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Abstract:    Boundary recovery is one of the main obstacles in applying the Delaunay criterion to mesh generation. A stan-
dard resolution is to add Steiner points directly at the intersection positions between missing boundaries and triangulations. We 
redesign the algorithm with the aid of some new concepts, data structures and operations, which make its implementation routine. 
Furthermore, all possible intersection cases and their solutions are presented, some of which are seldom discussed in the litera-
ture. Finally, numerical results are presented to evaluate the performance of the new algorithm. 
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INTRODUCTION 
 

The Delaunay criterion provides a good way to 
triangulate a given point set. However, the prede-
fined point connectivity is not certainly preserved 
during the triangulation, and some boundary con-
straints may be lost in the resulting triangulation. 
Therefore, the recovery of missing boundaries be-
comes an important topic.  

2D boundary recovery problem turns out to be 
much easier to resolve in theory and practice than its 
3D counterpart. It has been shown that there are cer-
tain polyhedrons, e.g. the Schönhardt polyhedron, 
that cannot be triangulated without adding Steiner 
points. Moreover, Ruppert and Seidel (1992) proved 
that it is an NP-complete problem to judge whether a 
polyhedron can be triangulated without adding 
Steiner points. Consequently, almost all practically 
useful boundary recovery algorithms have to con-
sider the problem of where and how to add Steiner 

points. 
Boundary constraints can be recovered in two 

ways: conformal and constrained. In the conformal 
recovery, Steiner points are inserted on the con-
straints, and not removed in the resulting volume 
meshes; thus some of the missing constraints are 
recovered as concatenations of sub-constraints. In 
the constrained recovery, the constraints are exactly 
the same as the prescribed ones, and no Steiner 
points are allowed to be left on them.  

George et al.(1991) proposed a constrained 
boundary recovery algorithm in the early 1990s 
based on local transformation operators in conjunc-
tion with heuristic rules for inserting Steiner points 
into the inside of the problem domain. However, it 
suffers from robustness issues (Liu and Baida, 2000). 
George et al.(2003) presented an alternative con-
strained boundary recovery algorithm free of such 
problems. Interestingly, Du and Wang (2004) inde-
pendently proposed an algorithm based on almost the 
same idea as that of George’s new algorithm. Re-
cently, we have successfully integrated an improved 
version of the algorithm into our parallel Delaunay 
mesh generator (Chen, 2006).  
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Weatherill and Hassan (1994) first investigated 
a conformal boundary recovery algorithm by adding 
points directly at the intersection position between 
missing boundaries and the current triangulation. 
Lewis et al.(1996) revisited the algorithm when im-
plementing their 3D Delaunay mesh generator. Song 
et al.(2004) improved the algorithm by more detailed 
discussions about some intersection cases. In this 
paper, we follow the idea of the above algorithm, 
and redesign it for our 3D Delaunay mesh generator. 
Two main contributions of our efforts are presented. 
First, some new concepts, operations and data struc-
tures are designed to make its implementation rather 
routine, and greatly reduce the coding effort. Second, 
all intersection cases are examined systematically 
and their solutions are delivered, which is a prereq-
uisite of a robust boundary recovery algorithm. 

Our boundary recovery procedure is divided 
into two steps. First, missing edges are recovered, 
and then, missing facets are recovered. After defin-
ing some basic concepts, the two steps are described 
in detail. Finally, experimental results for evaluating 
the performance of the procedure are presented. 
 
 
BASIC CONCEPTS 
 
Ball, pipe, shell, and cluster 

Define the set of all tetrahedra including a point 
P as the ball of the point, denoted as Ball(P). Each 
element of the ball is called a ballel (ball+el). 

Define the set of all tetrahedra cut through by 
an edge E as the pipe of the edge, denoted as Pipe(E). 
Each element of the pipe is called a pipel (pipe+el). 

Define the set of all tetrahedra including an 
edge E as the shell of the edge, denoted as Shell(E). 
Each element of the shell is called a shellel 
(shell+el). 

Define the set of all tetrahedra with one or more 
edges cutting through a facet F as the cluster of the 
facet, denoted as Cluster(F). Each element of the 
cluster is called a clusterel (cluster+el). Especially, 
tetrahedra with one facet coplanar with F are also 
called clusterels in this paper. 
 
Coding of points, edges, and facets of a tetrahe-
dron 

Geometric ingredients of a tetrahedron include 
4 forming points, 6 edges and 4 facets, and they are 

coded for the convenience of programming. A point 
P is coded with the index that locates the point P in 
the forming point array of a tetrahedron t, and the 
code is denoted as NCode(t,P). An edge E is coded 
according to the codes of its end points, and it is de-
noted as ECode(t,E), where t is the tetrahedron con-
taining E. The codes of the starting and end points of 
an edge are stored in No. 1~2 bits and No. 3~4 bits, 
respectively, see Table 1 for details. The code of a 
facet F of a tetrahedron t equals the code of the point 
that the facet does not contain, denoted as 
FCode(t,F). 

 
 
 
 
 
 
 
 
 
 
Given an ordered set of tetrahedra T={t1,t2,…, 

tn}, denote a forming point of tj with a capital α. If β 
is the lowercase of α, let 

 
iβj=NCode(tj,α).               (1) 

 
Especially, abbreviate iβ1 as iβ while n=1. 
 
S-type decomposition and Z-type decomposition 
of a triangular facet  

If two edges of a triangular facet are divided by 
two Steiner points, there are two schemes to decom-
pose the facet into three smaller triangles, as shown 
in Fig.1. They are called S-type decomposition and 
Z-type decomposition, respectively, for the three lines 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Coding of edges of a tetrahedron 
Edge codes Edges 

 4 0→1 
 8 0→2 
12 0→3 
 9 1→2 
13 1→3 
14 2→3 
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Fig.1  Decomposition schemes of a triangular facet 
(a) S-type; (b) Z-type 
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P1P2, BP1 (or AP2) and AB constituting a geometry 
of S and Z shape, respectively. Here, denote the de-
composition type of a facet F of a tetrahedron t con-
taining F as DType(t,F). 
 
 
RECOVERY OF MISSING EDGES 
 
Definition of a pipel  

We define a pipel using the C programming 
language as follows: 
 

typedef struct Pipel { 
     int iEle;  
     int type; 
     int iNod1, iNod2; 
     int iCod1, iCod2; 
     int dectets[MAX_DEC_TETS]; 
     int nTets; 

} Pipel; 
 
here, iEle points to the position of the pipel in the 
global element array. type identifies the type of the 
pipel determined by the types of two intersection 
points between the missing edge and the pipel. The 
types of intersection points are classified as follows: 
 

enum {DEG=0, NOD, EDG, FAC}, 
 
where DEG is a degenerate case of nonexisting in-
tersection point; NOD, EDG, and FAC represent the 
cases when the intersection point lies in one of the 
forming points, edges, and facets of the pipel, re-
spectively. According to the above classification for 
intersection points, there are 11 types of pipels as 
defined below: 
 

#define NOD_NOD ((NOD<<2) | NOD) 
#define EDG_NOD ((NOD<<2) | EDG) 
#define FAC_NOD ((NOD<<2) | FAC) 
#define NOD_EDG ((EDG<<2) | NOD) 
#define EDG_EDG ((EDG<<2) | EDG) 
#define FAC_EDG ((EDG<<2) | FAC) 
#define NOD_FAC ((FAC<<2) | NOD) 
#define EDG_FAC ((FAC<<2) | EDG) 
#define FAC_FAC ((FAC<<2) | FAC) 
#define NOD_DEG ((DEG<<2) | NOD) 
#define EDG_DEG ((DEG<<2) | EDG) 

From the definition, the types of the first and 
second intersection points of a pipel are stored in No. 
1~2 bits and No. 3~4 bits of type, respectively. In 
addition, the decomposition types (S-type or Z-type) 
of 4 facets of a pipel are stored in No. 5~8 bits of 
type.  

Among the 11 types of a pipel defined above, 
NOD_NOD and NOD_DEG are degenerate, and not 
allowed; EDG_FAC and FAC_EDG, NOD_FAC and 
FAC_NOD, NOD_EDG, EDG_NOD and EDG_ 
DEG each can be merged into one type. Therefore, 
there are 5 types of pipels actually, as shown in Ta-
ble 2. 
 
 
 
 
 
 
 
 
 
 

iNod1 and iNod2 point to the two intersection 
points, and iNod2 is invalid when type=EDG_DEG. 
iCod1 and iCod2 equal the codes of two geometrical 
entities (forming points, edges, or facets) of the pipel 
intersecting with the missing edge. For example, if 
type=EDG_FAC, iCod1 is an edge code, and iCod2 
is a facet code. 

dectets stores the indices of newly created tet-
rahedra in the global element array after decompos-
ing the pipel, and nTets is the size of dectets. 
 
Recovering a missing edge without adding Steiner 
points  

There are two cases when the missing edge can 
be recovered by two basic edge/face swap operations, 
i.e. Swap23 and Swap44, without requiring Steiner 
points. These swap operations are shown in Fig.2, 
where Swap32 is for recovering a facet and will be 
discussed later. 

Fig.2a illustrates the Swap23 operation, where 
AB is the missing edge. The key step of the swap is 
to update neighboring relations of newly created tet-
rahedra. Denote T an ordered set of tetrahedra com-
posed of ACDE and BDCE, Table 3 gives the details 
of this updating step for Swap23, where ic1, ic2, id1, 

Table 2  Five types of pipels 
Cases Type 
Case 1 NOD_EDG/EDG_NOD/EDG_DEG 
Case 2 EDG_EDG 
Case 3 NOD_FAC/FAC_NOD 
Case 4 EDG_FAC/FAC_EDG 
Case 5 FAC_FAC 
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id2, ie1, and ie2 are codes of corresponding forming 
points in ACDE or BDCE. The nomenclature con-
forms to Eq.(1). For example, id1=NCode(ACDE,D) 
as ACDE is the first element of T, and id2= 
NCode(BDCE,D) as BDCE  is the second element 
of T. Each title of columns 2~5 in Table 3, i.e. Ni 
(i=1, 2, 3, 4), indicates No. i neighbor of newly cre-
ated tetrahedra. NEIG(tet,k) (k=1, 2, 3, 4) is a basic 
operation, which returns one of the neighboring tet-
rahedra of tet, and 

 
FCode(tet, F)=k, 

 
where F is the shared facet between tet and the re-
turned tetrahedron. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2b explains another basic swap operation, 
Swap44, where AB is the missing edge, and A, B, C, 
and D are required to be coplanar. Four tetrahedra of 
Pipe(AB) are ordered as ACDE, ADCF, BDCE, and 
BCDF. Table 4 details the updating operations of 

neighboring relations of newly created tetrahedra for 
Swap44.                                                 
 
 
 
 
 
 
 
 
Recovering a missing edge by adding Steiner 
points  

While the basic swap operations cannot recover a 
missing edge, the edge recovery procedure can be 
done by decomposing all the pipels individually. De-
composition of a pipel will recover a sub-segment of 
the missing edge. Table 2 lists all types of pipels, and 
we will discuss their decomposition schemes one by 
one. 

Consider Case 1 first. Here one edge of the 
pipel is cut through by the missing edge. The 
decomposition scheme for this case is shown in 
Fig.3a, and its updating operations of neighboring 
relations of newly created tetrahedra are listed in 
Table 5. Φ(tet,vtx,fac) is a basic operation with its 
execution route being as follows: 

(1) Given a tetrahedron tet, V and F are one 
forming point and one facet of tet with codes vtx and 
fac, respectively. Let iNeig=NEIG(tet,vtx), and set 
the pipel with iEle=iNeig as iPipel.  

(2) If iNeig points to a valid tetrahedron and the 
decomposition operation of iPipel has been com-
pleted, return the tetrahedron which lies in the array 
dectets of iPipel and shares F with tet; otherwise 
return a NULL tetrahedron. 

 
 
 
 
 
 
 
 
 
The pipel of Case 2 has two edges cut through 

by the missing edge. Define two edges of a tetrahe-
dron as opposite edges if they share no common ver-
tex; otherwise, call them neighboring edges. There-

Table 4  Update of neighboring relations: Swap44  
(t1=ACDE, t2=ADCF, t3=BDCE, t4=BCDF; NG=NEIG) 
New eles. N1 N2 N3 N4 

ABDE NG(t3,ic3) NG(t1,ic1) ACBE ADBF 
ACBE NG(t3,id3) ABDE NG(t1,id1) ABCF 
ADBF NG(t4,ic4) ABCF NG(t2,ic2) ABDE 
ABCF NG(t4,id4) NG(t2,id2) ADBF ACBE 

 

Table 5  Update of neighboring relations for the de-
composition of the pipel with one edge cut through 
by the missing edge (t=ABCD; NG=NEIG; φ(vtx,fac)= 
Φ(t,vtx,fac)) 

New eles. N1 N2 N3 N4 
ABCP φ(ia,BCP) APCD φ(ic,ABP) NG(t,id) 
APCD φ(ia,PCD) NG(t,ib) φ(ic,APD) ABCP 
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Fig.2  Three basic edge/face swap operations 
(a) Swap23 and Swap32; (b) Swap44 

Table 3  Update of neighboring relations: Swap23  
(t1=ACDE, t2=BDCE; NG=NEIG) 
New eles. N1 N2 N3 N4 

ACBE NG(t2,id2) ABDE NG(t1,id1) ABCD 
ABCD NG(t2,ie2) NG(t1,ie1) ABDE ACBE 
ABDE NG(t2,ic2) NG(t1,ic1) ACBE ABCD 
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fore, there are two subcases for Case 2, determined 
by whether the two edges of the pipel are opposite or 
not. Figs.3b and 3c give their decomposition 
schemes, named Subcases I and II, respectively. Ta-
ble 6 details the updating operations of neighboring 
relations of newly created tetrahedra for Case 2. For 
Subcase II, ∆ABD can be decomposed in the S-type 
manner or Z-type manner, as shown in Fig.3c. The 
adoption of the decomposition scheme for ∆ABD is 
determined on the fly as follows: 

Step 1: Let iNeig=NEIG(ABCD,ic), and set the 
pipel with iEle=iNeig as iPipel. If iNeig points to a 
NULL tetrahedron, go to Step 3; otherwise go to 
Step 2; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 2: If iPipel is not decomposed yet, go to 
Step 3; otherwise get the value of DType(iNeig,ABD). 
If it is S-type, return Z-type; otherwise return S-type. 

Step 3: Both S-type and Z-type are OK! 
For Case 3, one facet of the pipel is cut through 

by the missing edge. For Case 4, one edge and one 
facet are cut through by the missing edge. Figs.3d 
and 3e show their respective decomposition schemes. 
Table 7 and Table 8 detail their respective updating 
operations of neighboring relations of newly created 
tetrahedra. 

Two alternative decomposition schemes are 
available for Case 5, where two facets of the pipel 
are  cut  through  by  the  missing  edge,  as  shown  in 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6  Update of neighboring relations for the decomposition of the pipel with two edges cut through by the 
missing edge (t=ABCD; NG=NEIG; φ(vtx,fac)=Φ(t,vtx,fac)) 

Subcases New eles. N1 N2 N3 N4 
ABP2P1 P1BP2D AP2CP1 φ(ic,ABP1) φ(id,BAP2) 
AP2CP1 P1P2CD φ(ib,AP1C) ABP2P1 φ(id,ACP2) 
P1BP2D φ(ia,BP2D) P1P2CD φ(ic,P1BD) ABP2P1 

I 

P1P2CD φ(ia,P2CD) φ(ib,P1DC) P1BP2D AP2CP1 
ABCP1 P1BCP2 φ(ib,AP1C) φ(ic,ABP1) NG(t,id) 
P1BCP2 φ(ia,BCP2) P1P2CD φ(ic,P1BP2) ABCP1 II (S-type) 
P1P2CD φ(ia,P2CD) φ(ib,P1DC) φ(ic,P1P2D) P1BCP2 
ABCP2 φ(ia,BCP2) AP2CP1 φ(ic,ABP2) NG(t,id) 
AP2CP1 P1P2CD φ(ib,AP1C) φ(ic,AP2P1) ABCP2 II (Z-type) 
P1P2CD φ(ia,P2CD) φ(ib,P1DC) φ(ic,P1P2D) AP2CP1 
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Fig.3  Decomposition schemes for the pipel with (a) one edge, (b) two opposite edges, (c) two neighboring
edges, (d) one facet, (e) one edge and one facet, and (f) two facets cut through by the missing edge 
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Fig.3f. In our program, only Scheme 1, illustrated in 
the left of Fig.3f, is adopted. The updating operations 
of neighboring relations of newly created tetrahedra 
for Scheme 1 are detailed in Table 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
. 
 

RECOVERY OF MISSING FACETS 
 
Definition of a clusterel  

We define a clusterel using the C programming 
language as follows: 
 

typedef struct Clusterel { 
int iEle; 
int type; 
int codes[4], ntypes[4]; 
int nodes[4]; 
DecTets dectets; 
int nTets; 

} Clusterel; 
 

here, iEle points to the position of the clusterel in the 
global element array. type identifies the type of the 
clusterel determined by the number of clusterel 
edges cutting through the missing facet. There are 5 
cases for the type of a clusterel, defined using the C 
programming as follows: 
 

enum {CO_PLAN=0, ONE_EDG, TWO_EDG, 
THR_EDG, FOU_EDG}, 

 
where CO_PLAN refers to the case that a facet of the 
clusterel is coplanar with the missing facet; 
ONE_EDG, TWO_EDG, THR_EDG, and FOU_ 
EDG refer to the cases of 1, 2, 3, and 4 edges of the 
clusterel cutting through the missing facet, respec-
tively. 

codes stores the codes of edges cutting through 
the missing facet. nodes records the indices of the 
intersection points between the clusterel and the 
missing facets. ntypes are the types of intersection 
points, which have 5 cases, depicted as follows: 
 

enum {NOD_NUL=0, NOD_EXT, NOD_BEG, 
NOD_END, NOD_MID}; 

 
where NOD_NUL refers to the case of nonexisting 
intersection point; NOD_EXT, NOD_BEG, NOD_ 
END, and NOD_MID refer to the cases that the in-
tersection points lie in the extension line, the starting 
point, the end point, and the middle of the edge cut-
ting through the missing facet, respectively. 

Similar to the definition of a pipel, here, dectets 
stores the indices in the global element array of 
newly created tetrahedra after decomposing the 
clusterel, and nTets is the size of dectets. 

 
Recovering a missing facet without adding 
Steiner points  

A missing facet can be recovered without adding 
Steiner points using the basic swap operation Swap32, 
shown in Fig.2a, where ∆ECD is the missing facet, 
and the cluster before the swap operation consists of 
an ordered set of tetrahedra T={ACBE, ABCD, 
ABDE}.  

Table 10 details the updating operations of 
neighboring relations of newly created tetrahedra for  
Swap32. 
 

Table 8  Update of neighboring relations for the de-
composition of the pipel with one edge and one facet 
cut through by the missing edge (t=ABCD; NG= 
NEIG; φ(vtx,fac)=Φ(t,vtx,fac)) 
New eles. N1 N2 N3 N4 

ABCP1 P1BCP2 φ(ib,AP1C) φ(ic,ABP1) NG(t,id) 
P1BP2D φ(ia,DBP2) P1P2CD φ(ic,P1BD) P1BCP2 
P1BCP2 φ(ia,BCP2) P1P2CD P1BP2D ABCP1 
P1P2CD φ(ia,CDP2) φ(ib,CP1D) P1BP2D P1BCP2 

 

Table 7  Update of neighboring relations for the de-
composition of the pipel with one facet cut through 
by the missing edge (t=ABCD; NG=NEIG; φ(vtx,fac)= 
Φ(t,vtx,fac)) 
New eles. N1 N2 N3 N4 

ABCP φ(ia,BCP) APCD ABPD NG(t,id) 
APCD φ(ia,CDP) NG(t,ib) ABPD ABCP 
ABPD φ(ia,DBP) APCD NG(t,ic) ABCP 

 

Table 9  Update of neighboring relations for the de-
composition of the pipel with two facets cut through 
by the missing edge (t=ABCD; NG=NEIG; φ(vtx,fac)= 
Φ(t,vtx,fac)) 
New eles. N1 N2 N3 N4 

ABCP1 P1BCP2 AP1CD φ(ic,ABP1) NG(t,id) 
P1BCP2 φ(ia,BCP2) P1P2CD P1BP2D ABCP1 
P1P2CD φ(ia,CDP2) AP1CD P1BP2D P1BCP2 
P1BP2D φ(ia,DBP2) P1P2CD φ(ic,BDP1) P1BCP2 
AP1CD P1P2CD NG(t,ib) φ(ic,DAP1) ABCP1 
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Recovering a missing facet by adding Steiner 
points  

While a missing facet cannot be recovered us-
ing Swap32, all clusterels involved should be de-
composed individually to recover the missing facet 
as a concatenation of sub-facets. As defined previ-
ously, there are 5 types of clusterels, determined by 
the values of type members. Fig.4 illustrates all the 
types of clusterels, where ∆EFG is the missing facet, 
and ABCD is a clusterel. The clusterel with type= 
CO_PLAN need not be decomposed for recovering 
∆ABC, a sub-facet of ∆EFG. Note that the tetrahe-
dron NEIG(ABCD,id) is also a clusterel with type= 
CO_PLAN. The decomposition schemes of clusterels 
with type=ONE_EDG and type=TWO_EDG are 
identical to those of pipels for Case 1 and Case 2, 
respectively. Therefore, we only need investigate the 
decomposition schemes for clusterels with 3 or 4 
edges cutting through the missing facets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Relabel the intersection points in Fig.4d as P1, 
P2, and P3. Fig.5 presents 4 types of decomposition 
schemes for the clusterel with type=THR_EDG. 
They are named as Si/Zj, where i and j denote the 

numbers of facets decomposed with S-type and 
Z-type, respectively. It is obvious that the sum of i 
and j equals 3. The selection rule for the decomposi-
tion schemes for ∆ABD, ∆BCD, or ∆CAD is identical 
to those for ∆ABD while decomposing the pipel with 
two neighboring edges cut through by the missing 
edge, as described previously. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As shown in Figs.5c and 5d, besides the inter-
section points, an extra Steiner point, named H, 
should be inserted for S3/Z0 and S0/Z3. 

Table 11 details the updating operations of 
neighboring relations of newly created tetrahedra for 
decomposition schemes of clusterels with type= 
THR_EDG. The minor difference of the definition of 
Φ(tet,vtx,fac) here with that introduced in Tables 
5~10 is that tet refers to a clusterel rather than a 
pipel.  

There are 6 subcases for the decomposition of 
clusterels with type=FOU_EDG, named SSSS, ZSSS, 
ZZSS, ZSZS, ZZZS, and ZZZZ, respectively, and 
Fig.6 shows the corresponding decomposition 
schemes for them. For the name of each subcase, the 
character X (X=S or X=Z) in the position i (i=0~3) 
means that the facet numbered i in the clusterel 
adopts X-type decomposition scheme. Accordingly, 
in Fig.6, ∆ABD, ∆BCD, ∆ACB, and ∆ADC are num-
bered 0~3, respectively. The selection rule for the de- 

Table 10  Update of neighboring relations: Swap32  
(t1=ACBE, t2=ABCD, t3=ABDE; NG=NEIG) 
New eles. N1 N2 N3 N4 

ACDE BDCE NG(t3,ib3) NG(t1,ib1) NG(t2,ib2) 
BDCE ACDE NG(t1,ia1) NG(t3,ia3) NG(t2,ia2) 
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Fig.4  Five types of clusterels. (a) type=CO_PLAN; (b)
type=ONE_EDG; (c) type=TWO_EDG; (d) type=THR_
EDG; (e) type=FOU_EDG 
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Fig.5  Decomposition schemes for the cluster with
three edges cutting through the missing facet  
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Table 11  Update of neighboring relations for the decomposition of the clusterel with three edges cutting 
through the missing facet (t=ABCD; NG=NEIG; φ(vtx,fac)=Φ(t,vtx,fac)) 

Subcases New eles. N1 N2 N3 N4 
S2/Z1 ABCP1 P1BCP2 φ(ib,AP1C) φ(ic,ABP1) NG(t,id) 

P1BCP2 φ(ia,BCP2) P1P2CP3 φ(ic,P1BP2) ABCP1 
P1P2CP3 φ(ia,P2CP3) φ(ib,CP1P3) P1P2P3D P1BCP2  
P1P2P3D φ(ia,P2P3D) φ(ib,P1DP3) φ(ic,P1P2D) P1P2CP3 

S1/Z2 ABCP3 φ(ia,BCP3) φ(ib,AP3C) ABP3P2 NG(t,id) 
ABP3P2 φ(ia,BP3P2) AP2P3P1 φ(ic,ABP2) ABCP3 
AP2P3P1 P1P2P3D φ(ib,AP1P3) φ(ic,AP2P1) ABP3P2  
P1P2P3D φ(ia,P2P3D) φ(ib,P1DP3) φ(ic,P1P2D) AP2P3P1 

S3/Z0 AP1BH P1P2BH ABCH AP3P1H φ(ic,ABP1) 
P1P2BH BP2CH AP1BH P1P3P2H φ(ic,P1BP2) 
BP2CH CP2P3H ABCH P1P2BH φ(ia,BCP2) 
CP2P3H P1P3P2H ACP3H BP2CH φ(ia,P2CP3) 
ACP3H CP2P3H AP3P1H ABCH φ(ib,AP3C) 
AP3P1H P1P3P2H AP1BH ACP3H φ(ib,AP1P3) 
ABCH BP2CH ACP3H AP1BH NG(t,id) 

P1P3P2H CP2P3H P1P2BH AP3P1H P1P2P3D 

 
 
 

P1P2P3D φ(ia,P2P3D) φ(ib,P1DP3) φ(ic,P1P2D) P1P3P2H 
S0/Z3 AP1P2H P1P3P2H AP2BH ACP1H φ(ic,AP2P1) 

AP2BH BP2P3H ABCH AP1P2H φ(ic,ABP2) 
BP2P3H P1P3P2H CBP3H AP2BH φ(ia,BP3P2) 
CBP3H BP2P3H CP3P1H ABCH φ(ia,BCP3) 
ACP1H CP3P1H AP1P2H ABCH φ(ib,AP1C) 
CP3P1H P1P3P2H ACP1H CBP3H φ(ib,CP1P3) 
ABCH CBP3H ACP1H AP2BH NG(t,id) 

P1P3P2H BP2P3H AP1P2H CP3P1H P1P2P3D 

 
 

P1P2P3D φ(ia,P2P3D) φ(ib,P1DP3) φ(ic,P1P2D) P1P3P2H 
 

(a) (b) (c) 

(d) (e) (f) 

Fig.6  Decomposition schemes for the cluster with four edges cutting through the missing facet 
(a) SSSS; (b) ZSSS; (c) ZZSS; (d) ZSZS; (e) ZZZS; (f) ZZZZ 
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composition scheme of each facet is also identical to 
that for ∆ABD when decomposing the pipel with two 
neighboring edges cut through by the missing edge, 
as described previously. 

It is observed in Fig.6d that an extra Steiner 
point besides the intersection points is needed for 
ZSZS, where the decomposition types of a pair of 
opposite facets are both Z-type, and those of the 
other are both S-type. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 12 details the updating operations of 
neighboring relations of newly created tetrahedra for 
decomposition schemes of clusterels with type= 
FOU_EDG.  
 
 
MISCELLANEOUS ISSUES 
 
Smoothing operations of the surface 

As reported in the literature, and also validated 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 12  Update of neighboring relations for the decomposition of the clusterel with four edges cutting through 
the missing facet (t=ABCD; φ(vtx,fac)=Φ(t,vtx,fac)) 

Subcases New eles. N1 N2 N3 N4 
SSSS P1P2P3D φ(ia,P2P3D) P1P3CD φ(ic,P1P2D) P1P3P2B 

P1P3CD φ(ia,P3CD) φ(ib,P1DC) P1P2P3D P1P3P4C 
P1P3P4C φ(id,P3P4C) φ(ib,P1CP4) P1P3CD P1P4P3A 
P1P3P2B φ(ia,P3P2B) φ(ic,P1BP2) ABP3P1 P1P2P3D 
P1P4P3A φ(id,P4P3A) ABP3P1 φ(ib,AP1P4) P1P3P4C 

 

ABP3P1 P1P3P2B P1P4P3A φ(ic,ABP1) φ(id,AP3B) 
ZSSS P1P2P3D φ(ia,P2P3D) P1P3CD φ(ic,P1P2D) P1P3P2A 

P1P3CD φ(ia,P3CD) φ(ib,P1DC) P1P2P3D P1P3P4C 
P1P3P4C φ(id,P3P4C) φ(ib,P1CP4) P1P3CD P1P4P3A 
P1P3P2A ABP3P2 φ(ic,AP2P1) P1P4P3A P1P2P3D 
P1P4P3A φ(id,P4P3A) P1P3P2A φ(ib,AP1P4) P1P3P4C 

 
 

ABP3P2 φ(ia,P3P2B) P1P3P2A φ(ic,ABP2) φ(id,AP3B) 
ZZSS P1P2CD φ(ia,P2CD) φ(ib,P1DC) φ(ic,P1P2D) P1P2P3C 

P1P2P3C φ(ia,P2P3C) P1P3P4C P1P2CD P1P3P2A 
P1P3P4C φ(id,P3P4C) φ(ib,P1CP4) P1P2P3C P1P4P3A 
P1P3P2A ABP3P2 φ(ic,AP2P1) P1P4P3A P1P2P3C 
P1P4P3A φ(id,P4P3A) P1P3P2A φ(ib,AP1P4) P1P3P4C 

 

ABP3P2 φ(ia,P3P2B) P1P3P2A φ(ic,ABP2) φ(id,AP3B) 
ZSZS P1P2P3D φ(ia,P2P3D) P1P3CD φ(ic,P1P2D) P1P3P2H 

P1P3CD φ(ia,P3CD) φ(ib,P1DC) P1P2P3D P1P3P4C 
P1P3P4C φ(id,P3P4C) φ(ib,P1CP4) P1P3CD P1P4P3H 
P1P4P3H BP3P4H P1P3P2H AP4P1H P1P3P4C 
P1P3P2H BP2P3H AP1P2H P1P4P3H P1P2P3D 
AP4P1H P1P4P3H AP1P2H ABP4H φ(ib,AP1P4) 
BP2P3H P1P3P2H BP3P4H AP2BH φ(ia,P3P2B) 
AP1P2H P1P3P2H AP2BH AP4P1H φ(ic,AP2P1) 
AP2BH BP2P3H ABP4H AP1P2H φ(ic,ABP2) 
ABP4H BP3P4H AP4P1H AP2BH φ(id,P4BA) 

 
 
 
 
 

BP3P4H P1P4P3H ABP4H BP2P3H φ(id,P4P3B) 
ZZZS P1P2CD φ(ia,P2CD) φ(ib,P1DC) φ(ic,P1P2D) P1P2P4C 

P1P2P4C P2P3P4C φ(ib,P1CP4) P1P2CD P1P4P2A 
P2P3P4C φ(id,P3P4C) P1P2P4C φ(ia,P2P3C) P2P4P3B 
P1P4P2A ABP4P2 φ(ic,AP2P1) φ(ib,AP1P4) P1P2P4C 
P2P4P3B φ(id,P4P3B) φ(ia,P3P2B) ABP4P2 P2P3P4C 

 

ABP4P2 P2P4P3B P1P4P2A φ(ic,ABP2) φ(id,P4BA) 
ZZZZ P1P2P4D P2CP4D φ(ib,P1DP4) φ(ic,P1P2D) P1P4P2A 

P2P3P4C φ(id,P3P4C) P2CP4D φ(ia,P2P3C) P2P4P3B 
P2CP4D φ(ib,CP4D) P1P2P4D φ(ia,P2CD) P2P3P4C 
P1P4P2A ABP4P2 φ(ic,AP2P1) φ(ib,AP1P4) P1P2P4D 
P2P4P3B φ(id,P4P3B) φ(ia,P3P2B) ABP4P2 P2P3P4C 

 
 

ABP4P2 P2P4P3B P1P4P2A φ(ic,ABP2) φ(id,P4BA) 
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by our experience, smoothing operations of the sur-
face usually helps decrease the number of Steiner 
points added in the boundary recovery procedure, 
and hence to improve the element quality near the 
boundaries. Diagonal swap is frequently used, where 
the Delaunay criterion is employed for a quadrilat-
eral composed of two neighboring triangular facets, 
as shown in Fig.7. Two conditions must be satisfied 
to perform a diagonal swap operation, i.e. 

(1) ∆ABC and ∆ACD must be coplanar; and 
(2) The circumcircle of ∆ABC contains point D. 

 
 
 
 
 
 
 
 
 
 
 

Removal of outer elements 
A necessary step for Delaunay meshing algo-

rithms is to remove tetrahedra outside of the problem 
domain after the boundary recovery, for which the 
coloring algorithm is usually adopted. However, one 
prerequisite for the coloring algorithm is that the 
tetrahedra sharing the prescribed surface facets, or 
sub-facets formed in the boundary recovery proce-
dure, should be labeled as OUTER or INNER, repre-
senting the cases that the corresponding tetrahedra 
lie outside or inside the problem domain, respec-
tively. The labeling operations are commonly per-
formed concurrently with the recovery procedure for 
missing facets. 

First, we assume two hypotheses in the follow-
ing discussion. 

(1) Forming points of prescribed surface facets 
are ordered such that the normal vectors of all facets 
calculated with the right-hand rule point outwards; 

(2) Forming points of all tetrahedra are ordered, 
so that for each tetrahedron, the normal vector of the 
facet containing the previous 3 forming points cal-
culated with the right-hand rule points to the 4th 
forming point of the tetrahedron. 

Suppose ∆ABC is a prescribed surface facet, 
and ABCD is one of the tetrahedra containing it, the 
OUTER or INNER property of ABCD, denoted with 

etype, can be computed with the following mapping 
relations, as shown in Table 13. 

 
etype=FLAGE(ia, ib, ic, id),        (2) 

 
where ia, ib, ic and id are the codes of the points A, B, 
C, and D in ABCD, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Suppose ∆EFG is a prescribed surface facet, 
∆ABC is a recovered sub-facet of ∆EFG, and ABCD 
is one of the tetrahedra containing ∆ABC, the 
OUTER or INNER property of ABCD, denoted with 
etype, can be computed with a two-step procedure. 
First, get an initial value of etype using Eq.(2); and 
then compare the normal vector of ∆ABC with that 
of ∆EFG; if they are of opposite directions, reverse 
etype. 
 
 
NUMERICAL EXPERIMENTS 
 

The boundary recovery procedure presented 
above has been integrated into our 3D Delaunay 
mesh generator. It is fairly robust and efficient even 
for very complex geometries. Figs.8~10 show some 
volume mesh examples generated using this genera-
tor. Table 14 presents some statistics for the mesh 
examples and the boundary recovery procedure. It is 
observed that the basic swap operations, i.e. Swap23, 
Swap44, and Swap32, can recover most of the miss-
ing boundaries, however, they may fail for certain 
missing boundaries, for which Steiner points have to 
be added. Time performance data illustrate that most 
of time for our Delaunay mesh generator is spent on 
the procedures of inserting boundary nodes, creating 
field points and inserting them. Nevertheless time 
spent in the boundary recovery might not be omitted 

 

Diagonal swap  

A  

B  

C  
D 

A  

B  

C  
D  

Fig.7  Diagonal swap 

Table 13  Mapping relations between the OUTER/ 
INNER property of a tetrahedron and codes of its 
forming points 

id ia ib ic etype 
1/3/2 2/1/3 3/2/1 OUTER 

0 
3/1/2 2/3/1 1/ 2/3 INNER 
0/2/3 3/0/2 2/3/0 OUTER 

1 
2/0/3 3/2/0 0/3/2 INNER 
0/3/1 1/0/3 3/1/0 OUTER 

2 
3/0/1 1/3/0 0/1/3 INNER 
0/1/2 2/0/1 1/2/0 OUTER 

3 
1/0/2 2/1/0 0/2/1 INNER 
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for some configurations, the ratio of which to the 
total elapsed time varies greatly from one configura-
tion to another. 

The surface mesh configuration for Example 1 
(Fig.8) is smoothed, for which totally 30 Steiner points 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
points are added in the boundary recovery. However, 
the number grows to 59 if the mesh configuration is 
not smoothed. Here, only the diagonal swap is em-
ployed to smooth the surface mesh, and 214 swap 
operations are executed for this configuration. 

Table 14  Statistics for the mesh examples and the boundary recovery procedure 
Statistics Example 1 Example 2 Example 3 

No. of surface nodes 7443 4961 6708 
No. of surface facets 14890 9962 13420 
No. of volume mesh nodes 12858 7856 7932 
No. of volume mesh elements 57704 33182 26868 
No. of missing edges 112 39 60 
No. of recovered edges by swapping 
(and its ratio to the total No. of missing edges (%)) 

101 
(90.18) 

33 
(84.61) 

49 
(81.67) 

No. of added points for the edge recovery 24 13 21 
No. of missing facets 23 71 64 
No. of recovered facets by swapping 
(and its ratio to the total No. of missing facets (%)) 

20 
(86.96) 

50 
(70.42) 

52 
(81.25) 

No. of added points for the facet recovery 6 37 18 
Total elapsed time for the mesh generator (s) 3.984 2.140 8.562 
Time for the boundary recovery (s) 
(and its ratio to the total elapsed time (%)) 

0.687 
(17.24) 

0.422 
(19.72) 

0.172 
(2.01) 

 



Chen et al. / J Zhejiang Univ SCIENCE A   2006 7(12):2031-2042 2042

CONCLUSION AND REMARKS 
 

A classic conformal boundary recovery algo-
rithm, where Steiner points are added directly in the 
intersection positions between missing boundaries 
and triangulations, is redesigned. Local transforma-
tion operations are integrated to improve boundary 
recovery results. The coding procedure of such an 
algorithm is usually dry and error-prone, however, it 
could become a rather routine and easy work with 
the help of some new concepts, data structures, and 
operations introduced in this paper. Moreover, all 
cases of Steiner point insertion are discussed, and 
their solutions are suggested, which highly enhances 
the robustness of our boundary recovery algorithm.  

Element quality near boundaries is a key for the 
accuracy and/or convergence of the solution process 
for numerical simulations. It is our future work to 
improve it.  
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