
Luan et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1634-1641 1634

Application-adaptive resource scheduling in a computational grid*

LUAN Cui-ju†1,2, SONG Guang-hua1, ZHENG Yao1

(1School of Computer Science and Center for Engineering and Scientific Computation, Zhejiang University, Hangzhou 310027, China)
(2College of Information Engineering, Shanghai Maritime University, Shanghai 200135, China)

†E-mail: cuijuluan@zju.edu.cn
Received Oct. 11, 2005; revision accepted Mar. 6, 2006

Abstract: Selecting appropriate resources for running a job efficiently is one of the common objectives in a computational grid.
Resource scheduling should consider the specific characteristics of the application, and decide the metrics to be used accordingly.
This paper presents a distributed resource scheduling framework mainly consisting of a job scheduler and a local scheduler. In
order to meet the requirements of different applications, we adopt HGSA, a Heuristic-based Greedy Scheduling Algorithm, to
schedule jobs in the grid, where the heuristic knowledge is the metric weights of the computing resources and the metric workload
impact factors. The metric weight is used to control the effect of the metric on the application. For different applications, only
metric weights and the metric workload impact factors need to be changed, while the scheduling algorithm remains the same.
Experimental results are presented to demonstrate the adaptability of the HGSA.

Key words: Grid, Resource scheduling, Heuristic knowledge, Greedy scheduling algorithm
doi:10.1631/jzus.2006.A1634 Document code: A CLC number: TP393

INTRODUCTION

The computational grid (Foster and Kesselman,
1998) combines computing, network and storage
resources to support the running of large-scale ap-
plications, which may be computation-intensive or
communication-intensive. There are many technical
challenges for deploying large-scale applications over
this distributed computing environment due to the
vast diversity of resources involved. Efficient and
application-adaptive resource management and
scheduling are challenging tasks in the grid. In order
to meet the requirements of the applications, the
scheduling algorithm must take the target applications
into account. However, different applications have
different characteristics, and their demands on the
resources may differ greatly. The goal of our resource
scheduling system is to provide a general-purpose,

application-adaptive and easy-to-use scheduling ap-
proach.

We present here a Heuristic-based Greedy
Scheduling Algorithm (HGSA), which aims to be
adaptive to different applications. In order to rank the
resources reasonably, the algorithm considers multi-
ple resource metrics involved. Since the effect of a
specific metric on different applications varies, we
introduce a weight to each metric to reflect its effect
on the resource scheduling. The basic idea is quite
straightforward: we seek to assign customized
weights to all the metrics concerned from the view-
point of the application, consequently to select the
right resources to implement the application. More-
over, we use an impact factor to identify the impact of
the assigned workload of the job on the metrics. It is
noted that different metrics have different impacts on
the same application, and the same metric has
different impacts on different applications. In order to
get the suitable resources to perform the application,
the user must comprehend the application-dependant
characteristics and customize the weights and impact

Journal of Zhejiang University SCIENCE A
ISSN 1009-3095 (Print); ISSN 1862-1775 (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

* Project supported by the National Natural Science Foundation of
China (No. 60225009), and the National Science Fund for Distin-
guished Young Scholars, China

Luan et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1634-1641 1635

factors of the metrics accordingly.
Before detailing the scheduling algorithm, we

will present a distributed resource scheduling frame-
work. On every grid site, there exist two scheduling
components, i.e. global and local components. The
global scheduling component uses the scheduling
algorithm presented in this paper to allocate the
resources. It considers all the available resources to
select the appropriate ones. The local one is respon-
sible for determining the order, in which jobs are
executed at that particular site. Jobs can be scheduled
at any site.

The remaining part of this paper is organized as
follows. Section 2 addresses related work on resource
scheduling. Section 3 describes a resource scheduling
framework, while Section 4 presents the HGSA. In
Section 5 experimental results are presented to illus-
trate its validity, and finally we summarize our work
in Section 6.

RELATED WORK

The concept of a universal scheduling paradigm
for any application is intractable, but some research-
ers have done their best to realize this task. The
Condor is one of the systems, which can be used for
varied applications. Liu et al.(2002) presented a
general-purpose resource selection framework that
defines a resource selection service for locating grid
resources that meet the requirements of the applica-
tions. But it requires the user to provide applica-
tion-specific mapping modules and ranking mecha-
nism to personalize the resource selector, which is
beyond the reach of common users.

Some resource scheduling policies have been
proposed to reduce application execution time in
heterogeneous environments (Chapin and Spafford,
1994; Ranganathan and Foster, 2002; Yang et al.,
2003; YarKhan and Dongarra, 2002). However, their
works only involve one or a few metrics such as
network bandwidth or CPU speed, and the formula of
the algorithm is fixed. But in fact, the effect of the
same algorithm varies with the applications. Some
scheduling algorithms are only fit for solving one type
of applications.

Casanova et al.(2000) proposed a more sophis-
ticated adaptive scheduling algorithm that can auto-

matically perform on-the-fly resource selection and
co-allocation of data and computation when needed.
Moreover, they proposed several simple heuristics for
scheduling independent tasks: Min-min, Max-min,
and Sufferage, etc. But the scheduling algorithm
works well with the PSAs, which focus on scheduling
algorithms whose objective is to minimize the appli-
cation’s makespan and the metric used by the heuris-
tics is the task’s predicted completion time.

The AppLeS (Berman et al., 2003) project pro-
vides an environment for adaptively scheduling and
deploying applications in heterogeneous, multi-user
grid environments. The AppLeS can generate a
schedule that considers not only predicted resource
performance, but also the variation in that perform-
ance. But the applications must be customized, so that
it can be dynamically scheduled by an AppLeS
scheduling agent.

In order to cope with the dynamic grid envi-
ronment and adapt to applications, some scheduling
algorithms adopt the adaptive solution, such as
(Aggarwal and Kent, 2005; Gao et al., 2005; Huedo
et al., 2004; Jin et al., 2005). But not all of them can
custom the scheduling criteria on the demand of the
users.

Aggarwal and Kent (2005) also provided an
adaptive generalized grid scheduling algorithm that
can efficiently schedule jobs having arbitrary in-
ter-dependency constraints and arbitrary processing
durations. It is mainly used to map a set of jobs and its
aim is to minimize the makespan of incoming jobs.
While our algorithm is used to schedule single job,
and the goal is determined by the users according to
their applications.

Gao et al.(2005) put forward adaptive grid job
scheduling algorithms that use the predicted comple-
tion time to schedule jobs at both system level and
application level. In application-level scheduling,
genetic algorithms are used to minimize the average
completion time of jobs through optimal job alloca-
tion on each node. All their algorithms use the pre-
dicted completion time to schedule the jobs, which
cannot meet various requirements of the users and
their applications.

In our approach, all the measurable metrics that
can influence the selection of the resources can be
taken into account, and their weights can be custom-
ized by the user in order to make the scheduling al-

Luan et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1634-1641 1636

gorithm adaptive to a wide variety of applications.
Moreover, the metrics used in the algorithm are ex-
tensible, that is, when a new metric that can affect the
resource scheduling is available, such as cost, it can
be added to the algorithm.

THE RESOURCE SCHEDULING FRAMEWORK

The resource scheduling framework is illustrated
in Fig.1. It is a distributed one, where all sites can be
both clients and servers. They have a uniform sched-
uling structure, which mainly consists of a job
scheduler and a local scheduler. In order to simplify
the diagram, some components are omitted in sites
except Site 1.

The Job Scheduler (JS) is distributed and global.
It schedules all the available resources in the
computational grid and selects the best resources for
the job by consulting the resources information. The
JS gets the job to be executed from the Waiting Queue
(WQ), and puts it into the Scheduled Queue (SQ). The
JS adopts the first come first served (FCFS) algorithm
and a two-phase scheduling strategy, which includes
the filtering phase and the allocating phase. At the
filtering phase, all the available resources will be
filtered according to the requirements of the job,
which are defined by the user. At the allocating phase,
the JS chooses the best resources by utilizing the
HGSA, which will be depicted in detail in Section 4.

The Local Scheduler (LS) is a job scheduler pro-

vided by the local host system, such as Open PBS,
Condor or LSF, etc. It decides how to schedule the
allocated jobs according to its local resources. Once a
job is submitted to a particular site, which is deter-
mined by the JS, then it will be managed by the LS.

In the scheduling framework, an Information
Service (IS) is in charge of resource discovery and
resource information provision. It provides the JS
with the available resources and their information.

All jobs managed in a site are saved in one of
three job queues—the WQ, the SQ and the Finished
Queue (FQ). The WQ keeps the jobs waiting for al-
locating resources, the SQ keeps the jobs that have
been allocated resources, and finally the FQ keeps the
jobs that have been executed successfully or failed.

The core function of the file controller in the
framework is to provide the capabilities for the job
management system to transfer file and folders se-
curely, conveniently, efficiently and flexibly. The
files and folders can be transferred by multi-channels
or in third-party style. Partial file transfer can also be
implemented. The file controller can also provide
other file and folder operations, such as creat-
ing/deleting and validating files and folders locally
and remotely. It is implemented on top of the
GridFTP in the Globus toolkit (Foster et al., 2001).

Generally, job execution is performed in three
steps.

(1) Creating the remote executing directory, and
transferring the executable and all the files needed for
remote execution, such as parameter files and data files.

Site 1

Job scheduler

Storage
Local

scheduler
Information

service

Waiting
queue

Scheduled
queue

Site ...

Job scheduler File controller

Storage

Site n

Job scheduler File controller

Storage

File control
File transfer
Job transfer

Legend

Local
scheduler

Local
scheduler

File controller

Fig.1 The resource scheduling framework

Luan et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1634-1641 1637

(2) Executing the job on the remote resources
and obtaining its status.

(3) Transferring back output files, cleaning up
the remote executing directory and related files on
the user’s demand.

The first and the last steps are carried out by the
file controller, which can do more validation check-
ing on the local and remote file systems.

If the data required by a job reside at some other
nodes, the file controller can transfer the data to the
execution nodes in the third-party transfer mode.
With the third-party transfer, a job can be submitted
from Location A, use the data at Location B, and be
executed at Location C, while the results can be
transferred to Location D. Thereby, the data, soft-
ware, storage and computing resources at different
locations can be shared easily.

Within this framework, when a job needs to be
executed in the computational grid, it will be added
to the WQ and forwarded to the JS for allocating the
resources. Given the available resources information
from the IS, the JS will return the best resources
using the scheduling algorithm and assign them to the
job, and then the job will be added to the SQ and
submitted to the selected resources for execution.
When a job is submitted, the file controller will be
called to be in charge of file operations. And finally
the job will be moved to the FQ once finished.

HEURISTIC-BASED GREEDY SCHEDULING
ALGORITHM

Problem statement

The goal of the HGSA is to improve the flexi-
bility and convenience of the resource scheduling
algorithm to meet the requirements of diverse
applications. Almost all the resource attributes can
affect selection of the resources. Because different
applications have different resource requirements,
we cannot use the same rule to order the resources for
different types of applications. For example, the
computation-intensive applications need fast calcu-
lation speed, while the communication-intensive
applications need high-speed network. Therefore, the
ordering rules should be different: the CPU fre-
quency, CPU load and available memory are more
important to the former, while the network band-

width is more important to the latter.
From the analysis above, it is apparent that one

algorithm should use as many metrics as possible to
schedule the resources in order to adapt to various
applications, and that the metrics should have dif-
ferent effects on different applications to apply the
same algorithm to various applications.

The metrics involved can be any available ones,
which can affect the selection of the resources. At
present, the attributes used include CPU count, CPU
speed, CPU free rate, memory size, free memory size,
file system size, free file system size, network band-
width, latency and the allocated process count of the
current job. The metrics used by the system can be
extensible. Any new metrics that are attractive to the
user can be added to rank the resources, such as the
cost, predicted metrics, etc.

We use a metric weight to distinguish the effect
of the metric on the application. The higher the met-
ric weight value is, the more effect it has on the ap-
plication.

Furthermore, the parallel job often has many
processes. The assigned process of the current job
may affect the subsequent resource selection for the
same job. For example, the more the processes allo-
cated, the less the free memory is, i.e., the effect is
negative. If there is data exchange among processes,
the processes should tend to be allocated to the same
resource to speed-up the data exchange, the effect is
positive. We use the metric workload impact factor to
identify the effect of the allocated process on the
resources selection.

HGSA is designed to follow an adaptable
scheduling policy, which is defined by the weights
and the workload impact factors of the metrics. In
order to make the algorithm adaptive to different
applications, what the user needs to do is to custom
the metric weights and the metric workload impact
factors according to the characteristics of the appli-
cations, that is, to define the scheduling policy.

Heuristic-based greedy scheduling algorithm

The heuristic knowledge is the metric weights of
the computing resources and the metric workload
impact factors.

Assume that ResList is the filtered available
resources list; PROCESSCOUNT is the process count
of the job, which is defined by the user; SelectedList

Luan et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1634-1641 1638

is the selected resources list, i.e. the result. The data
type of ResList is the list of the resource classes.
There are two important properties in the resource
class: processcount and cpucount. The processcount
is the allocated process count of the job to the re-
source, and its initial value is zero. Therefore, if the
processcount of a resource is bigger than zero at the
end of HGSA, the resource is selected. The cpucount
is the CPU count of the resource. If the PROCESS-
COUNT value is more than 1, the job is parallel.
ResList and PROCESSCOUNT are the inputs, while
SelectedList is the output of the algorithm. The HGSA
is described in Fig.2.

The mechanism of ranking the filtered resources

is based on the following formula:

1 1

0 0
[()], =1, 0 1,=

k k

i i i i i
i i

Rank a nf ω ω ω
− −

= =

+ ≤ ≤∑ ∑

where k is the count of metrics, n is the allocated
process count of the current job, ai is the metric value,
fi is the workload impact factor and ωi is the metric
weight of the ith metric.

In this formula, ai is normalized. If the effect of
metric i on selecting resources is negative, ai should
be –ai, such as the metric of network latency.

According to Fig.2, the HGSA integrates the
resource selection and workload allocation in the
same process. Whether a resource is selected is de-
termined by its property of processcount, which is the
workload of the resource for the current job.

In practice, in order to get the best resources for
an application, the user must consider the applica-

tion’s characteristic and customize the heuristic
knowledge accordingly.

The weight of CPU speed should be increased
for the computation-intensive applications due to
their high requirement for computing power, while
the weight of network bandwidth should be decreased.
The reversed adjustment could be performed for the
communication-intensive applications.

If the processes are independent within the same
job, the metric of the allocated process count has no
positive effect on the resources selecting, hence its
workload impact factor can be zero. If the processes
need to exchange data, then the metric of the allocated
process count has positive effect on the resources
selecting and its workload impact factor can be
greater than zero.

In order to customize the metric weight and the
metric workload impact factor, we use the XML file
to store them. The user can edit the file to adapt to
various applications.

EXPERIMENTS

We have crafted a simulation with the SimGrid
(Casanova, 2001; Legrand et al., 2003) simulator to
evaluate the HGSA. The major reasons for relying on
SimGrid are that it can simulate the multi-scale
computational grid and that the simulation environ-
ment can be similar to different experiments, which is
important for evaluating the scheduling algorithms.

In the experiments, we use a platform described
in the SimGrid software package, which consists of
90 resources, where the power ranges from 171.667 to
22.151, the bandwidth ranges from 255.228625 to
0.117125 and the latency ranges from 0.295890617 to
0.000006406. All the units omitted here adopt the
ones utilized in the SimGrid.

In the experiments, we use the HSSA (shown in
Fig.3), which randomly selects resources from a pool
of resources and was adopted earlier in our project, to
compare with the HGSA. For the HSSA we perform
ten experiments in every type of experiments and use
the average value as the final value.

Since the platform described in the present
SimGrid is well suited for simulating the CPU power,
bandwidth and latency, the experiments only use
these three metrics.

SelectedList=NULL;
For (i=0; i<PROCESSCOUNT; ++i) {

For each resource Res in ResList {
If processcount<cpucount

Calculate Rank(Res);
}
Select the resource with the max Rank
value and add 1 to its processcount;

}
For each resource Res in ResList {

If its processcount>0
SelectedList=SelectedList+Res;

}
Return SelectedList;

Fig.2 The heuristic-based greedy scheduling algorithm

Luan et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1634-1641 1639

In order to present the HGSA is adaptive, we

devise three sets of experiments, which simulate dif-
ferent types of applications. The first set of experi-
ments only deals with computation, which simulated
the computation-intensive applications. The compu-
tation size ranges from 500 to 5000 with the step size
being 500. The second set of experiments only deals
with communication, which simulated the commu-
nication-intensive applications. The communication
size ranges from 100 to 1000 with the step size being
100. There are both computation and communication
in the third set of experiments, in which the compu-
tation size and communication size follow the ones in
the first two sets.

In the first set of experiments, because the ap-
plications are computation-intensive, the CPU speed
weight is 1, the other metric weights are 0 and the
metric workload impact factors are all set to zero. The
experimental result is illustrated in Fig.4a. Because
the selected resources are the fastest with the HGSA,
the run time is the shortest.

In the second set of experiments, because the
applications only deals with communication, the
bandwidth weight is 0.9, the latency weight is 0.1,
while the workload impact factor of the process count
is 1. The experimental result is illustrated in Fig.4b. It
is obvious that the resources selected by HGSA have
good communication performance, so the run time of

the applications is relatively short.
In the third set of experiments, the CPU speed

weight is 0.6, the bandwidth weight is 0.35, the la-
tency weight is 0.05, and the workload impact factor
of the process count is 0.5. The experimental result is
depicted as Fig.4c. Because the HGSA can take both
computation and communication into account, the
applications in this set of experiments can get better
performance.

Three conclusions can be made from the above
experiments.

(1) The HGSA does a better job than the HSSA.
The makespans of the HGSA are lower than those of
the HSSA in the above figures.

(2) The performance of the HGSA is stable. The
curve of makespan for the HGSA is almost linear,
while the curve of makespan for the HSSA is wave-
like.

(3) The HGSA is adaptive to different types of
applications. The HGSA can do good jobs in these
three sets of experiments.

In order to demonstrate the performance and the
flexibility of the HGSA, we do further experiments on
the basis of the third set of experiments. We choose
the resource with the fastest CPU using the schedul-
ing policy adopted in the work of (Chapin and Spaf-
ford, 1994) and the resource with the fastest network
using the ad-hoc greedy approach presented in (Pe-
titet et al., 2001) to execute the job in the third set of
experiments respectively. In practice, we use the
HGSA to simulate their implementation. The ex-
periment result is illustrated in Fig.4d.

Because the job in the third set of experiments
involves both computation and communication, if we
are only concerned with the performance of the CPU
or the network, we cannot get the best result. In the
same way, the single scheduling policy cannot adapt
to different types of applications. With the HGSA, the
users can custom the scheduling policy for the ap-
plication, so that it is adaptive to various applications.

CONCLUSTION AND FUTURE WORK

In the computational grid, selecting appropriate
resources for a specific application is challenging.
Resource ranking is always based on resource metrics.
The rule to rank the resources varies with the appli-

//cpucount is the processor count of a resource.
//P is the resources pool, i.e. the resources set meeting
the requirements.
//S is the selected resources set, i.e. the result.
//n is the process count of a job.
(1) S=NULL; P=NULL.
(2) Build P such that cpucount>=n, for all resources in
P.

If P is not empty then select Pi from P at random, add
n to the processcount of Pi, S=S+Pi, goto (5);

If P is empty, i=0.
(3) Randomly get m, m<n−i, Build P such that cpucount
>=m, for all resources in P.

If P is not empty then select Pi from P at random, set
k to be the cpucount of Pi, add k to the processcount of
Pi, S=S+Pi, n=n−k, if n=0 then goto (4), if n>0 then goto
(1);

If P is not empty then i=i+1, goto (2).
(4) Goto (1).
(5) Return S.

Fig.3 The heuristic-based stochastic scheduling
algorithm

Luan et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1634-1641 1640

cation, which is also the case for the metrics involved
and their functions. Therefore, resource scheduling
should be application-oriented.

We have presented a distributed scheduling
framework that provides a common resource selec-
tion service for different kinds of applications. As a
hierarchy structure, it can consider all the available
resources on the top level and select the appropriate
ones according to the scheduling policy. In this
framework we adopt HGSA, a heuristic greedy
scheduling algorithm, to select appropriate resources
for the applications. In order to be adaptive to dif-
ferent types of applications, the algorithm uses the
metric weights of the computing resources and the
metric workload impact factors to reflect the re-
sources requirements of the applications. SimGrid
was employed to simulate the grid environment to
illustrate the adaptability and validity of the HGSA in
the presented framework, with promising results be-
ing obtained in our project.

The contributions of this paper are as follows. We

present a novel approach to model the resource
scheduling problem adaptive to different kinds of
applications in the computational grid environment.
Using our approach, the system can assign the
workload when selecting resources. Furthermore, this
method is easy to use for the domain scientists.

In the future, we plan to create more practical
platforms to investigate its performance and improve
the algorithm in practice. Moreover, we plan to study
how to automatically produce the metric weights and
the metric workload impact factors according to the
characteristic of the applications.

ACKNOWLEDGEMENT

We appreciate helpful discussions among the

members of the Grid Computing Group at the Center
for Engineering and Scientific Computation (CESC),
Zhejiang University, and would like to thank Chao-
yan Zhu and Wei Wang for their work in the project.
We also thank Bangti Jin for his valuable discussions.

M
ak

es
pa

n
(s

)

Fig.4 The experiment results. (a) Comparison between HSSA and HGSA for computation-intensive applications;
(b) Comparison between HSSA and HGSA for communication-intensive applications; (c) Comparison between
HSSA and HGSA for with both the computation and the communication applications; (d) Comparison for
different scheduling algorithms for with both the computation and the communication applications

(b)

0 200 400 600 800 1000

1600

1200

800

400

0

Communication size

HGSA
HSSA

(d)

Computation size×Communication size
0 1500×300 3000×600 4500×900

1600

1200

800

400

0

M
ak

es
pa

n
(s

)

HGSA
HSSA
Resource with the fastest network
Resource with the fastest CPU

(c)

Computation size×Communication size

0 1500×300 3000×600 4500×900

1600

1200

800

400

0

M
ak

es
pa

n
(s

)

HGSA
HSSA

(a)

80

60

40

20

0

Computation size

M
ak

es
pa

n
(s

)

HGSA
HSSA

0 1000 2000 3000 4000 5000

Luan et al. / J Zhejiang Univ SCIENCE A 2006 7(10):1634-1641 1641

References
Aggarwal, A.K., Kent, R.D., 2005. An Adaptive Generalized

Scheduler for Grid Applications. Proceedings of the 19th
Annual International Symposium on High Performance
Computing Systems and Applications (HPCS’05).
Guelph, Ontario, Canada, p.15-18.

Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H.,
Faerman, M., Figueira, S., Hayes, J., Obertelli, G., Schopf,
J., et al., 2003. Adaptive computing on the grid using
AppLeS. IEEE Transactions on Parallel and Distributed
Systems, 14(4):369-382. [doi:10.1109/TPDS.2003.1195
409]

Casanova, H., 2001. Simgrid: A Toolkit for the Simulation of
Application Scheduling. Proceedings of the IEEE Sym-
posium on Cluster Computing and the Grid (CCGrid’01).
IEEE Computer Society, p.430-437.

Casanova, H., Obertelli, G., Berman, F., Wolski, R., 2000. The
AppLeS Parameter Sweep Template: User-Level Mid-
dleware for the Grid. Proceedings of Supercomputing
2000. IEEE Computer Society Press, Dallas, USA,
p.75-76.

Chapin, S.J., Spafford, E.H., 1994. Support for implementing
scheduling algorithms using MESSIAHS. Scientific Pro-
gramming, 3:325-340.

Foster, I., Kesselman, C., 1998. The Grid: Blueprint for a New
Computing Infrastructure. Morgan Kaufmann Publishers,
San Francisco, CA, USA.

Foster, I., Kesselman, C., Tuecke, S., 2001. The anatomy of the
grid: enabling scalable virtual organizations. Interna-
tional Journal of Supercomputer Applications, 15(3):
200-222.

Gao, Y., Rong, H.Q., Huang, J.Z.X., 2005. Adaptive grid job
scheduling with genetic algorithms. Future Generation
Computer Systems, 21(1):151-161. [doi:10.1016/j.future.
2004.09.033]

Huedo, E., Montero, R.S., Llorente, I.M., 2004. Experiences
on Adaptive Grid Scheduling of Parameter Sweep

Applications. Proceedings of the 12th Euromicro Con-
ference on Parallel, Distributed and Network-based
Processing (PDP’04). A Coruña, Spain, p.28-33. [doi:10.
1109/EMPDP.2004.1271423]

Jin, H., Shi, X., Qiang, W., Zou, D., 2005. An adaptive
meta-scheduler for data-intensive applications. Interna-
tional Journal of Grid and Utility Computing, 1(1):32-37.
[doi:10.1504/IJGUC.2005.007058]

Legrand, A., Marchal, L., Casanova, H., 2003. Scheduling
Distributed Applications: The SimGrid Simulation
Framework. Proceedings of the 3rd IEEE International
Symposium on Cluster Computing and the Grid
(CCGrid’03). Tokyo, Japan, p.138-145.

Liu, C., Yang, L.Y., Foster, I., Angulo, D., 2002. Design and
Evaluation of a Resource Selection Framework for Grid
Applications. Proceedings of IEEE International Sympo-
sium on High Performance Distributed Computing
(HPDC-11). IEEE CS Press, p.63-72.

Petitet, A., Blackford, S., Dongarra, J., Ellis, B., Fagg, G.,
Roche, K., Vadhiyar, S., 2001. Numerical libraries and
the grid. The International Journal of High Performance
Computing Applications, 15(4):359-374. [doi:10.1177/
109434200101500403]

Ranganathan, K., Foster, I., 2002. Decoupling Computation
and Data Scheduling in Distributed Data-Intensive Ap-
plications. Proceedings of 11th IEEE International
Symposium on High Performance Distributed Computing
(HPDC-11). IEEE CS Press, p.352-358.

Yang, L.Y., Schopf, J.M., Foster, I., 2003. Conservative
Scheduling: Using Predicted Variance to Improve
Scheduling Decisions in Dynamic Environments. Pro-
ceedings of Supercomputing 2003. ACM Press, Phoenix,
AZ, USA, p.31-46.

YarKhan, A., Dongarra, J.J., 2002. Experiments with Sched-
uling Using Simulated Annealing in a Grid Environment.
Third International Workshop on Grid Computing. LNCS
2536, p.232-242.

Welcome visiting our journal website: http://www.zju.edu.cn/jzus
Welcome contributions & subscription from all over the world
The editor would welcome your view or comments on any item in the

journal, or related matters
Please write to: Helen Zhang, Managing Editor of JZUS

E-mail: jzus@zju.edu.cn Tel/Fax: 86-571-87952276/87952331

