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Abstract:    The problems of determining the global asymptotic stability and global exponential stability for a class of norm- 
bounded nonlinear neutral differential systems with constant or time-varying delays are investigated in this work. Lyapunov 
method was used to derive some useful criteria of the systems’ global asymptotic stability and global exponential stability. The 
stability conditions are formulated as linear matrix inequalities (LMIs) which can be easily solved by various convex optimization 
algorithms. Moreover, for the exponentially stable system, the exponential convergence rates of the system’s states can be esti-
mated by some parameters of the LMIs. Numerical examples are given to illustrate the application of the proposed method. 
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INTRODUCTION 
 

The theory of neutral delay-differential systems 
is of theoretical and practical interest. For example, 
neutral-type functional differential equations are 
natural models of voltage and current fluctuations in 
problems arising in transmission lines. Also, neutral 
systems often appear in the study of automatic control, 
population dynamics, and vibrating masses attached 
to an elastic bar, etc. (Park, 2003). So far, the stability 
analysis of various neutral delay-differential systems 
has received considerable attention. For the stability 
analysis of the linear neutral system, specially, with 
constant delays, many results have been published 
(Park, 2003; Fridman, 2001; Hu et al., 2004; Bellen et 
al., 1999; Cao and He, 2004; Agarwal and Grace, 
2000; Park and Won, 1999; 2000; Park, 2002). Sev-
eral researches have also been conducted for the same 

problem of neutral-type nonlinear delay differential 
equations (Si and Ma, 1995; Ma and Takeuchi, 1998; 
Amemiya and Ma, 2003). However, these papers only 
deal with the asymptotic stability of such systems, 
without providing any conditions for exponential 
stability and any information about the decay rates 
(i.e. exponential convergence rates) of the system’s 
states. Although the linear matrix inequality (LMI) 
approach is widely applied for stability analysis of 
linear neutral system because the stability conditions 
represented as LMIs are easily verified, and make the 
stability criteria less conservative (Park and Won, 
2000; Park, 2002), there does not seem to be much (if 
any) study on the stability analysis of nonlinear neu-
tral system via the LMI approach. 

In this work, we study the global asymptotic 
stability and global exponential stability of nonlinear 
neutral differential systems with constant or time- 
varying delays. The nonlinearity is assumed to be 
norm-bounded. Such nonlinear system is common in 
many practical or industrial processes. Combing 
Lyapunov-Krasovskii functionals with the LMI ap-
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proach, we derive some criteria on global asymptotic 
stability and global exponential stability, and estimate 
the exponential convergence rates. These stability 
conditions can be transformed into LMIs which can 
be easily solved by various effective optimization 
algorithms (Boyd et al., 1994) or computing software 
[e.g. MATLAB LMI Control Toolbox (Gahinet et al., 
1995)]. The main advantages of our approach include: 
(1) The criteria are relatively less conservative, and 
can be applied under more relaxed assumptions; (2) It 
can be efficiently verified via numerically solving the 
LMIs. Moreover, our approach can be also applied to 
stability analysis of linear neutral systems. 
 
 
NOTATIONS AND PRELIMINARIES  
 

Let n denote the n-dimensional real space and 
n n× denote the set of all real n by n matrices. If 

p∈X and ,qY ∈ C(X; Y) denotes the space of all 

continuous functions mapping .p q→  I denotes 
the unit matrix of appropriate order. λM(A) and λm(A) 
denote the maximal and minimal eigenvalue of a 
square matrix A, respectively. ||x|| denotes the Euclid 
norm of the vector x, and ||A|| denotes the induced 

norm of the matrix A, that is, T|| || ( ).Mλ=A A A  |a| 
denote the absolute value of the scalar a. 

Consider a specific class of nonlinear neutral 
differential system with time-varying delays having 
the form 
 

( ) ( ) ( , ( ), ( ( ))) ( , ( ( ))),t t t t t t t t h tτ= + − + −x Ax f x x g x
                                         (1) 

 
with the initial condition function 
 

0( ) ( ),  [ ,0],t θ θ θ ρ+ = ∀ ∈ −x φ                (2) 
 

where ( ) nt ∈x  is the state vector, n n×∈A  is con-

stant real system matrix, 2 1( ; )n n+∈f C and 
1( ; )n n+∈g C  are time-varying nonlinear func-

tions satisfying f(t, 0, 0)=0 and g(t, 0)=0, respectively, 
and the norm-bounded condition, i.e., there exist 
nonnegative constants α1, α2 and α3 such that  
 

1 2( , ( ), ( ( ))) ( ) ( ( )) ,f t t t t t t tτ α α τ− ≤ + −x x x x  (3) 

3( , ( ( ))) ( ( )) ,t t t t h tτ α− ≤ −g x x           (4) 
 

τ(t) and h(t) are positive time-varying differentiable 
bounded delays satisfying 
 

0 ( ) ,  ( ) 1,

0 ( ) ,  ( ) 1,

t t

h t h h t

τ τ τ< ≤ < ∞ ≤


< ≤ < ∞ ≤
                (5) 

 

max ( ),  max ( ), max{ , },t h h t hτ τ ρ τ= = = and φ(⋅) 
is the given continuously differentiable function on 
[−ρ, 0]. In this paper, the system matrix A is assumed 
to be a Hurwitz matrix with all the eigenvalues of A 
having negative real parts. So there exists at least one 
equilibrium point in the system Eq.(1).  
Definition 1 (Liao et al., 2002)    If there exist γ>0 and 
f(γ)>0 such that 
 

( ) ( )e ,  0,tt f tγγ −≤ ∀ >x                      (6) 
 

the system Eq.(1) is said to be exponentially stable at 
the equilibrium point, where γ is called the degree of 
exponential stability. 

Before proceeding further, we present 
well-known lemmas. 
Lemma 1 (Khargonekar et al., 1990)    For any real 
vector D and E with appropriate dimension and any 
positive scalar δ, we have 
 

T T T 1 T .δ δ −+ ≤ +DE E D DD E E           (7) 
 
Lemma 2 (Schur complement) (Boyd et al., 1994)    
The following LMI, 
 

T

( ) ( )
0,

( ) ( )
x x

x x
 

< 
 

Q S
S R

                   (8) 

 
where Q(x)=Q(x)T, R(x)=R(x)T, and S(x) depend af-
finely on x, is equivalent to 
 

1 T( ) 0,  ( ) ( ) ( ) ( ) 0.x x x x x−< − <R Q S R S        (9) 
 
 
GLOBAL STABILITY FOR NEUTRAL SYSTEMS 
WITH CONSTANT DELAYS 
 

First, we assume that the time-delay τ(t) and h(t) 
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are constant, i.e. τ(t)=τ>0, h(t)=h>0. Then the fol-
lowing criteria are established by using Lyapunov 
method in terms of LMIs. 
Theorem 1    Suppose that there exist positive defi-
nite matrices X and Q, and positive scalars β1 and β2, 
such that 
 

T
1 2 1

1 1

22
1

2

2

2

β β α

α β

α

 + + +


−


 +

AX XA I I X

X I
QX

A X

0

0

                    

22
12

0,

+ 
 <

− 
− 

XQ A X

Q
I

α

0 0
0

0

              (10) 

2
2 2

2 1

2 2
0,

2

α α

α β

 −
< 

−  

I Q I

I I
              (11) 

2
3 3

3 2

0,
α α
α β

 −
< − 

Ι I Ι
Ι I

                 (12) 

 
the origin of system Eq.(1) is globally asymptotically 
stable. 
Proof    For simplicity, we denote x(t) as x, x(t−τ) as 
xτ, f(t,x(t),x(t−τ)) as f, ( )t h−x  as ,hx  g(t, x (t−h)) as 
g. We construct the following positive definite 
Lyapunov-Krasovskii functional: 
 

0

0

( ) ( ) ( )d

( ) ( )d ,
h

V t s t s s

           t s t s s

τ

Τ Τ

−

Τ

−

= + + +

+ + +

∫
∫

x x Px x Qx

x x
        (13) 

 
where P, Q are positive definite matrices. The time 
derivative of V(x(t)) along the trajectories of system 
Eq.(1) is 
 

T T T T

T

( ) 2

         ( ) 2 2
           ( ) ( ).

h h

h h

V

A

Τ Τ Τ Τ Τ

Τ

Τ Τ

= + − + −

= + + + +

− − + + + + +

x x Px x Qx x Qx x x x x
x P A P x x Pf x Pg x Qx
x Qx x x Ax f g Ax f g

τ τ

τ τ

(14) 
 

Using Eq.(3), the term f 
Tf satisfies the following 

inequality: 

22 2T 2 2
1 2 1 2

2 22 22 2 2 2
1 2 1 2

2 T 2 T
1 2

+ +2

       ( )

       2 2 .

= ≤ ⋅

≤ + + +

= +

f f f x x x x

x x x x

x x x x

τ τ

τ τ

τ τ

α α α α

α α α α

α α

(15) 

 
Again, Using Eqs.(4), (15) and Lemma 1, the 

terms on the right-hand side of Eq.(14) satisfy 
 

2T

2 2 2 2

22 T 2 T 2 T
1 2 3

( ) ( )

  

  (2 ) 2 ,h h

+ + + + = + +

≤ + +

≤ + + +

Ax f g Ax f g Ax f g

A x f g

A x x x x x xτ τα α α

   (16) 

T T 1 T
1 1

T 2 1 T 2 1 T
1 1 1 2 1

2

           +2 +2 ,

−

− −

≤ +

≤

x Pf x PPx f f
x PPx x x x xτ τ

β β

β α β α β
 (17) 

T T 1 T
2 2

T 2 1 T
2 3 2

2

           ,h h

−

−

≤ +

≤ +

x Pg x PPx g g
x PPx x x

β β

β α β
                      (18) 

 

where β1 and β2 are positive scalars to be chosen. 
Then, we obtain 

 
T T 2 1

1 2 1 1
22 T 2 1

1 2 1

2 T 2 1 2
2 3 2 3

T

1 2

( ) ( 2

           2 ) (2

           2 ) ( )

       ( , , , ) ,

h h

h h

V −

−

−

≤ + + + +

+ + + + −

+ + − +

   
   =    
      

x x PA A P PP PP Ι

Q I A I x x I Q

I x x I I Ι x

x x
x G P Q x
x x

τ

τ

τ τ

β β α β

α α β

α α β α

β β

 

where 
T

1 2 1 2
22 1 2 2 1

1 1 1 2 1

2 2 1 2
2 3 2 3

( , , , ) diag[

           2 2 ,  2

           2 ,  ].

β β β β

α β α α β

α α β α

− −

−

= + + +

+ + + +

− + − +

G P Q PA A P PP PP

Ι Q I A I I

Q I I I Ι

 

 

If G(P,Q,β1,β2)<0 holds, then ( ) 0.V ≤x  There-
fore, the origin of system Eq.(1) is globally asymp-
totically stable. Pre- and post-multiplying the matrix 
G(P,Q,β1,β2) by diag(P−1,I,I) reveals the fact that 
G(P,Q,β1,β2)<0 is equivalent to 
 

T 2 1
1 2 1 1

22
1

2

   (2 ) 0,

−+ + + +

+ + + <

AX XA I I XX

XQX A XX

β β α β

α
        (19) 

2 1 2
2 1 22 2 0,− − + <I Q Iα β α                  (20) 
2 1 2
3 2 3 0,− − + <I I Ια β α                     (21) 
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where X=P−1. By Lemma 2, Eqs.(19)~(21) are 
equivalent to Eqs.(10)~(12). This completes the 
proof. 

Next, we will derive some criteria of exponential 
stability for system Eq.(1). 
Theorem 2    If there exist positive definite matrices 
X, Q, K1, K2, and K3, and positive scalars β1, β2, and 
0<α<1, satisfying the following generalized eigen-
value problem (GEVP): 
 

minimize   α,                        (22) 
subject to  

T
1 2 1 1

1 1

22
1

2

2

2

β β α

α β

α

 + + + +


−


 +

AX XA I I K X

X I
QX

A X

0

0
 

22
12

0,

+ 
 <

− 
− 

XQ A X

Q
I

α

0 0
0

0

            (23) 

2
2 2 2

2 1

2 2
0,

2

 −
< 

−  

I K I

I I

α α

α β
            (24) 

2
3 3 3

3 2

0,
 −

< − 

Ι K Ι
Ι I

α α
α β

              (25) 

1 1
1( ),ρ α ρ− −< +X K X                  (26) 

2 ,<K Qα                             (27) 

3 ,<K Iα                              (28) 
 
the origin of system Eq.(1) is globally exponentially 
stable. Moreover, 
 

2 2
2 2

1 2

( )

1 e 1 e( )+ ( ) +
2 2

e ,
( )

h

M M
t

m

t
γτ γ

γ

λ λ
γ γ
λ

− −

−

≤

 − −
 
 

x

P Q Ω Ω

P
                  (29) 

 
where ρ=max{τ,h}, 0<α=e−2γρ<1, X=P−1, ||Ω1||= 

0
sup || ( ) ||,

s
s

− ≤ ≤
x

τ
 2

0
|| || sup || ( ) || .

h s
s

− ≤ ≤
=Ω x  

Proof    By virtue of Eqs.(26)~(28), we have 

1 2 1 1 1 1
1

1

1

0 (1+2 ) e + ,
                         0 2 ,
                         0 2 ,                       (30)

γργρ ρ ρ α ρ ρ
γ
γ

− − − − −< < = <
⇔ < <

⇔ < <

X X X K X
X K
I K P

     2 2
20 e e ,γρ γτα − −< < = ≤K Q Q Q                (31) 

2 2
30 e e .hγρ γα − −< < = ≤K I I I               (32) 

 
We define the following positive definite Lyapunov- 
Krasovskii functional: 
 

 

02 2 ( )

0 2 ( )

( ) e e ( + ) ( + )d

          e ( ) ( )d ,

t t s

t s

h

V t s t s s

t s t s s

γ γ

γ

Τ + Τ

−

+ Τ

−

= +

+ + +

∫
∫

x x Px x Qx

x x

τ  (33) 

 
where P, Q are positive definite matrices, γ is positive 
scalar. Using Eqs.(16)~(18) and Eqs.(30)~(32), the 
time derivative of V(x(t)) along the trajectories of 
system Eq.(1) is 
 

2 2 2( ) 2 e 2e ( + + )+et t tV γ γ γγ Τ Τ Τ= +x x Px x P Ax f g x Qx  
2 ( ) 2 2 ( )e e et t t h

h h
γ τ γ γ

τ τ
− Τ Τ − Τ− + −x Qx x x x x  

2 T T
1 2e [ (tγ β β≤ + + +x PA A P PP PP  

22 1 2
1 1 12 2 2 )−+ + + + +Ι Q I A I P xα β α γ  

T 2 1 2 2
2 1 2(2 e 2 )γτ

τ τα β α− −+ − +x I Q I x  
T 2 1 2 2

3 2 3( e ) ]h
h h

γα β α− −+ − +x I I Ι x  
2 T T

1 2e [ (tγ β β< + + +x PA A P PP PP  
22 1 2

1 1 1 12 2 )−+ + + + +Ι Q I A I PK P xα β α  
T 2 1 2

2 1 2 2(2 2 )−+ − +x I K I xτ τα β α  
T 2 1 2

3 2 3 3( ) ]h h
−+ − +x I K Ι xα β α  

T

2
1 2e ( , , , ) ,t

h h

γ
τ τβ β

   
   =    
      

x x
x M P Q x
x x

 

where 
T

1 2 1 2
22 1 2

1 1 1 1

2 1 2 2 1 2
2 1 2 2 3 2 3 3

( , , , ) diag[

      2 2 ,

       2 2 , ].

β β β β

α β α

α β α α β α

−

− −

= + + +

+ + + + +

− + − +

M P Q PA A P PP PP

Ι Q I A I PK P

I K I I K Ι

 

 

If M(P,Q,β1,β2)<0 holds, then ( ) 0.V ≤x  Pre- 
and post-multiplying the matrix M(P,Q,β1,β2) by 
diag(P−1,I,I), and using Lemma 2, we have Eqs.(26)~ 
(28), where X=P−1. Since ( ) 0,V ≤x  we get 
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( ( )) ( (0)).V t V≤x x                      (34) 
 

However, 
 

0 2

0 2

0 22
1

02 2
2

2
21

1

( (0)) (0) (0) e ( ) ( )d

               e ( ) ( )d

            ( ) ( ) e d

               e d

1 e            ( ) ( )
2

        

s

s

h

s
M M

s

h

M M

V s s s

s s s

s

s

γ

τ

γ

γ

τ

γ

γτ

λ λ

λ λ
γ

Τ Τ

−

Τ

−

−

−

−
−

= +

+

 ≤ +  

+

 −
= + 
 

∫
∫

∫

∫

x x Px x Qx

x x

P Q Ω

Ω

X Q Ω

2
2

2
1 e       ,

2

hγ

γ

−−
+ Ω

  (35) 

and  
22 2

22 1

( ( )) e ( ) ( ) e ( ) ( )

            e ( ) ( ) ,

t t
m

t
m

V t t t t

t

γ γ

γ

λ

λ

Τ

−

≥ ≥

≥

x x Px P x

X x
 

 
therefore, we can get the convergence rates of the 
system’s states, i.e. Eq.(29). From Definition 1, we 
conclude that the equilibrium point is globally expo-
nentially stable. We hope that the degree of expo-
nential stability γ is maximal (or α is minimal) such 
that the system Eq.(1) converges to the equilibrium 
point as fast as possible. It requires solving the gen-
eralized eigenvalue minimization problem Eqs.(22)~ 
(28), which is a quasi-convex optimization problem 
and can be solved by using the MATLAB LMI Con-
trol Toolbox (Gahinet et al., 1995). Theorem 2 pro-
vides a simple method to determine the exponential 
stability of system Eq.(1) and get the upper bound of 
the exponential convergence rate, and can be widely 
applied to stability analysis. We thus complete the 
proof. 
 
 
GLOBAL STABILITY FOR NEUTRAL SYSTEMS 
WITH TIME-VARYING DELAYS 
 

Time-varying delay is commonly encountered in 
the field of automatic control or population dynamics, 
and its existence is frequently a source of oscillation 
and instability. Now we consider the case where the 
delays in system Eq.(1) are time-varying (noncon-
stant). Assuming that τ(t) and h(t) satisfy Eq.(5), we 
have the following results. 

Theorem 3    Suppose that τ(t) and h(t) satisfy 
( ) 1t ≤τ and ( ) 1,h t ≤  respectively. If there exist posi-

tive definite matrices X and Q, and positive scalars β1 
and β2, such that 
 

T
1 2 1

1 1

22
1

2

2

2

β β α

α β

α

 + + +


−


 +

AX XA I I X

X I
QX

A X

0

0

 

22
12

0,

+ 
 <

− 
− 

XQ A X

Q
I

α

0 0
0

0

            (36) 

2
2 1 2

2 1

2 2
0,

2

 −
< 

−  

I Q I

I I

α σ α

α β
            (37) 

2
3 2 3

3 2

0,
 −

< − 

Ι Ι Ι
Ι I

α σ α
α β

              (38) 

 
where 1 0

inf (1 ( )),
t

t
≥

= −σ τ  2 0
inf (1 ( )),
t

h t
≥

= −σ  the ori-

gin of system Eq.(1) is globally asymptotically stable. 
Proof    For simplicity, we denote x(t) as x , x(t−τ(t)) 
as xτ, ( ( ))t h t−x  as .hx  Define a positive definite 
Lyapunov-Krasovskii functional as follows: 
 

0

( )

0

( )

( ) ( ) ( )d

( ) ( )d .

t

h t

V t s t s s

           t s t s s

τ

Τ Τ

−

Τ

−

= + + +

+ + +

∫

∫

x x Px x Qx

x x
    (39) 

 
Using Eqs.(16)~(18), the time derivative of 

V(x(t)) along the trajectories of system Eq.(1) is 
 

T T
1 2

22 1 2
1 1 1

T 2 1 2
2 1 1 2

T 2 1 2
3 2 2 3

( ) 2 (1 ( ))

          (1 ( ))

       (

        2 2 )

         (2 2 )

        ( ) .

h h

h h

V t

h t

A

Τ Τ Τ

Τ Τ

−

−

−

= + − −

+ − −

≤ + + +

+ + + +

+ − +

+ − +

x x Px x Qx x Qx

x x x x
x P A P PP PP

Ι Q I A I x

x I Q I x
x I Ι Ι x

τ τ

τ τ

τ

β β

α β α

α β σ α

α β σ α

      (40) 

 
The remaining part of the proof is similar to that 
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of Theorem 1. According to the conditions Eqs.(36)~ 
(38), the origin of system Eq.(1) is globally asymp-
totically stable. The proof of Theorem 3 is thus com-
pleted. 

Following the same ideas as the proof of Theo-
rem 2, we have the following theorem on exponential 
stability of neutral system Eq.(1). 
Theorem 4    Suppose that τ(t) and h(t) satisfy 

( ) 1t ≤τ  and ( ) 1,h t ≤  respectively. If there exist 
positive definite matrices X, Q, K1, K2, and K3, and 
positive scalars β1, β2, and 0<α<1, satisfying the 
following GEVP: 
 

minimize α,                        (41) 
subject to 

T
1 2 1 1

1 1

22
1

2

2

2

 + + + +


−


 +

AX XA I I K X

X I
QX

A X

β β α

α β

α

0

0

 

22
12

0,

+ 
 <

− 
− 

XQ A X

Q
I

α

0 0
0

0

              (42) 

2
2 1 2 2

2 1

2 2
0,

2

 −
< 

−  

I K I

I I

α σ α

α β
           (43) 

2
3 2 3 3

3 2

0,
 −

< − 

Ι K Ι
Ι I

α σ α
α β

              (44) 

1 1
1( ),ρ α ρ− −< +X K X                    (45) 

2 ,<K Qα                               (46) 

3 ,<K Iα                                (47) 
 

where 1 0
inf (1 ( )),
t

t
≥

= −σ τ 2 0
inf (1 ( )),
t

h t
≥

= −σ =ρ  

max{ , },hτ  the origin of system Eq.(1) is globally 
exponentially stable. Moreover, 
 

2 2
2 21

1 2

1

( )

1 e 1 e( ) ( )
2 2

e ,
( )

h

M M
t

m

t
γτ γ

γ

λ λ
γ γ

λ

− −
−

−
−

 − −
+ + 

 ≤

x

X Q Ω Ω

X

 

(48) 

where 20 e 1,γρα −< = < 1
0

|| || sup || ( ) ||,
s

s
− ≤ ≤

=Ω x
τ

2|| ||=Ω  

0
sup || ( ) ||
h s

s
− ≤ ≤

x . 

Here, it is worth noting that, in Theorem 3 and 
Theorem 4, we require for the derivative of the 
time-varying delay τ(t) and h(t) to be equal to or less 
than 1, i.e. ( ) 1t ≤τ and ( ) 1.h t ≤ Such an assumption 
is often needed in many papers dealing with the sta-
bility problem of various neutral differential systems 
with time-varying delays (Park, 2002). 
 
 
ILLUSTRATIVE EXAMPLES 
 

To illustrate the usefulness of the proposed ap-
proach, we present the following three examples. 
Examples 1 and 2 show the application of the criteria 
in the case of constant delay, and Example 3 for the 
time-varying delay. 
Example 1    Consider the following linear neutral 
system with constant delays (Park and Won, 2000): 
 

( ) ( ) ( ) ( ),t t t t h= + − + −x Ax Bx Cxτ                 (49) 
where 

3 2
,

1 0
− − 

=  
 

A  
0 0.1

,
0.1 0

− 
=  − 

B  
0.1 0

,
0 0.1

 
=  
 

C  

τ=2, h=1, ρ=2. 
 

We can get α1=0, α2=||B||=0.1, and α3=||C||=0.1. 
Example 1 is Example 1 in the paper by Park and 
Won (2000). Although many approaches in the lit-
erature (Cao and He, 2004; Agarwal and Grace, 2000; 
Park and Won, 1999; 2000) are used to judge the 
global asymptotical stability of the system Eq.(49), 
our approach not only determines whether the system 
Eq.(49) is asymptotically stable or not by solving 
Eqs.(10)~(12), but also judges the global exponential 
stability of the system Eq.(49) by solving the GEVP 
Eqs.(22)~(28). Since Eqs.(10)~(12) have the solu-
tions as 
 

0.1752  0.0585
,

0.0585 0.0416
− 

=  − 
X

3.2645  0.0691
,

0.0691 3.4827
 

=  
 

Q  

1 20.0064,  0.0105,β β= =  
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then we can conclude that the system Eq.(49) is 
globally asymptotically stable by Theorem 1. Solving 
the GEVP Eqs.(22)~(28), we can obtain the solutions 
as 
 

α=0.9483, 
0.1394  0.0489

,
0.0489 0.0364

− 
=  − 

X  

4.8967  0.1036
,

0.1036 5.2241
 

=  
 

Q  

1

0.1457  0.0354
,

0.0354 0.0092
− 

=  − 
K  

2

4.6292  0.0494
,

0.0494 4.7851
 

=  
 

K 3

0.9842  0
,

0 0.9842
 

=  
 

K  

1 20.0044,  0.0107,= =β β  
 
so the system Eq.(49) is also globally exponentially 
stable by Theorem 2. 
Example 2    Consider the following nonlinear neu-
tral system with constant delays: 
 

1( ) ( ) tanh( ( ))
         tanh( ( )) tanh( ( )),

t t t
t t h

= +
+ − + −

x Ax A x
B x C xτ

    (50) 

 
where tanh(⋅) is hyperbolic tangent, tanh(x(t))= 
[tanh(x1(t)) tanh(x1(t))]T, τ=3, h=4, ρ=4, A= 

1

0.5 2 0.15 0.05 0.05 0.05
 ,  =  ,  =  ,

3 1 0.12 0 0.05 0.05
− − − −     
     − − −     

A B

0.1 0
=  .

0 0.1
 
 − 

C  

Since tanh(s)/s∈[0, 1], we can get α1=||A1||= 
0.1961, α2=||B||=0.1, α3=||C||=0.1. We solve Eqs.(10)~ 
(12), and have the solutions as 
 

0.0378  0.0046
,

0.0046 0.0552
− 

=  − 
X

2.2545  1.4678
,

1.4678 2.5827
 

=  
 

Q  

1 20.0222, 0.0108.= =β β  
 

Then we can state that the system Eq.(50) is globally 
asymptotically stable according to Theorem 1. We 
solve   the   GEVP   Eqs.(22)~(28),   and   obtain   the 
 

solutions as 
 

α=0.8553,
0.0287  0.0034

,
0.0034 0.0413

− 
=  − 

X  

4.5090  2.9356
,

2.9356 5.1654
 

=  
 

Q

1

0.0012  0.0001
,

0.0001 0.0017
− 

=  − 
K  

2

3.0125  1.5673
,

1.5673 3.3629
 

=  
 

K 3

0.8552  0
,

0 0.8552
 

=  
 

K  

1 20.0126, 0.0118.β β= =  
 

So the system Eq.(50) is also globally exponentially 
stable according to Theorem 2. 
Example 3    Consider the following nonlinear neu-
tral system with time-varying delays: 
 

1 1 2

1 1

1 2

2

1

2 1

( ) 3 ( ) 0.1 ( )

          0.4 ( ) ( 0.4 sin )

          0.2 ( ) ( 0.4 sin )

          0.06 ( 0.4 sin )

          0.25 tanh[ ( 0.2 cos )]

          0.15 tanh[( 0.2 cos )],
( ) 0.2 ( ) 3

x t x t x t

x t x t t

x t x t t

x t t

x t t

t t
x t x t

= − +

+ −

− −

+ −

+ −

− −

= − − 2

2 2

1 2

1 2

1

2

( )

          0.6 ( ) ( 0.4 sin )

          0.6 ( ) ( )

          0.4 ( 0.4 sin ) ( 0.4 sin )

          0.2 tanh[ ( 0.2 cos )]

          0.1tanh[ ( 0.2 cos )].

x t

x t x t t

x t x t

x t t x t t

x t t

x t t

+ −

+

− − −

− −

+ −

  (51) 

 

From Eq.(51), we can get
3 0.1

=  ,
0.2 3
− 

 − − 
A  α1= 

0.6723, α2=0.3, α3=0.3672. The time-varying delays 
τ(t)=0.4|sint| and h(t)=0.2|cost| are bounded as 

0.4=τ  and 0.2,h =  respectively. The maximum of 

τ and h  is 0.4, i.e. 0.4.=ρ  The infimums of 

1 ( )t−τ  and 1 ( )h t−  are 0.6 and 0.8, respectively. 
According to Theorem 3, by solving Eqs.(36)~(38), 
we can obtain the solutions as 
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0.2177  0.0030
,

0.0030 0.2160
 

=  
 

X
1.2645  0.2691

,
0.2691 1.5827
 

=  
 

Q  

1 20.3762, 0.2314.= =β β  
 
This implies that the system Eq.(51) is globally as-
ymptotically stable. According to Theorem 4, by 
solving the GEVP Eqs.(41)~(47), we can obtain the 
solutions as 
 

α=0.8652, 
0.1575  0.0061

,
0.0061 0.1611
 

=  
 

X  

2.4025  0.5113
,

0.5113 3.0071
 

=  
 

Q 1

0.0678  0.0038
,

0.0038 0.0635
 

=  
 

K  

2

1.9559  0.2453
,

0.2453 2.2459
 

=  
 

K  3

0.8617  0
,

0 0.8617
 

=  
 

K  

1 20.1990, 0.2432.= =β β  
 

Then the system Eq.(51) is also globally exponen-
tially stable. 
 
 
CONCLUSION 
 

In this work, we study the problems of global 
asymptotical stability and global exponential stability 
for norm-bounded nonlinear neutral differential sys-
tems with constant or time-varying delays. We derive 
some stability criteria by means of the Lyapunov- 
Krasovskii functionals and the LMI approach. The 
criteria are expressed in terms of LMIs, which are less 
conservative and less restrictive, and can be easily 
solved by using the MATLAB LMI Control Toolbox 
(Gahinet et al., 1995). While the system is exponen-
tially stable, we can also estimate the exponential 
convergence rates by the solutions of the LMIs. 
Moreover, our approach can be applied to the stability 
analysis of linear neutral systems. However, we need 
some assumptions which restrict the nonlinearity of 
the neutral system, that is, the nonlinearity is norm- 
bonded. It means that the proposed results cannot be 
applied to all nonlinear neutral systems. We will at-
tempt to develop these results to more general 
nonlinear neutral systems, removing such restrictions 
in future. 
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