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Abstract:    Minimal surface is extensively employed in many areas. In this paper, we propose a control mesh representation of a 
class of minimal surfaces, called generalized helicoid minimal surfaces, which contain the right helicoid and catenoid as special 
examples. We firstly construct the Bézier-like basis called AHT Bézier basis in the space spanned by {1, t, sint, cost, sinht, cosht}, 
t∈[0,α], α∈[0,5π/2]. Then we propose the control mesh representation of the generalized helicoid using the AHT Bézier basis. 
This kind of representation enables generating the minimal surfaces using the de Casteljau-like algorithm in CAD/CAGD mod-
elling systems. 
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INTRODUCTION 
 

The problem of minimal surface is an old and 
active problem in the field of differential geometry. 
The minimal surface has been employed in many 
areas such as architecture, material science, aviation, 
ship manufacture, biology, crystallogeny, and so on.  

The history of minimal surface began with La-
grange in 1762 (Nitsche, 1989). Many literature on 
the minimal surface exist in the last two hundred 
years (Nitsche, 1989; Osserman, 1986), but few on 
the minimal surface from the point view of CAGD. 
Jin and Wang (1999) introduced the minimal surface 
into the field of CAGD. They proposed the geometric 
construction of Enneper’s minimal surface, which is 
the unique cubic parametric polynomial minimal 
surface as presented in (Man and Wang, 2002). The 
approximate solution of minimal surface bounded by 
Bézier or B-spline curves was presented in (Man and 
Wang, 2003; Monterde, 2004). The catenoid is the 
only nonplanar minimal surface of rotation and the 

right helicoid is the only nonplanar ruled minimal 
surface. Man and Wang (2005) proposed the control 
mesh representation of right helicoid and catenoid 
using the C-Bézier basis and the H-Bézier basis pre-
sented in (Zhang, 1996; Li and Wang, 2005). Because 
the parametric domain of C-Bézier basis is (0, π), so 
we cannot represent a whole catenoid by C-Bézier 
basis and H-Bézier basis. Moreover, it is discom-
modious for design, as we must use two different 
kinds of bases to represent a surface patch.  

The generalized helicoid is a class of important 
minimal surface proposed by Scherk (Nitsche, 1989). 
The right helicoid and the catenoid are both its special 
examples. So it is very meaningful to represent the 
generalized helicoid by the control mesh. In this paper, 
we propose the control mesh representation of the 
generalized helicoid using the AHT Bézier basis in 
the space spanned by {1, t, sint, cost, sinht, cosht}. So 
we can generate the generalized helicoid minimal 
surfaces using the de Casteljau-like algorithm. In 
particular, we can represent a whole catenoid by 
control mesh and implement the animated deforma-
tion from a right helicoid to a catenoid by the inter-
polation of control points. 
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GENERALIZED HELICOID MINIMAL SURFACE   
 

In this section, we will introduce the generalized 
helicoid and validate that the generalized helicoid is 
minimal surface. 

If a twisted curve C (i.e., one with torsion τ) ro-
tates about a fixed axis A and, at the same time, is 
displaced parallel to A such that the displacement rate 
is always proportional to the angular velocity of ro-
tation, then C generates a generalized helicoid. The 
general helicoid r(u,v)=(x(u,v), y(u,v), z(u,v)) has the 
following parametric form 

 
x(u,v)=asinhu cosv−bcoshu sinv, 
y(u,v)=asinhu sinv+bcoshu cosv, 
z(u,v)=av+bu, 

 
where a and b are arbitrary real numbers. For a=0, it 
reduces to the catenoid; for b=0, it reduces to the right 
helicoid. We present two examples of generalized 
helicoid in Fig.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the following, we will prove that the gener-
alized helicoid is a minimal surface. The proof is 
based on the lemma presented in (Man and Wang, 
2002). 
Lemma 1    The isothermal parametric surface is 
minimal surface if and only if it is a harmonic surface. 

Theorem 1    The generalized helicoid r(u,v) is a 
minimal surface. 
Proof    After some computations, we have 
 

ru=(acoshu cosv−bsinhu sinv, 
acoshu sinv+bsinhu cosv, b), 

rv=(−acoshu sinv−bsinhu cosv, 
asinhu cosv−bcoshu sinv, a), 

ruu=(asinhu cosv−bcoshu sinv, 
−asinhu sinv+bcoshu cosv, 0), 

rvv=(−asinhu cosv+bcoshu sinv, 
asinhu sinv−bcoshu cosv, 0).                 (1) 

 
If E, F and G are coefficients of the first fun-

damental form of r(u,v), we can obtain 
 

E=ru⋅ru=(a2+b2)cosh2u, 
F=ru⋅rv=0, 
G=rv⋅rv=(a2+b2)cosh2u. 

       
Hence, we have E=F, G=0. That is, r(u,v) is an 

isothermal parametric surface. From Eq.(1), we have 
ruu+rvv=0. So r(u,v) is also a harmonic surface. From 
Lemma 1, we can derive the conclusion that the gen-
eralized helicoid is a minimal surface. 
 
 
AHT BÉZIER SURFACES 
 

In this section, we will construct the Bézier-like 
basis called AHT Bézier basis in the space spanned by 
{1, t, sint, cost, sinht, cosht}, t∈[0,α], α∈[0,5π/2]. 
We can construct it recursively with integral method 
as presented in (Chen and Wang, 2003; Li and Wang, 
2005). In this paper, we will construct it explicitly 
from its zero property. 

We denote the AHT Bézier basis by 5
,5 0{ ( )}i iB t = . 

Let 
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Fig.1  The two examples of generalized helicoids 
(a) a=1, b=2; (b) a=2, b=1 
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Then the AHT Bézier basis can be defined as 
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We can easily obtain that 5
,5 0{ ( )}i iB t =  satisfy the 

following properties (Fig.2): 
(1) Partition of unity:   
 

5
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(2) Properties of the endpoints: 
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According to the above properties, we can use it 
for curve and surface design. The tensor product AHT 
Bézier surface can be defined as follows:  

 
5 5

,5 ,5
0 0

( , ) ( ) ( ) ,i j ij
i j

u v B u B v
= =

= ∑∑p P  

 
where u∈[0,α], v∈[0,β] α,β∈(0,5π/2), Bi,5(u), Bj,5(v) 

are the AHT Bézier basis functions and Pij is the 
control point. 

In order to represent the generalized helicoid by 
AHT Bézier surface, we must rewrite the definition of 
the AHT Bézier basis in matrix form. That is, 
 

(B0,5, B1,5, B2,5, B3,5, B4,5, B5,5)T 
                     =T(1, t, sint, cost, sinht, cosht)T, 

 
where T is called the transform matrix for 5

,5 0{ ( )}i iB t = . 
We present it in the Appendix A. And the inverse 
matrix of the transform matrix T is 
 

1
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CONTROL MESH REPRESENTATION OF THE 
GENERALIZED HELICOID  
 

In this section, we will represent the generalized 
helicoid r(u,v) by AHT Bézier surface. That is, we 
will find the control points Pij such that 

 
5 5

,5 ,5
0 0

( , ) ( ) ( ) ,i j ij
i j

u v B u B v
= =

= ∑∑r P  

 
where u∈[0,α], v∈[0,β] α,β∈(0,5π/2). 

Firstly, we can obtain the inverse matrices of the 
transform matrices for 5

,5 0{ ( )}i iB u =  and 5
,5 0{ ( )}i iB v =  

from Eq.(2). We denote them 6 6( )u u
ijs ×=S  and 

6 6( )v v
ijs ×=S , respectively. 

From Eq.(2), we can get that 
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Fig.2  The AHT Bézier basis functions with α=2π 
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Thus,  
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Analogously, we have 
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Hence, let 
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then the generalized helicoid r(u,v) as presented in 
Eq.(1) can be represented as follows: 
 

( )
5 5

,5 ,5
0 0

( , ) ( ) ( ) ,i j ij
i j

u v B u B v
= =

= ∑∑r P  

 
where u∈[0,α], v∈[0,β] α,β∈(0,5π/2). We present 
two examples in Fig.3.  
 
 
DYNAMIC DEFORMATION FROM HELICOID 
TO CATENOID  
 

From Section 1, we know that for a=0, b=1, the 

 
 
 
 
 
 
 
 
 
 

generalized helicoid reduces to the catenoid; for a=1, 
b=0, it reduces to the right helicoid. So we can 
achieve the dynamic deformation from the right 
helicoid to catenoid by interpolation of the control 
points. 

Let 
 

a=f(t), b=g(t), t∈[ξ1,ξ2], 
 

such that 
 

f(ξ1)=1, g(ξ1)=0, f(ξ2)=0, g(ξ2)=1. 
 

Let t=(1−λ)ξ1+λξ2. Then when λ varies from 0 
to 1, the right helicoid can be continuously deformed 
into a catenoid, with each intermediate surface being 
minimal surface. Their control meshes can be ob-
tained by Eq.(3). Furthermore, Eq.(3) can be rewritten 
as follows: 
 

5 4 6 3

5 3 6 4

2 2

.

u v u v
i j i j

u v u v
ij i j i j

v u
j i

s s s s
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So the control meshes of the intermediate sur-

faces can be obtained by interpolation of the control 
points at time λ=0 and λ=1. 

Generally speaking, there are many choices for 
f(t) and g(t). For example, we can set 

 
f(t)=1−t, g(t)=t, t∈[0,1], 

f(t)=cost, g(t)=sint, t∈[0, π/2], 
 
or 

f(t)=u0,n(t), f(t)=un,n(t), t∈[0,1], 
 

where u0,n(t) and un,n(t) are Bernstein basis functions 
of degree n (Figs.4 and 5). 

(a)                                     (b) 

Fig.3  The control mesh representation of generalized
helicoids. (a) a=1, b=2; (b) a=2, b=1 
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CONCLUSION AND FUTURE WORK 
 

In this paper, we propose the control mesh rep-
resentation of a class of minimal surfaces using the 
AHT Bézier basis in the space spanned by {1, t, sint, 
cost, sinht, cosht}. This kind of representation enables 
generating the minimal surfaces using the subdivision 
rules in CAD/CAGD modelling systems. 

The minimal surface is very important in geo-
metric theory and has many applications  in  practice. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

We will continue to do some research on minimal 
surface such as trimming, approximation and their 
applications in future. 
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