
Chen et al. / J Zhejiang Univ SCIENCE A 2006 7(12):2031-2042 2031

Redesign of a conformal boundary recovery algorithm
for 3D Delaunay triangulation*

CHEN Jian-jun, ZHENG Yao‡

(Center for Engineering and Scientific Computation, School of Computer Science, Zhejiang University, Hangzhou 310027, China)

E-mail: zdchenjj@yahoo.com.cn; yao.zheng@zju.edu.cn
Received Mar. 5, 2006; revision accepted July 10, 2006

Abstract: Boundary recovery is one of the main obstacles in applying the Delaunay criterion to mesh generation. A stan-
dard resolution is to add Steiner points directly at the intersection positions between missing boundaries and triangulations. We
redesign the algorithm with the aid of some new concepts, data structures and operations, which make its implementation routine.
Furthermore, all possible intersection cases and their solutions are presented, some of which are seldom discussed in the litera-
ture. Finally, numerical results are presented to evaluate the performance of the new algorithm.

Key words: Boundary recovery, Delaunay triangulation, Mesh generation, Data structure
doi:10.1631/jzus.2006.A2031 Document code: A CLC number: TP393

INTRODUCTION

The Delaunay criterion provides a good way to
triangulate a given point set. However, the prede-
fined point connectivity is not certainly preserved
during the triangulation, and some boundary con-
straints may be lost in the resulting triangulation.
Therefore, the recovery of missing boundaries be-
comes an important topic.

2D boundary recovery problem turns out to be
much easier to resolve in theory and practice than its
3D counterpart. It has been shown that there are cer-
tain polyhedrons, e.g. the Schönhardt polyhedron,
that cannot be triangulated without adding Steiner
points. Moreover, Ruppert and Seidel (1992) proved
that it is an NP-complete problem to judge whether a
polyhedron can be triangulated without adding
Steiner points. Consequently, almost all practically
useful boundary recovery algorithms have to con-
sider the problem of where and how to add Steiner

points.
Boundary constraints can be recovered in two

ways: conformal and constrained. In the conformal
recovery, Steiner points are inserted on the con-
straints, and not removed in the resulting volume
meshes; thus some of the missing constraints are
recovered as concatenations of sub-constraints. In
the constrained recovery, the constraints are exactly
the same as the prescribed ones, and no Steiner
points are allowed to be left on them.

George et al.(1991) proposed a constrained
boundary recovery algorithm in the early 1990s
based on local transformation operators in conjunc-
tion with heuristic rules for inserting Steiner points
into the inside of the problem domain. However, it
suffers from robustness issues (Liu and Baida, 2000).
George et al.(2003) presented an alternative con-
strained boundary recovery algorithm free of such
problems. Interestingly, Du and Wang (2004) inde-
pendently proposed an algorithm based on almost the
same idea as that of George’s new algorithm. Re-
cently, we have successfully integrated an improved
version of the algorithm into our parallel Delaunay
mesh generator (Chen, 2006).

‡ Corresponding author
* Project (No. 60225009) supported by the National Natural Science
Foundation of China through the National Science Fund for Distin-
guished Young Scholars

Journal of Zhejiang University SCIENCE A
ISSN 1009-3095 (Print); ISSN 1862-1775 (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

Chen et al. / J Zhejiang Univ SCIENCE A 2006 7(12):2031-2042 2032

Weatherill and Hassan (1994) first investigated
a conformal boundary recovery algorithm by adding
points directly at the intersection position between
missing boundaries and the current triangulation.
Lewis et al.(1996) revisited the algorithm when im-
plementing their 3D Delaunay mesh generator. Song
et al.(2004) improved the algorithm by more detailed
discussions about some intersection cases. In this
paper, we follow the idea of the above algorithm,
and redesign it for our 3D Delaunay mesh generator.
Two main contributions of our efforts are presented.
First, some new concepts, operations and data struc-
tures are designed to make its implementation rather
routine, and greatly reduce the coding effort. Second,
all intersection cases are examined systematically
and their solutions are delivered, which is a prereq-
uisite of a robust boundary recovery algorithm.

Our boundary recovery procedure is divided
into two steps. First, missing edges are recovered,
and then, missing facets are recovered. After defin-
ing some basic concepts, the two steps are described
in detail. Finally, experimental results for evaluating
the performance of the procedure are presented.

BASIC CONCEPTS

Ball, pipe, shell, and cluster

Define the set of all tetrahedra including a point
P as the ball of the point, denoted as Ball(P). Each
element of the ball is called a ballel (ball+el).

Define the set of all tetrahedra cut through by
an edge E as the pipe of the edge, denoted as Pipe(E).
Each element of the pipe is called a pipel (pipe+el).

Define the set of all tetrahedra including an
edge E as the shell of the edge, denoted as Shell(E).
Each element of the shell is called a shellel
(shell+el).

Define the set of all tetrahedra with one or more
edges cutting through a facet F as the cluster of the
facet, denoted as Cluster(F). Each element of the
cluster is called a clusterel (cluster+el). Especially,
tetrahedra with one facet coplanar with F are also
called clusterels in this paper.

Coding of points, edges, and facets of a tetrahe-
dron

Geometric ingredients of a tetrahedron include
4 forming points, 6 edges and 4 facets, and they are

coded for the convenience of programming. A point
P is coded with the index that locates the point P in
the forming point array of a tetrahedron t, and the
code is denoted as NCode(t,P). An edge E is coded
according to the codes of its end points, and it is de-
noted as ECode(t,E), where t is the tetrahedron con-
taining E. The codes of the starting and end points of
an edge are stored in No. 1~2 bits and No. 3~4 bits,
respectively, see Table 1 for details. The code of a
facet F of a tetrahedron t equals the code of the point
that the facet does not contain, denoted as
FCode(t,F).

Given an ordered set of tetrahedra T={t1,t2,…,

tn}, denote a forming point of tj with a capital α. If β
is the lowercase of α, let

iβj=NCode(tj,α). (1)

Especially, abbreviate iβ1 as iβ while n=1.

S-type decomposition and Z-type decomposition
of a triangular facet

If two edges of a triangular facet are divided by
two Steiner points, there are two schemes to decom-
pose the facet into three smaller triangles, as shown
in Fig.1. They are called S-type decomposition and
Z-type decomposition, respectively, for the three lines

Table 1 Coding of edges of a tetrahedron
Edge codes Edges

 4 0→1
 8 0→2
12 0→3
 9 1→2
13 1→3
14 2→3

C

A

2 P

B

1 P

C

A

2 P

B

1 P

(a) (b)

Fig.1 Decomposition schemes of a triangular facet
(a) S-type; (b) Z-type

Chen et al. / J Zhejiang Univ SCIENCE A 2006 7(12):2031-2042 2033

P1P2, BP1 (or AP2) and AB constituting a geometry
of S and Z shape, respectively. Here, denote the de-
composition type of a facet F of a tetrahedron t con-
taining F as DType(t,F).

RECOVERY OF MISSING EDGES

Definition of a pipel

We define a pipel using the C programming
language as follows:

typedef struct Pipel {
 int iEle;
 int type;
 int iNod1, iNod2;
 int iCod1, iCod2;
 int dectets[MAX_DEC_TETS];
 int nTets;

} Pipel;

here, iEle points to the position of the pipel in the
global element array. type identifies the type of the
pipel determined by the types of two intersection
points between the missing edge and the pipel. The
types of intersection points are classified as follows:

enum {DEG=0, NOD, EDG, FAC},

where DEG is a degenerate case of nonexisting in-
tersection point; NOD, EDG, and FAC represent the
cases when the intersection point lies in one of the
forming points, edges, and facets of the pipel, re-
spectively. According to the above classification for
intersection points, there are 11 types of pipels as
defined below:

#define NOD_NOD ((NOD<<2) | NOD)
#define EDG_NOD ((NOD<<2) | EDG)
#define FAC_NOD ((NOD<<2) | FAC)
#define NOD_EDG ((EDG<<2) | NOD)
#define EDG_EDG ((EDG<<2) | EDG)
#define FAC_EDG ((EDG<<2) | FAC)
#define NOD_FAC ((FAC<<2) | NOD)
#define EDG_FAC ((FAC<<2) | EDG)
#define FAC_FAC ((FAC<<2) | FAC)
#define NOD_DEG ((DEG<<2) | NOD)
#define EDG_DEG ((DEG<<2) | EDG)

From the definition, the types of the first and
second intersection points of a pipel are stored in No.
1~2 bits and No. 3~4 bits of type, respectively. In
addition, the decomposition types (S-type or Z-type)
of 4 facets of a pipel are stored in No. 5~8 bits of
type.

Among the 11 types of a pipel defined above,
NOD_NOD and NOD_DEG are degenerate, and not
allowed; EDG_FAC and FAC_EDG, NOD_FAC and
FAC_NOD, NOD_EDG, EDG_NOD and EDG_
DEG each can be merged into one type. Therefore,
there are 5 types of pipels actually, as shown in Ta-
ble 2.

iNod1 and iNod2 point to the two intersection
points, and iNod2 is invalid when type=EDG_DEG.
iCod1 and iCod2 equal the codes of two geometrical
entities (forming points, edges, or facets) of the pipel
intersecting with the missing edge. For example, if
type=EDG_FAC, iCod1 is an edge code, and iCod2
is a facet code.

dectets stores the indices of newly created tet-
rahedra in the global element array after decompos-
ing the pipel, and nTets is the size of dectets.

Recovering a missing edge without adding Steiner
points

There are two cases when the missing edge can
be recovered by two basic edge/face swap operations,
i.e. Swap23 and Swap44, without requiring Steiner
points. These swap operations are shown in Fig.2,
where Swap32 is for recovering a facet and will be
discussed later.

Fig.2a illustrates the Swap23 operation, where
AB is the missing edge. The key step of the swap is
to update neighboring relations of newly created tet-
rahedra. Denote T an ordered set of tetrahedra com-
posed of ACDE and BDCE, Table 3 gives the details
of this updating step for Swap23, where ic1, ic2, id1,

Table 2 Five types of pipels
Cases Type
Case 1 NOD_EDG/EDG_NOD/EDG_DEG
Case 2 EDG_EDG
Case 3 NOD_FAC/FAC_NOD
Case 4 EDG_FAC/FAC_EDG
Case 5 FAC_FAC

Chen et al. / J Zhejiang Univ SCIENCE A 2006 7(12):2031-2042 2034

id2, ie1, and ie2 are codes of corresponding forming
points in ACDE or BDCE. The nomenclature con-
forms to Eq.(1). For example, id1=NCode(ACDE,D)
as ACDE is the first element of T, and id2=
NCode(BDCE,D) as BDCE is the second element
of T. Each title of columns 2~5 in Table 3, i.e. Ni
(i=1, 2, 3, 4), indicates No. i neighbor of newly cre-
ated tetrahedra. NEIG(tet,k) (k=1, 2, 3, 4) is a basic
operation, which returns one of the neighboring tet-
rahedra of tet, and

FCode(tet, F)=k,

where F is the shared facet between tet and the re-
turned tetrahedron.

Fig.2b explains another basic swap operation,
Swap44, where AB is the missing edge, and A, B, C,
and D are required to be coplanar. Four tetrahedra of
Pipe(AB) are ordered as ACDE, ADCF, BDCE, and
BCDF. Table 4 details the updating operations of

neighboring relations of newly created tetrahedra for
Swap44.

Recovering a missing edge by adding Steiner
points

While the basic swap operations cannot recover a
missing edge, the edge recovery procedure can be
done by decomposing all the pipels individually. De-
composition of a pipel will recover a sub-segment of
the missing edge. Table 2 lists all types of pipels, and
we will discuss their decomposition schemes one by
one.

Consider Case 1 first. Here one edge of the
pipel is cut through by the missing edge. The
decomposition scheme for this case is shown in
Fig.3a, and its updating operations of neighboring
relations of newly created tetrahedra are listed in
Table 5. Φ(tet,vtx,fac) is a basic operation with its
execution route being as follows:

(1) Given a tetrahedron tet, V and F are one
forming point and one facet of tet with codes vtx and
fac, respectively. Let iNeig=NEIG(tet,vtx), and set
the pipel with iEle=iNeig as iPipel.

(2) If iNeig points to a valid tetrahedron and the
decomposition operation of iPipel has been com-
pleted, return the tetrahedron which lies in the array
dectets of iPipel and shares F with tet; otherwise
return a NULL tetrahedron.

The pipel of Case 2 has two edges cut through

by the missing edge. Define two edges of a tetrahe-
dron as opposite edges if they share no common ver-
tex; otherwise, call them neighboring edges. There-

Table 4 Update of neighboring relations: Swap44
(t1=ACDE, t2=ADCF, t3=BDCE, t4=BCDF; NG=NEIG)
New eles. N1 N2 N3 N4

ABDE NG(t3,ic3) NG(t1,ic1) ACBE ADBF
ACBE NG(t3,id3) ABDE NG(t1,id1) ABCF
ADBF NG(t4,ic4) ABCF NG(t2,ic2) ABDE
ABCF NG(t4,id4) NG(t2,id2) ADBF ACBE

Table 5 Update of neighboring relations for the de-
composition of the pipel with one edge cut through
by the missing edge (t=ABCD; NG=NEIG; φ(vtx,fac)=
Φ(t,vtx,fac))

New eles. N1 N2 N3 N4
ABCP φ(ia,BCP) APCD φ(ic,ABP) NG(t,id)
APCD φ(ia,PCD) NG(t,ib) φ(ic,APD) ABCP

Swap32

Swap 23

B

A

E D

C

B

A

E D

C

Swap4 4

F

C

E

B

A

D

F

C

E

B

A

D

(a)

(b)

Fig.2 Three basic edge/face swap operations
(a) Swap23 and Swap32; (b) Swap44

Table 3 Update of neighboring relations: Swap23
(t1=ACDE, t2=BDCE; NG=NEIG)
New eles. N1 N2 N3 N4

ACBE NG(t2,id2) ABDE NG(t1,id1) ABCD
ABCD NG(t2,ie2) NG(t1,ie1) ABDE ACBE
ABDE NG(t2,ic2) NG(t1,ic1) ACBE ABCD

Chen et al. / J Zhejiang Univ SCIENCE A 2006 7(12):2031-2042 2035

fore, there are two subcases for Case 2, determined
by whether the two edges of the pipel are opposite or
not. Figs.3b and 3c give their decomposition
schemes, named Subcases I and II, respectively. Ta-
ble 6 details the updating operations of neighboring
relations of newly created tetrahedra for Case 2. For
Subcase II, ∆ABD can be decomposed in the S-type
manner or Z-type manner, as shown in Fig.3c. The
adoption of the decomposition scheme for ∆ABD is
determined on the fly as follows:

Step 1: Let iNeig=NEIG(ABCD,ic), and set the
pipel with iEle=iNeig as iPipel. If iNeig points to a
NULL tetrahedron, go to Step 3; otherwise go to
Step 2;

Step 2: If iPipel is not decomposed yet, go to
Step 3; otherwise get the value of DType(iNeig,ABD).
If it is S-type, return Z-type; otherwise return S-type.

Step 3: Both S-type and Z-type are OK!
For Case 3, one facet of the pipel is cut through

by the missing edge. For Case 4, one edge and one
facet are cut through by the missing edge. Figs.3d
and 3e show their respective decomposition schemes.
Table 7 and Table 8 detail their respective updating
operations of neighboring relations of newly created
tetrahedra.

Two alternative decomposition schemes are
available for Case 5, where two facets of the pipel
are cut through by the missing edge, as shown in

Table 6 Update of neighboring relations for the decomposition of the pipel with two edges cut through by the
missing edge (t=ABCD; NG=NEIG; φ(vtx,fac)=Φ(t,vtx,fac))

Subcases New eles. N1 N2 N3 N4
ABP2P1 P1BP2D AP2CP1 φ(ic,ABP1) φ(id,BAP2)
AP2CP1 P1P2CD φ(ib,AP1C) ABP2P1 φ(id,ACP2)
P1BP2D φ(ia,BP2D) P1P2CD φ(ic,P1BD) ABP2P1

I

P1P2CD φ(ia,P2CD) φ(ib,P1DC) P1BP2D AP2CP1
ABCP1 P1BCP2 φ(ib,AP1C) φ(ic,ABP1) NG(t,id)
P1BCP2 φ(ia,BCP2) P1P2CD φ(ic,P1BP2) ABCP1 II (S-type)
P1P2CD φ(ia,P2CD) φ(ib,P1DC) φ(ic,P1P2D) P1BCP2
ABCP2 φ(ia,BCP2) AP2CP1 φ(ic,ABP2) NG(t,id)
AP2CP1 P1P2CD φ(ib,AP1C) φ(ic,AP2P1) ABCP2 II (Z-type)
P1P2CD φ(ia,P2CD) φ(ib,P1DC) φ(ic,P1P2D) AP2CP1

B
A

C

D

P

A
B

C

D

P 1

P 2

(a) (b)

A
B

C

D

P 1
P 2

A
B

C

D

(c)

Fig.3 Decomposition schemes for the pipel with (a) one edge, (b) two opposite edges, (c) two neighboring
edges, (d) one facet, (e) one edge and one facet, and (f) two facets cut through by the missing edge

A
B

C

D

P

A
B

C

D

P 1
P 2

(d) (e)

A B

C

D

 P 1
P 2

A B

C

D

 P 1
P 2

(f)

S-type Z-type

Scheme 1 Scheme 2

P1 P2

Chen et al. / J Zhejiang Univ SCIENCE A 2006 7(12):2031-2042 2036

Fig.3f. In our program, only Scheme 1, illustrated in
the left of Fig.3f, is adopted. The updating operations
of neighboring relations of newly created tetrahedra
for Scheme 1 are detailed in Table 9.

.

RECOVERY OF MISSING FACETS

Definition of a clusterel

We define a clusterel using the C programming
language as follows:

typedef struct Clusterel {
int iEle;
int type;
int codes[4], ntypes[4];
int nodes[4];
DecTets dectets;
int nTets;

} Clusterel;

here, iEle points to the position of the clusterel in the
global element array. type identifies the type of the
clusterel determined by the number of clusterel
edges cutting through the missing facet. There are 5
cases for the type of a clusterel, defined using the C
programming as follows:

enum {CO_PLAN=0, ONE_EDG, TWO_EDG,
THR_EDG, FOU_EDG},

where CO_PLAN refers to the case that a facet of the
clusterel is coplanar with the missing facet;
ONE_EDG, TWO_EDG, THR_EDG, and FOU_
EDG refer to the cases of 1, 2, 3, and 4 edges of the
clusterel cutting through the missing facet, respec-
tively.

codes stores the codes of edges cutting through
the missing facet. nodes records the indices of the
intersection points between the clusterel and the
missing facets. ntypes are the types of intersection
points, which have 5 cases, depicted as follows:

enum {NOD_NUL=0, NOD_EXT, NOD_BEG,
NOD_END, NOD_MID};

where NOD_NUL refers to the case of nonexisting
intersection point; NOD_EXT, NOD_BEG, NOD_
END, and NOD_MID refer to the cases that the in-
tersection points lie in the extension line, the starting
point, the end point, and the middle of the edge cut-
ting through the missing facet, respectively.

Similar to the definition of a pipel, here, dectets
stores the indices in the global element array of
newly created tetrahedra after decomposing the
clusterel, and nTets is the size of dectets.

Recovering a missing facet without adding
Steiner points

A missing facet can be recovered without adding
Steiner points using the basic swap operation Swap32,
shown in Fig.2a, where ∆ECD is the missing facet,
and the cluster before the swap operation consists of
an ordered set of tetrahedra T={ACBE, ABCD,
ABDE}.

Table 10 details the updating operations of
neighboring relations of newly created tetrahedra for
Swap32.

Table 8 Update of neighboring relations for the de-
composition of the pipel with one edge and one facet
cut through by the missing edge (t=ABCD; NG=
NEIG; φ(vtx,fac)=Φ(t,vtx,fac))
New eles. N1 N2 N3 N4

ABCP1 P1BCP2 φ(ib,AP1C) φ(ic,ABP1) NG(t,id)
P1BP2D φ(ia,DBP2) P1P2CD φ(ic,P1BD) P1BCP2
P1BCP2 φ(ia,BCP2) P1P2CD P1BP2D ABCP1
P1P2CD φ(ia,CDP2) φ(ib,CP1D) P1BP2D P1BCP2

Table 7 Update of neighboring relations for the de-
composition of the pipel with one facet cut through
by the missing edge (t=ABCD; NG=NEIG; φ(vtx,fac)=
Φ(t,vtx,fac))
New eles. N1 N2 N3 N4

ABCP φ(ia,BCP) APCD ABPD NG(t,id)
APCD φ(ia,CDP) NG(t,ib) ABPD ABCP
ABPD φ(ia,DBP) APCD NG(t,ic) ABCP

Table 9 Update of neighboring relations for the de-
composition of the pipel with two facets cut through
by the missing edge (t=ABCD; NG=NEIG; φ(vtx,fac)=
Φ(t,vtx,fac))
New eles. N1 N2 N3 N4

ABCP1 P1BCP2 AP1CD φ(ic,ABP1) NG(t,id)
P1BCP2 φ(ia,BCP2) P1P2CD P1BP2D ABCP1
P1P2CD φ(ia,CDP2) AP1CD P1BP2D P1BCP2
P1BP2D φ(ia,DBP2) P1P2CD φ(ic,BDP1) P1BCP2
AP1CD P1P2CD NG(t,ib) φ(ic,DAP1) ABCP1

Chen et al. / J Zhejiang Univ SCIENCE A 2006 7(12):2031-2042 2037

Recovering a missing facet by adding Steiner
points

While a missing facet cannot be recovered us-
ing Swap32, all clusterels involved should be de-
composed individually to recover the missing facet
as a concatenation of sub-facets. As defined previ-
ously, there are 5 types of clusterels, determined by
the values of type members. Fig.4 illustrates all the
types of clusterels, where ∆EFG is the missing facet,
and ABCD is a clusterel. The clusterel with type=
CO_PLAN need not be decomposed for recovering
∆ABC, a sub-facet of ∆EFG. Note that the tetrahe-
dron NEIG(ABCD,id) is also a clusterel with type=
CO_PLAN. The decomposition schemes of clusterels
with type=ONE_EDG and type=TWO_EDG are
identical to those of pipels for Case 1 and Case 2,
respectively. Therefore, we only need investigate the
decomposition schemes for clusterels with 3 or 4
edges cutting through the missing facets.

Relabel the intersection points in Fig.4d as P1,
P2, and P3. Fig.5 presents 4 types of decomposition
schemes for the clusterel with type=THR_EDG.
They are named as Si/Zj, where i and j denote the

numbers of facets decomposed with S-type and
Z-type, respectively. It is obvious that the sum of i
and j equals 3. The selection rule for the decomposi-
tion schemes for ∆ABD, ∆BCD, or ∆CAD is identical
to those for ∆ABD while decomposing the pipel with
two neighboring edges cut through by the missing
edge, as described previously.

As shown in Figs.5c and 5d, besides the inter-
section points, an extra Steiner point, named H,
should be inserted for S3/Z0 and S0/Z3.

Table 11 details the updating operations of
neighboring relations of newly created tetrahedra for
decomposition schemes of clusterels with type=
THR_EDG. The minor difference of the definition of
Φ(tet,vtx,fac) here with that introduced in Tables
5~10 is that tet refers to a clusterel rather than a
pipel.

There are 6 subcases for the decomposition of
clusterels with type=FOU_EDG, named SSSS, ZSSS,
ZZSS, ZSZS, ZZZS, and ZZZZ, respectively, and
Fig.6 shows the corresponding decomposition
schemes for them. For the name of each subcase, the
character X (X=S or X=Z) in the position i (i=0~3)
means that the facet numbered i in the clusterel
adopts X-type decomposition scheme. Accordingly,
in Fig.6, ∆ABD, ∆BCD, ∆ACB, and ∆ADC are num-
bered 0~3, respectively. The selection rule for the de-

Table 10 Update of neighboring relations: Swap32
(t1=ACBE, t2=ABCD, t3=ABDE; NG=NEIG)
New eles. N1 N2 N3 N4

ACDE BDCE NG(t3,ib3) NG(t1,ib1) NG(t2,ib2)
BDCE ACDE NG(t1,ia1) NG(t3,ia3) NG(t2,ia2)

E

F

G

A B

C

D

A B
C

D

E
F

G

H

A
B

C

D
E

F

G

H
I

A B
C

D
E F

G
H I

J
E F

C

A B

D
H

I
J

K
G

(a) (b)

(c) (d) (e)

Fig.4 Five types of clusterels. (a) type=CO_PLAN; (b)
type=ONE_EDG; (c) type=TWO_EDG; (d) type=THR_
EDG; (e) type=FOU_EDG

A
B

C

D

P1 P 2

P 3

A
B

C

D

P 1 P2

P 3

H

A
B

C

D

P 1

P 3

P2
H

A
B

C

D

P 1
P 3

(a) (b)

(c) (d)

Fig.5 Decomposition schemes for the cluster with
three edges cutting through the missing facet

(a) S2/Z1; (b) S1/Z2; (c) S3/Z0; (d) S0/Z3

P2

Chen et al. / J Zhejiang Univ SCIENCE A 2006 7(12):2031-2042 2038

Table 11 Update of neighboring relations for the decomposition of the clusterel with three edges cutting
through the missing facet (t=ABCD; NG=NEIG; φ(vtx,fac)=Φ(t,vtx,fac))

Subcases New eles. N1 N2 N3 N4
S2/Z1 ABCP1 P1BCP2 φ(ib,AP1C) φ(ic,ABP1) NG(t,id)

P1BCP2 φ(ia,BCP2) P1P2CP3 φ(ic,P1BP2) ABCP1
P1P2CP3 φ(ia,P2CP3) φ(ib,CP1P3) P1P2P3D P1BCP2
P1P2P3D φ(ia,P2P3D) φ(ib,P1DP3) φ(ic,P1P2D) P1P2CP3

S1/Z2 ABCP3 φ(ia,BCP3) φ(ib,AP3C) ABP3P2 NG(t,id)
ABP3P2 φ(ia,BP3P2) AP2P3P1 φ(ic,ABP2) ABCP3
AP2P3P1 P1P2P3D φ(ib,AP1P3) φ(ic,AP2P1) ABP3P2
P1P2P3D φ(ia,P2P3D) φ(ib,P1DP3) φ(ic,P1P2D) AP2P3P1

S3/Z0 AP1BH P1P2BH ABCH AP3P1H φ(ic,ABP1)
P1P2BH BP2CH AP1BH P1P3P2H φ(ic,P1BP2)
BP2CH CP2P3H ABCH P1P2BH φ(ia,BCP2)
CP2P3H P1P3P2H ACP3H BP2CH φ(ia,P2CP3)
ACP3H CP2P3H AP3P1H ABCH φ(ib,AP3C)
AP3P1H P1P3P2H AP1BH ACP3H φ(ib,AP1P3)
ABCH BP2CH ACP3H AP1BH NG(t,id)

P1P3P2H CP2P3H P1P2BH AP3P1H P1P2P3D

P1P2P3D φ(ia,P2P3D) φ(ib,P1DP3) φ(ic,P1P2D) P1P3P2H
S0/Z3 AP1P2H P1P3P2H AP2BH ACP1H φ(ic,AP2P1)

AP2BH BP2P3H ABCH AP1P2H φ(ic,ABP2)
BP2P3H P1P3P2H CBP3H AP2BH φ(ia,BP3P2)
CBP3H BP2P3H CP3P1H ABCH φ(ia,BCP3)
ACP1H CP3P1H AP1P2H ABCH φ(ib,AP1C)
CP3P1H P1P3P2H ACP1H CBP3H φ(ib,CP1P3)
ABCH CBP3H ACP1H AP2BH NG(t,id)

P1P3P2H BP2P3H AP1P2H CP3P1H P1P2P3D

P1P2P3D φ(ia,P2P3D) φ(ib,P1DP3) φ(ic,P1P2D) P1P3P2H

(a) (b) (c)

(d) (e) (f)

Fig.6 Decomposition schemes for the cluster with four edges cutting through the missing facet
(a) SSSS; (b) ZSSS; (c) ZZSS; (d) ZSZS; (e) ZZZS; (f) ZZZZ

P 1

A B

D C

P 2 P 3
P 4

A B

D C

P 2 P 3
P 4

P 1

A B

D C

P 2 P 3
P 4

P 1

A B

D C

P 2 P 3
P 4

P 1

A B

D C

P 2 P 3
P 4

P 1

A B

D C

P 2 P 3
P 4

H

P 1

Chen et al. / J Zhejiang Univ SCIENCE A 2006 7(12):2031-2042 2039

composition scheme of each facet is also identical to
that for ∆ABD when decomposing the pipel with two
neighboring edges cut through by the missing edge,
as described previously.

It is observed in Fig.6d that an extra Steiner
point besides the intersection points is needed for
ZSZS, where the decomposition types of a pair of
opposite facets are both Z-type, and those of the
other are both S-type.

Table 12 details the updating operations of
neighboring relations of newly created tetrahedra for
decomposition schemes of clusterels with type=
FOU_EDG.

MISCELLANEOUS ISSUES

Smoothing operations of the surface

As reported in the literature, and also validated

Table 12 Update of neighboring relations for the decomposition of the clusterel with four edges cutting through
the missing facet (t=ABCD; φ(vtx,fac)=Φ(t,vtx,fac))

Subcases New eles. N1 N2 N3 N4
SSSS P1P2P3D φ(ia,P2P3D) P1P3CD φ(ic,P1P2D) P1P3P2B

P1P3CD φ(ia,P3CD) φ(ib,P1DC) P1P2P3D P1P3P4C
P1P3P4C φ(id,P3P4C) φ(ib,P1CP4) P1P3CD P1P4P3A
P1P3P2B φ(ia,P3P2B) φ(ic,P1BP2) ABP3P1 P1P2P3D
P1P4P3A φ(id,P4P3A) ABP3P1 φ(ib,AP1P4) P1P3P4C

ABP3P1 P1P3P2B P1P4P3A φ(ic,ABP1) φ(id,AP3B)
ZSSS P1P2P3D φ(ia,P2P3D) P1P3CD φ(ic,P1P2D) P1P3P2A

P1P3CD φ(ia,P3CD) φ(ib,P1DC) P1P2P3D P1P3P4C
P1P3P4C φ(id,P3P4C) φ(ib,P1CP4) P1P3CD P1P4P3A
P1P3P2A ABP3P2 φ(ic,AP2P1) P1P4P3A P1P2P3D
P1P4P3A φ(id,P4P3A) P1P3P2A φ(ib,AP1P4) P1P3P4C

ABP3P2 φ(ia,P3P2B) P1P3P2A φ(ic,ABP2) φ(id,AP3B)
ZZSS P1P2CD φ(ia,P2CD) φ(ib,P1DC) φ(ic,P1P2D) P1P2P3C

P1P2P3C φ(ia,P2P3C) P1P3P4C P1P2CD P1P3P2A
P1P3P4C φ(id,P3P4C) φ(ib,P1CP4) P1P2P3C P1P4P3A
P1P3P2A ABP3P2 φ(ic,AP2P1) P1P4P3A P1P2P3C
P1P4P3A φ(id,P4P3A) P1P3P2A φ(ib,AP1P4) P1P3P4C

ABP3P2 φ(ia,P3P2B) P1P3P2A φ(ic,ABP2) φ(id,AP3B)
ZSZS P1P2P3D φ(ia,P2P3D) P1P3CD φ(ic,P1P2D) P1P3P2H

P1P3CD φ(ia,P3CD) φ(ib,P1DC) P1P2P3D P1P3P4C
P1P3P4C φ(id,P3P4C) φ(ib,P1CP4) P1P3CD P1P4P3H
P1P4P3H BP3P4H P1P3P2H AP4P1H P1P3P4C
P1P3P2H BP2P3H AP1P2H P1P4P3H P1P2P3D
AP4P1H P1P4P3H AP1P2H ABP4H φ(ib,AP1P4)
BP2P3H P1P3P2H BP3P4H AP2BH φ(ia,P3P2B)
AP1P2H P1P3P2H AP2BH AP4P1H φ(ic,AP2P1)
AP2BH BP2P3H ABP4H AP1P2H φ(ic,ABP2)
ABP4H BP3P4H AP4P1H AP2BH φ(id,P4BA)

BP3P4H P1P4P3H ABP4H BP2P3H φ(id,P4P3B)
ZZZS P1P2CD φ(ia,P2CD) φ(ib,P1DC) φ(ic,P1P2D) P1P2P4C

P1P2P4C P2P3P4C φ(ib,P1CP4) P1P2CD P1P4P2A
P2P3P4C φ(id,P3P4C) P1P2P4C φ(ia,P2P3C) P2P4P3B
P1P4P2A ABP4P2 φ(ic,AP2P1) φ(ib,AP1P4) P1P2P4C
P2P4P3B φ(id,P4P3B) φ(ia,P3P2B) ABP4P2 P2P3P4C

ABP4P2 P2P4P3B P1P4P2A φ(ic,ABP2) φ(id,P4BA)
ZZZZ P1P2P4D P2CP4D φ(ib,P1DP4) φ(ic,P1P2D) P1P4P2A

P2P3P4C φ(id,P3P4C) P2CP4D φ(ia,P2P3C) P2P4P3B
P2CP4D φ(ib,CP4D) P1P2P4D φ(ia,P2CD) P2P3P4C
P1P4P2A ABP4P2 φ(ic,AP2P1) φ(ib,AP1P4) P1P2P4D
P2P4P3B φ(id,P4P3B) φ(ia,P3P2B) ABP4P2 P2P3P4C

ABP4P2 P2P4P3B P1P4P2A φ(ic,ABP2) φ(id,P4BA)

Chen et al. / J Zhejiang Univ SCIENCE A 2006 7(12):2031-2042 2040

by our experience, smoothing operations of the sur-
face usually helps decrease the number of Steiner
points added in the boundary recovery procedure,
and hence to improve the element quality near the
boundaries. Diagonal swap is frequently used, where
the Delaunay criterion is employed for a quadrilat-
eral composed of two neighboring triangular facets,
as shown in Fig.7. Two conditions must be satisfied
to perform a diagonal swap operation, i.e.

(1) ∆ABC and ∆ACD must be coplanar; and
(2) The circumcircle of ∆ABC contains point D.

Removal of outer elements
A necessary step for Delaunay meshing algo-

rithms is to remove tetrahedra outside of the problem
domain after the boundary recovery, for which the
coloring algorithm is usually adopted. However, one
prerequisite for the coloring algorithm is that the
tetrahedra sharing the prescribed surface facets, or
sub-facets formed in the boundary recovery proce-
dure, should be labeled as OUTER or INNER, repre-
senting the cases that the corresponding tetrahedra
lie outside or inside the problem domain, respec-
tively. The labeling operations are commonly per-
formed concurrently with the recovery procedure for
missing facets.

First, we assume two hypotheses in the follow-
ing discussion.

(1) Forming points of prescribed surface facets
are ordered such that the normal vectors of all facets
calculated with the right-hand rule point outwards;

(2) Forming points of all tetrahedra are ordered,
so that for each tetrahedron, the normal vector of the
facet containing the previous 3 forming points cal-
culated with the right-hand rule points to the 4th
forming point of the tetrahedron.

Suppose ∆ABC is a prescribed surface facet,
and ABCD is one of the tetrahedra containing it, the
OUTER or INNER property of ABCD, denoted with

etype, can be computed with the following mapping
relations, as shown in Table 13.

etype=FLAGE(ia, ib, ic, id), (2)

where ia, ib, ic and id are the codes of the points A, B,
C, and D in ABCD, respectively.

Suppose ∆EFG is a prescribed surface facet,
∆ABC is a recovered sub-facet of ∆EFG, and ABCD
is one of the tetrahedra containing ∆ABC, the
OUTER or INNER property of ABCD, denoted with
etype, can be computed with a two-step procedure.
First, get an initial value of etype using Eq.(2); and
then compare the normal vector of ∆ABC with that
of ∆EFG; if they are of opposite directions, reverse
etype.

NUMERICAL EXPERIMENTS

The boundary recovery procedure presented
above has been integrated into our 3D Delaunay
mesh generator. It is fairly robust and efficient even
for very complex geometries. Figs.8~10 show some
volume mesh examples generated using this genera-
tor. Table 14 presents some statistics for the mesh
examples and the boundary recovery procedure. It is
observed that the basic swap operations, i.e. Swap23,
Swap44, and Swap32, can recover most of the miss-
ing boundaries, however, they may fail for certain
missing boundaries, for which Steiner points have to
be added. Time performance data illustrate that most
of time for our Delaunay mesh generator is spent on
the procedures of inserting boundary nodes, creating
field points and inserting them. Nevertheless time
spent in the boundary recovery might not be omitted

Diagonal swap

A

B

C
D

A

B

C
D

Fig.7 Diagonal swap

Table 13 Mapping relations between the OUTER/
INNER property of a tetrahedron and codes of its
forming points

id ia ib ic etype
1/3/2 2/1/3 3/2/1 OUTER

0
3/1/2 2/3/1 1/ 2/3 INNER
0/2/3 3/0/2 2/3/0 OUTER

1
2/0/3 3/2/0 0/3/2 INNER
0/3/1 1/0/3 3/1/0 OUTER

2
3/0/1 1/3/0 0/1/3 INNER
0/1/2 2/0/1 1/2/0 OUTER

3
1/0/2 2/1/0 0/2/1 INNER

Chen et al. / J Zhejiang Univ SCIENCE A 2006 7(12):2031-2042 2041

for some configurations, the ratio of which to the
total elapsed time varies greatly from one configura-
tion to another.

The surface mesh configuration for Example 1
(Fig.8) is smoothed, for which totally 30 Steiner points

points are added in the boundary recovery. However,
the number grows to 59 if the mesh configuration is
not smoothed. Here, only the diagonal swap is em-
ployed to smooth the surface mesh, and 214 swap
operations are executed for this configuration.

Table 14 Statistics for the mesh examples and the boundary recovery procedure
Statistics Example 1 Example 2 Example 3

No. of surface nodes 7443 4961 6708
No. of surface facets 14890 9962 13420
No. of volume mesh nodes 12858 7856 7932
No. of volume mesh elements 57704 33182 26868
No. of missing edges 112 39 60
No. of recovered edges by swapping
(and its ratio to the total No. of missing edges (%))

101
(90.18)

33
(84.61)

49
(81.67)

No. of added points for the edge recovery 24 13 21
No. of missing facets 23 71 64
No. of recovered facets by swapping
(and its ratio to the total No. of missing facets (%))

20
(86.96)

50
(70.42)

52
(81.25)

No. of added points for the facet recovery 6 37 18
Total elapsed time for the mesh generator (s) 3.984 2.140 8.562
Time for the boundary recovery (s)
(and its ratio to the total elapsed time (%))

0.687
(17.24)

0.422
(19.72)

0.172
(2.01)

Chen et al. / J Zhejiang Univ SCIENCE A 2006 7(12):2031-2042 2042

CONCLUSION AND REMARKS

A classic conformal boundary recovery algo-
rithm, where Steiner points are added directly in the
intersection positions between missing boundaries
and triangulations, is redesigned. Local transforma-
tion operations are integrated to improve boundary
recovery results. The coding procedure of such an
algorithm is usually dry and error-prone, however, it
could become a rather routine and easy work with
the help of some new concepts, data structures, and
operations introduced in this paper. Moreover, all
cases of Steiner point insertion are discussed, and
their solutions are suggested, which highly enhances
the robustness of our boundary recovery algorithm.

Element quality near boundaries is a key for the
accuracy and/or convergence of the solution process
for numerical simulations. It is our future work to
improve it.

References
Chen, J.J., 2006. Unstructured Mesh Generation and Its Par-

allelization. Ph.D Thesis, College of Computer Science,
Zhejiang University (in Chinese).

Du, Q., Wang, D.S., 2004. Constrained boundary recovery for
three dimensional Delaunay triangulations. International

Journal for Numerical Methods in Engineering,
61(9):1471-1500. [doi:10.1002/nme.1120]

George, P.L., Hecht, F., Saltel, E., 1991. Automatic mesh
generator with specified boundary. Computer Methods in
Applied Mechanics and Engineering, 92(3):269-288.
[doi:10.1016/0045-7825(91)90017-Z]

George, P.L., Borouchaki, H., Saltel, E., 2003. ‘Ultimate’
robustness in meshing an arbitrary polyhedron. Interna-
tional Journal for Numerical Methods in Engineering,
58(7):1061-1089. [doi:10.1002/nme.808]

Lewis, R.W., Zheng, Y., Gethin, D.T., 1996. Three-dimen-
sional unstructured mesh generation: part 3. volume
meshes. Computer Methods in Applied Mechanics and
Engineering, 134(3-4):285-310. [doi:10.1016/0045-
7825(95)00918-3]

Liu, A., Baida, M., 2000. How Far Flipping Can Go towards
3D Conforming/Constrained Triangulations. Proceedings
of the 11th International Meshing Roundtable, New Or-
leans, Louisiana, USA, p.307-315.

Ruppert, J., Seidel, R., 1992. On the difficulty of triangulating
three-dimensional non-convex polyhedra. Discrete and
Computational Geometry, 7(3):227-254.

Song, C., Guan, Z.Q., Gu, Y.X., 2004. Boundary restore al-
gorithm and sliver elimination of 3D constrained Delau-
nay triangulation. Chinese Journal of Computational
Mechanics, 21(2):169-176 (in Chinese).

Weatherill, N.P., Hassan, O., 1994. Efficient three-dimen-
sional Delaunay triangulation with automatic point
creation and imposed boundary constraints. International
Journal for Numerical Methods in Engineering,
37(12):2005-2039. [doi:10.1002/nme.1620371203]

