique, such that p*∈VOR(q) 
and q∈VOR(p); 

(4) For the other cases (Figs.6d~6g), we must 
determine the half chains Pu or Pd and Qu or Qd, to 
which pa and qb belong respectively. If pa∈Pu (or 
pa∈Pd), then for the next search P1 is taken place by 
Pd (or Pu). The replacement of Q1 is determined 
similarly. 

In order to describe conveniently, we define that 
qb is on the right side of VOR(pa) when qb is on the 
right of VE(pa)1; qb is on the left of VOR(pa)  when  qb 
is on  the  left  of  VE(pa)2;  qb  is  in  the   interior   of  
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qe 
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VE(pi)1 

VE(pi)2 

(b) 

Fig.5  Relations of Voronoi edges and median line l 
(a) p, q are vertices; (b) p is edge, q is vertex 
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VOR(pa) when qb∈VOR(pa). The relation of pa and 
VOR(qb) can be defined similarly. For example, in 
Fig.7, q4 is on the right of VOR(p2); p2 is on the left of 
VOR(q4) but not on the left of VOR(q3). 

The location relation of objects pa∈P1, qb∈Q1 

and Pu, Pm, Pd, Qu, Qm, Qd can be classified in the 
following cases: 

(1) qb is on the right of VOR(pa), there are three 
cases: 

(1.1) pa is on the left of VOR(qb) (as p2 and q4 in 
Fig.7): We can obtain pa∈Pu, qb∈Qu by Theorem 2. 
Theorem 2    Suppose qb is on the right of VE(pa)1, pa 

is on the left of VE(qb)2, then pa∈Pu, qb∈Qu. 
Proof    Suppose pa∉Pu. Since qb  is  on  the  right  of 
VE(pa)1, by Lemma 1 and Lemma 2, we know  p*q*× 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
VE(pa)1≤0 and p*q*×paqb<0, qb is on the right of p*q*,  
namely qb∈Qd. Because p*q*×VE(qb)1<0 and p*q*× 
VE(qb)2<0, we can get that pa is on the right of VE(qb)1 

and VE(qb)2. This contradiction proves pa∈Pu. Simi-
larly, we can prove qb∈Qu. This completes the proof. 

In the following, the proof of Cases 1.2, 2.1, 2.3, 
3.2 and 3.3 is similar to that of Case 1.1. 

(1.2) pa is in the interior of VOR(qb) (as p2 and q3 
in Fig.7): then pa∈Pu, qb∈Qu; 

(1.3) pa is on the right of VOR(qb) (as p2 and q1, 
q2;  p1 and q1 in Fig.7): By Theorem 3, 

If VE(pa)1×VE(qb)1≥0, then pa∈Pu; 
If VE(pa)1×VE(qb)1<0, then qb∈Qd. 

Theorem 3    Suppose qb is on the right of VE(pa)1, pa 

is on the right of VE(qb)1, 
(1) If VE(pa)1×VE(qb)1≥0, then pa∈Pu; 
(2) If VE(pa)1×VE(qb)1<0, then qb∈Qd. 

Proof    (1) Suppose VE(pa)1×VE(qb)1≥0, but pa∉Pu. 
By Lemma 1 and Lemma 2, p*q*×VE(pa)1≤0. Since qb 

is on the right of VE(pa)1 and pa is on the right of 
VE(qb)1, we obtain qb∈Qd, and p*q*×VE(qb)1<0. By 
Lemma 1 and Lemma 2, we have VE(pa)1×VE(qb)1<0. 
This contradicts the theorem condition. Hence, the 
original proposition is true. Similarly, we can prove 
Case 2. 

(2) qb is in the interior of VOR(pa), there are three 
cases: 

(2.1) pa is on the left of VOR(qb) (as p2 and q4, p* 
and q3 in Fig.8): Then pa∈Pu or pa∈Pm, qb∈Qu; 

(2.2) pa is in the interior of VOR(qb) (as p* and q* 
in Fig.8): We can obtain pa∈Pm, qb∈Qm by Theorem 1. 

(2.3) pa is on the right of VOR(qb) (as p1 and q1, 
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q′  

q″ 

(pa )  (qb )  
q p 

(pa )  
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p′  
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q p 
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Fig.6  Location relations of pa and pb about pq 
(a) pa∈Pm and qb∈Qm; (b) pa∈Pm and qb∉Qm; (c) qb∈Qm and
pa∉Pm; (d) pa∈Pu and qb∈Qu; (e) pa∈Pd and qb∈Qd; (f) pa∈Pu
and qb∈Qd; (g) pa∈Pd and qb∈Qu 
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Fig.7  Case 1: Location relations of pa and qb 
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p* and q2 in Fig.8): there are  pa∈Pd or pa∈Pm, qb∈Qd; 
(3) qb is on the left of VOR(pa), there are three 

cases: 
(3.1) pa is on the left of VOR(qb) (as p2 and q5; p1 

and q3, q5 in Fig.9): 
If VE(qb)2×VE(pa)2>0, then pa∈Pd. 
If VE(qb)2×VE(pa)2≤0, then qb∈Qu. 
The proof of Case 3.1 is similar to that of Case 

1.3. 
(3.2) pa is in the interior of VOR(qb) (as p1 and q2 

in Fig.9): We can obtain pa∈Pd, qb∈Qd; 
(3.3) pa is on the right of VOR(qb) (as p1 and q1 in 

Fig.9): We can obtain pa∈Pd, qb∈Qd. 
Table 1 summarizes the rules of determining the 

location relation of pa∈P1 and qb∈Q1. 
 
 
FIND INITIAL SEARCHING RANGES 
 

In this section, a method of computing the initial 
search ranges P′ and Q′ is discussed. The method is to 
find the end points of P′ and Q′, such that P′⊆P1, 
Q′⊆Q1, and p∈P′, q∈Q′, where <p,q> is the MDOP 
of P and Q. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

According to Fig.10, the idea of the method is 
briefly described as follows:  

We first find two vertices p1∈P and q1∈Q by 
binary search technique, such that q1∈VOR(pi) or 
q1∈VOR(pipi+1), and p1∈VOR(qj) or p1∈VOR(qjqj+1), 
where 1≤i≤n and 1≤j≤m. On the another side of p*q* 
find p2 and q2 such that p2∈VOR(qr) or p2∈ 
VOR(qrqr+1), and q2∈VOR(pk) or VOR(pkpk+1), where 
1≤k≤n and 1≤r≤m. We obtain the initial searching 
ranges P′=C(p1, p2), Q′=C(q2, q1) or P′=C(p2, p1),  
Q′=C(q1, q2). 

The steps of the method are briefly described as 
follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9  Case 3: Location relations of pa and qb 
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Fig.10  Find initial ranges Fig.8  Case 2: Location relations of pa and qb 
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Table 1  The rules of determining the location relation of pa∈P1 and qb∈q1 
Relation of qa and VOR(pb) Relation of qb and VOR(pa) Left Inner Right 

Right pa∈Pu, qb∈Qu pa∈Pu, qb∈Qu pa∈Pu or qb∈Qd 
Inner pa∈Pu or pa∈Pm, qb∈Qu pa∈Pm, qb∈Qm pa∈Pd or pa∈Pm, qb∈Qd 
Left pa∈Pd or qb∈Qu pa∈Pd, qb∈Qd pa∈Pd, qb∈Qd 
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(1) Get any vertex s∈P, search o1 (o1=qj or qjqj+1) 
in Q by binary search technique, where s∈VOR(o1). 
And we let q1=qj. 

(2) Search o2 (o2=pi or pipi+1) in P by binary 
search technique, where q1∈VOR(o2). Let p1=pi. 

(3) Decide p1 and q1 are on which side of p*q* (i.e. 
decide p1∈Pu, Pm or Pd, q1∈Qu, Qm or Qd): 

Let 
 

2

1 2 2

, if is a vertex object;
projection of on , if is an edge object.

ip o
p

q o o


= 


 

 
Because q1∈VOR(o2), we have 

(i) If p ∈VOR(q1), by Theorem 1, o2 and q1 is an 
MDOP; 

(ii) If p  is on the left of VE(q1)1 and VE(q1)2, by 
Lemma 1 and Lemma 2, p1∈Pu or Pm, q1∈Qu or Qm; 

(iii) If p  is on the right of VE(q1)1 and VE(q1)2, 
by Lemma 1and Lemma 2, p1∈Pd or Pm, q1∈Qd or 
Qm. 

(iv) For the remaining cases, compute the inter-
section point a of VE(q1)1 and VE(p1)1, let t1 and s1 be 
the relevant parameters of a on VE(q1)1 and VE(p1)1 
respectively; and compute the intersection point b of 
VE(q1)2 and VE(p1)1, let t2 and s2 be the relevant pa-
rameters of b on VE(q1)2 and VE(p1)1 respectively. 

If (t2<0 and s2>0), and (t1>0 and s1>0 and s1>s2) 
or (t1<0 and s1<0) or VE(q1)1//VE(p1)1, then we can 
easily prove that p1∈Pu or Pm, q1∈Qu or Qm; or else, 
p1∈Pd or Pm, q1∈Qd or Qm. 

(4) If q1∈Qm, q2=q1; if q1∈Qu, we find q2 in Q by 
binary search technique, such that q2 is on the left of 
VE(q1)2, and there exists a line l1, that l1//VE(q1)2, and 
q2 is on l1, and Q is on the right of l1. It can be proved 
that q2∈Qd or q2∈Qm (for example, in Fig.11, 
l1//VE(q1)2, l2//VE(q′′)2, l3//p*q*, q is on l2, q′ is on l3, 
by Lemma 1 and Lemma 2, we can prove that q2 must 
be a vertex of C(q, q′)). 

If q1∈Qd, we can get q2∈Qu or Qm similarly. 
(5) Search o3 (o3=pk or pkpk+1) in P by binary 

search technique, till q2∈VOR(o3). Let p2=pk. 
By Theorem 4, we can get that p2 and q2 are on 

the same side of p*q*. Because p1, q1and p2, q2 are on 
different sides of p*q*, the polygon chains P′ (C(p1, p2) 
or C(p2, p1)) and Q′ (C(q2, q1) or C(q1, q2)) must con-
tain MDOP <p,q>, and can be the initial search 

ranges. 
Theorem 4    Let object o1∈P, vertex object o2∈Q, 
o2∈VOR(o1), i∈{d, u}. If o2∈Qi or Qm, then o1∈Pi or 
Pm. 

By Lemma 1 and Lemma 2, Theorem 4 can be 
proved. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ANALYSIS AND IMPLEMENTATION 
 

In Section 4, binary search technique used in 
Steps 1 and 4 costs O(logm) and O(logn) in Steps 2 
and 5. As Step 3 costs O(1) time, we can get that the 
time complexity of finding initial searching ranges is 
O(logn+logm).  

Since the VOR of a object of a convex polygon 
only has two Voronoi edges, with each Voronoi edge 
being perpendicular to an edge of the polygon, it only 
costs O(1) time to compute a Voronoi edge in the 
algorithm, without any preprocessing and extra data 
structures. And binary search technique has also been 
used to find an MDOP <p,q> in the initial searching 
ranges, hence, the time complexity of the algorithm in 
this paper is O(logn+logm). 

We have implemented our algorithm by 
VC++6.0 under Window XP/2000. Fig.12 gives two 
snapshots of computing the minimum distance be-
tween two disjoint convex polygons by our algorithm. 
Fig.12a shows the initial search ranges C(p1, p2) and 
C(q2, q1), where s is a vertex used to find q1 in Q. pa 

and qb are middle vertices of C(p1, p2) and C(q2, q1). 
Fig.12b shows the MDOP <p,q> that we obtained at 
last. 
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Fig.11  Find q2  

l3 
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CONCLUSION 
 

Computing minimum distance between two 
polygons based on Voronoi diagram is one of the 
basic and efficient methods of collision detection and 
path planning. Now, the lowest time complexity al-
gorithm can compute the minimum distance between 
two disjoint convex polygons P and Q in O(logm+ 
logn) time. The paper presented a new O(logm+logn) 
algorithm for computing the minimum distance be-
tween two disjoint convex polygons P and Q ac-
cording to the location relations of their outer Voronoi 
diagrams. 

The algorithm is simple and easy to implement, 
with no preprocessing and extra data structures being 
needed. It is also one part of our research on Voronoi 
diagram and its applications. 
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Fig.12  Samples of computing the minimum distance
between two disjoint convex polygons by our algo-
rithm. (a) Initial search ranges are obtained; (b)
MDOP <p,q> is found 


