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Abstract:    This paper describes a methodology for computation of reliability of members of fixed offshore platform structures, 
with respect to fatigue. Failure criteria were formulated using fracture mechanics principle. The problem is coined as a “first 
passage problem”. The method was illustrated through application to a typical plane frame structure. The fatigue reliability 
degradation curve established can be used for planning in-service inspection of offshore platforms. A very limited parametric 
study was carried out to obtain insight into the effect of important variables on the fatigue reliability. 
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INTRODUCTION 
 

Offshore production and drilling platforms are, in 
general, large and complex structural systems, usually 
fabricated using steel tubular members interconnected 
through welded joints. These structures are predomi-
nantly subjected to oscillatory environmental loads 
and fatigue characterizes a primary mode of failure of 
their components. The fatigue damage at any point in 
the structure depends on the complete stress history 
during the structure’s service life. The calculation of 
this stress history and its effects on the material is a 
complex task. The irregular nature of the sea, size of 
structure, evaluation of stress concentration factors in 
welded joints and possible dynamic effects, etc. con-
tribute to the complexity of the fatigue life assessment. 
Due to the inherent random nature of various input 
parameters affecting the response of these structures, 
reliability analysis assumes greater importance in the 
design of offshore structures. Computation of fatigue 
reliability is also useful for planning in-service in-
spection of offshore structures and for checking the 
design and certification. 

Any reliability problem can be formulated as 

probability of limit state violation. In the case of 
failure due to fatigue this limit state can be defined 
either as: (1) ac−aN≤0 representing the serviceability 
limit state or (2) KIC−K≤0 representing the ultimate 
limit state (Madsen et al., 1986; Kirkemo, 1988). 
Madhavan Pillai and Meher Prasad (2000) formulated 
a procedure for fatigue reliability analysis of fixed 
offshore structures using the serviceability limit state 
criteria. In this work fracture mechanics principle is 
used to formulate failure criteria. Relevant literature 
on computation of reliability analysis applicable to 
offshore structures are also discussed. In a similar 
work Rajasankar et al.(2003) formulated the failure 
equation in terms of number of cycles required for 
failure to occur. The work has been extended to assess 
the integrity of tubular joints in offshore structure. 

In the present work, fatigue reliability of fixed 
offshore structures is computed using ultimate limit 
state criteria. The problem is formulated as a ‘first 
passage problem’. The resistance to fatigue failure is 
represented as a time-variant barrier and failure is 
assumed to occur when the stress response first 
crosses this barrier. The probability of this crossing is 
computed using relevant stochastic theory (Nigam, 
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1983). 
The stress response in offshore structures is a 

wide band random process, although it can also be 
modelled as a stationary, narrow band Gaussian 
process, after applying suitable wide band correction 
factors (Wirsching and Light, 1980). For a narrow 
band stress process, the stress ranges follow Rayleigh 
distribution (Lin, 1976; Nigam, 1983). The long term 
fatigue stress process in an offshore structure is 
non-stationary but is modelled as a sequence of sev-
eral discrete stationary processes. The wave load due 
to storms acting on the structure during its entire 
service life is divided into a set of stationary sea states 
each being described by wave spectra. The probabil-
ity of occurrence of each sea state is available from 
sea scatter diagram and is used to account for the long 
term distribution (Vughts and Kinra, 1976; Chakra-
barti, 1987). The statistical properties of structural 
response due to each sea state is weighed according to 
its occurrence probability, to account for long term 
distribution of sea states for the total life of the 
structure. Finally, an example problem is solved to 
demonstrate the procedure. Sensitivity of a few im-
portant parameters on the reliability is also high-
lighted through parametric study. 

The three major aspects involved in the reliabil-
ity analysis of offshore jacket structures, namely 
structural modelling, hydrodynamic force modelling, 
and uncertainty modelling are briefly presented in the 
subsequent sections. 

 
 

STRUCTURAL MODELLING 
 

As the reliability analysis involves repetition of 
structural analysis using different sea states, the sim-
plified structural model and analysis suggested by 
Madhavan Pillai and Meher Prasad (2000) is used in 
the present work. 

 
 

HYDRODYNAMIC FORCE MODELLING 
 
Sea state model 

The sea state is represented by directional wave 
spectrum given by: 

 
( , ) ( ) ( , ),S S Dη ηω θ ω ω θ=     (1) 

where D(ω,θ) is a spreading function to account for 
wave energy being continuously distributed both with 
respect to frequency ω and direction θ, with Sη(ω) 
being unidirectional wave spectrum. In the present 
work Pierson-Moskowitz (P-M) spectrum and cosine 
power spreading function (Sarpkaya and Isaacson, 
1981) are used to represent a fully developed wind 
generated sea state. 

The P-M spectrum is given by: 
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   (2) 
 
where Hs is the significant wave height and Tz is the 
mean zero crossing period. 

The surface displacement and wave kinematics 
are generated from the directional wave spectrum of 
Eq.(1) using linear Airy’s wave theory and simulation 
(Borgman, 1969). In order to account for the variation 
of water level near the surface, the still water level is 
stretched up to the instantaneous sea surface using 
Wheeler (1969)’s stretching approach. 

 
Wave force model 

For the type of structure considered, the member 
dimensions being small compared to wavelengths, the 
presence of structure does not alter the wave field. 
Hence Morison’s equation is adequate for the com-
putation of wave force. Considering the current ve-
locity, the wave force is given by 

 

h m p d p c c
1 ( ) ,
2

p C V v C A v v v vρ ρ= + + +   (3) 

 
where Cm is inertia coefficient, Cd is drag coefficient, 
ρ is density of water, Vp and Ap are volume and pro-
jected area of member respectively, v  and v  are 
water particle velocity and acceleration respectively 
and cv is current velocity. 
 
 
UNCERTAINTY MODELLING 
 

The limit state equation is formulated using 
fracture mechanics principle as it gives a more fun-
damental view of fatigue crack growth than empirical 
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Palmgren-Miner rule (S-N curve) approach. Flaws or 
cracks are inherent in any components owing to the 
manufacturing or fabrication process. The magnitude 
of stress at the crack tip region depends on stress 
intensity factor and geometry of crack. They are re-
lated as follows: 

 
π ,K YS a∆ =          (4) 

 
where ∆K is the stress intensity factor range, S is the 
nominal stress range, a is crack size and Y is a ge-
ometry function. 

The stress intensity factor range ∆K is related to 
the rate of crack growth per load cycle, using 
Paris-Ergodan equation: 

 
d ( ) , 0,
d

ma C K K
N

= ∆ ∆ >    (5) 

 
where C and m are material constants. 

Failure is assumed to occur when the stress in-
tensity factor K, at the leading edge of the crack ex-
ceeds the fracture toughness KIC of the material. i.e. 
the failure function is 

 

IC IC ,M K K K YS a= − = − π        (6) 
 

or failure occurs if 
 

IC ,
KS

Y a
>

π
        (7) 

 
where S=S(t), the stress at time t is the far-field stress.  

Thus time varying threshold or barrier can be 
written as: 

 
IC( ) ,

( )
Kt

Y a t
ξ =

π
           (8) 

 
where a(t) is the crack size at time t. This is illustrated 
in Fig.1. 

Failure occurs during the time period [0,T] if the 
stress process S(t) crosses the time varying (Eq.8) in 
the time interval [0,T] where T can be the service life 
of the structure. 

Combining Eqs.(4) and (5) and using the simplest 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

non-interaction models, 
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where Si is the stress range in the ith  sea state, a0 is 
initial crack size and aN is crack size after N stress 
cycles. 

Accounting for long term stress process, Eq.(9) 
becomes: 
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where f0i is zero up-crossing frequency of the stress 
process, given by 2 0/ ,i im m  m0i, m2i being the zeroth 
and second order moments of the stress spectrum in 
the ith  sea state and qi is a factor accounting for the 
fraction of time occupied in the ith  sea state, given by 
γi/Ts, γi being the probability of occurrence of the ith 
sea state and Ts  is the storm duration (taken as 3 h), ac 
is critical crack size after N stress cycles and E[⋅] is 
expectation operator. 

For Rayleigh distribution with [ ]m
iE S being 

given as: 
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where Γ(⋅) is the Gamma function and σi is the RMS 
value of stress process in the ith sea state which is 

Failure 

t 

S(
t) Stress response 

IC( )
( )

K
t

Y a t
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π

Fig.1  Failure under variable amplitude loading as a
first-passage problem 
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calculated as 0 .i imσ =  
Integrating Eq.(10), substituting Eq.(11) for 

[ ]m
iE S  and applying Wirsching’s wide band correc-

tion factor λi and stress concentration factor SCF: 
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Substituting Eq.(12) for a(t) in Eq.(8), the time 

varying barrier is given by: 
 

2
IC 2 2

0 0

1
2

2( ) (2 2)
2( )

         1 ( ) .                     (13)
2

m m
m m

i i

m
m m
i i

K mt a C TY q f
Y a

m SCF

ξ

σ Γ λ

−

−

 −
= + π

π 

 ⋅ +  
  

 
Eq.(13) gives the expression for the strength charac-
teristic curve. 

The steps involved in the computation of reli-
ability are given below: 

Step 1: For a given service life t=T, find α=ξ(t), 
the value of the time varying threshold, using Eq.(13). 

Step 2: Find 
2

2

1 exp ,
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 where σx 

and xσ are obtained from the spectral analysis of the 
stress process and υ is rate of crossing the barrier α. 

Step 3: The probability of failure P(Tf≤t) is given 
by 

f
( ) 1 exp( )TF t tυ= − −  where Tf is the first passage 

time. 
Step 4: Steps 1~3 give the failure probability 

corresponding to a particular sea state. The total 
probability of failure is found by using total prob-
ability theorem, i.e., 
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where n is total number of sea states, P(Ei) is prob-
ability of occurrence of the ith sea state, P(F|Ei) is 
probability of failure as obtained from Step 3 and PF  

is total probability of failure. 
Step 5: The reliability index, β can be calculated 

as 
  

1( ),FPβ Φ −= −                     (15) 
 

where Φ−1(⋅) is inverse cumulative distribution func-
tion of a normal variable. 
 
 
NUMERICAL EXAMPLE 
 

The plane frame tower considered in (Karsan 
and Kumar, 1990; Madhavan Pillai and Meher Prasad, 
2000) is selected for the analysis due to its simplicity. 
A schematic diagram of the structure is shown in 
Fig.2. For the reliability analysis the structure is 
analysed for sample sea-scatter data shown in Table 1. 
The nominal values of the deterministic variables 
used are Cd=0.70, Cm=2.0, structural damping ratio 
ζ=0.05, current velocity c =0.0v m/s and material 
constant m=3.0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 shows the degradation of fatigue reliability 
indices with time for the most critical leg member and 
diagonal bracing member. It can be seen that the fa-
tigue reliability indices decrease as the time increases. 
The leg member is more critical compared to diagonal 
bracing member. This is against the results reported in 
(Madhavan Pillai and Meher Prasad, 2000), where the 
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Fig.2  Schematic diagram of plane frame (unit: mm) 
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diagonal bracing member is more critical when com-
pared to leg member. Thus it is observed that the leg 
members are more critical under ultimate limit state 
criteria whereas diagonal bracing members are more 
critical under serviceability limit state criteria. The 
fatigue reliability degradation curve is useful for de-
ciding when the next in-service inspection/repair has 
to be carried out by planning the inspection when the 
reliability index falls below a predefined target value. 
 
 
SENSITIVITY OF RELIABILITY INDEX 
 

To provide insight into the effect of the different 
deterministic variables on the fatigue reliability index, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a limited parametric study was carried out. The 
variables considered are the drag coefficient Cd, in-
ertia coefficient Cm, fracture toughness KIC and initial 
crack size a0. The values of these variables are 
changed one at a time keeping the remaining variables 
at their nominal values. The results of this parametric 
study are presented below. 

 
Effect of inertia coefficient 

Fig.4 gives the variation of fatigue reliability 
index with respect to inertia coefficient Cm. The fa-
tigue reliability index decreases with increase in in-
ertia coefficient Cm. 

Increase in Cm causes corresponding increase in 
the inertia force component in wave force which re-
sults in the decrease in the reliability index. Because 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Sea-scatter data (Vughts and Kinra, 1976) 
Occurrences No. 

Hs (m) 
Tz=2.0 s 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 

0.3048 2 23 17 3 − − − − − − − 
0.6096 − 17 53 52 17 32 14 3 − − − 
0.9144 − − 16 127 74 11 6 1 − − − 
1.2192 − − 2 35 61 20 14 6 2 1 − 
1.5240 − − 1 4 17 16 7 10 2  − 
1.8288 − − − 4 4 9 3 2 1 1 − 
2.1333 − − − − 1 4 14 3 − − − 
2.4384 − − − − − 1 7 8 2 2 − 
2.7432 − − − − − − 2 4 1 − − 
3.0484 − − − − − − − 2 4 − − 
3.3528 − − − − − − − 1 2 2 − 
3.9624 − − − − − − − − − 1 − 
4.2672 − − − − − − − − − − 1 
4.5720 − − − − − − − − − 1 − 

Total number of occurrences is 753 
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Fig.3  Variation of fatigue reliability with time 
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reliability index is sensitive to the inertia coefficient, 
proper value of Cm should be used to get an accurate 
measure of reliability index. 

 
Effect of drag coefficient 

The variation of fatigue reliability index with 
respect to drag coefficient Cd is depicted in Fig.5. It is 
clear that there is no considerable variation in reli-
ability index with Cd. However, reliability index tends 
to decrease with increase in Cd. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the Morison’s equation for wave force it is 

evident that the drag force component is a function of 
square of the water particle velocity. Thus compared 
to inertia force, the periodicity of drag force will not 
cause significant change in the stress cycles. This 
does not affect the fatigue behaviour. Hence in a rig-
orous reliability analysis the drag coefficient may be 
treated as a deterministic variable. 

 
Fracture toughness 

Fig.6 shows the variation of reliability index 
with fracture toughness. As the fracture toughness 
increases, the reliability index also increases. Fracture 
toughness KIC is an indication of the resistance to 
crack growth. The higher the resistance to crack 
growth, the lesser is the probability of failure. 
 

Initial crack size 
The variation of reliability index with the initial 

crack size is shown in Fig.7. The initial crack size is 
an indication of weld quality. The larger the initial 
crack size, the poorer is the quality of weld and the 
rate of barrier degradation will be faster. This causes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
the decrease of the reliability index. 
 

 

CONCLUSION 
 

An efficient and simple methodology to compute 
the time dependent reliability indices with respect to 
fatigue, of members of fixed offshore structures has 
been presented. The main thrust of the work is the 
computation of the fatigue reliability treating the 
problem as a first passage problem. Ultimate strength 
criteria are used to formulate the failure function. 
Fracture mechanics principle is used to develop the 
necessary equations. A plane frame is considered for 
numerical study and fatigue reliability degradation 
curve is established. This fatigue reliability degrada-
tion curve can be used to plan in-service inspection of 
the structure, inspecting the platform when the reli-
ability index falls below a target level. A limited pa-
rametric study has also been conducted providing 
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Fig.5  Effect of drag coefficient on fatigue reliability 
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insight into the effect of various parameters on the 
fatigue reliability indices. 

From the study conducted the following specific 
conclusions can be drawn: 

(1) The leg members are more critical compared 
to diagonal bracing members under ultimate limit 
state criteria. This is contrary to the results reported 
by Madhavan Pillai and Meher Prasad (2000) wherein 
diagonal bracing members are more critical under 
serviceability limit state criteria. 

(2) The fatigue reliability index was found to be 
sensitive to the inertia coefficient Cm, necessitating 
the use of proper value of Cm in the analysis. 

(3) The reliability indices are insensitive to drag 
coefficient, Cd and in a rigorous reliability analysis 
the drag coefficient Cd, can be treated as deterministic 
variable. 

(4) The fatigue reliability index is greatly in-
fluenced by weld quality (a0) and fracture toughness 
KIC. 
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