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Abstract:    Some high-speed protocols such as HSTCP have been proposed to improve the ability of bandwidth utilization in 
high-speed networks. However, the increased scalability of high-speed TCP leads to many dropped packets in a single loss event in 
drop tail environment. In addition, there exists burstiness on short time scales that may cause lots of packets loss. In this paper, we 
analyze the problem of packet loss, and then propose ACWAP (Adaptive Congestion Window Adjustment plus Pacing) algorithm 
to reduce the loss rate of high-speed TCP. Along with pacing algorithm for avoiding burstiness on short time scales, ACWAP uses 
delay information to estimate the network state and adaptively changes the increase parameter to 1 before congestion to reduce the 
number of dropped packets. Many simulation results show our proposed algorithm can reduce the number of dropped packets in a 
single loss event, alleviate synchronized loss phenomena and improve the RTT unfairness while keeping the advantages of 
high-speed TCP. 
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INTRODUCTION 
 

Over the past few decades, though the traffic on 
the Internet has increased by several orders of mag-
nitude, the Internet still works well, which attributes 
primarily to the congestion control algorithms of TCP 
(Jacobson, 1988).  

However, the same congestion control algorithm 
performs badly in high-speed networks with band-
width larger than 1 Gbps, or even 10 Gbps (Floyd, 
2003). In order to enhance the performance of TCP in 
high-speed networks, HSTCP (Floyd, 2003), STCP 
(Kelly, 2003), BIC (Xu et al., 2004), LTCP (Bhan-
darkar et al., 2004) are proposed. HSTCP and STCP 
change the congestion window adjustment algorithm 
by making a(w) and b(w) become the function of 
congestion window size, where a(w) and b(w) are 
increase parameter and decrease parameter respec-
tively. BIC and LTCP also increase the scalability of 
standard TCP. Though the increased scalability of 
high-speed protocols is the requirement for full 
bandwidth utilization, some adverse effects arise 

together.  
HSTCP has been adopted by IETF, so many re-

searchers focus on the performance of HSTCP. To 
improve the convergence performance of HSTCP, a 
new algorithm (Nabeshima and Yata, 2004) was 
proposed recently. Pan et al.(2006) proposed 
CW-HSTCP to reduce the RTT unfairness of HSTCP. 
Barman et al.(2004) researched the effect of router 
buffer size on the performance of HSTCP. Souza and 
Agarwa (2003) concluded that HSTCP has a better 
performance with RED (Floyd and Jacobson, 1993) 
queue management through simulation evaluation. 

However, DT (Drop Tail) queue management is 
widely used due to its simplicity. Floyd (2003) 
pointed out that when DT queue management is 
adopted, there are at most a(w) dropped packets per 
loss event in a DT environment as the scalability of 
HSTCP, and burstiness on short time scales is severe 
because of the large congestion window achieved by 
HSTCP, but he had not deeply analyzed the problem.  

Huge packet loss requires retransmission, which 
increases the burden of the sender and wastes network 
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resource. Consequently, we present an algorithm to 
reduce the loss rate of HSTCP. Our experiments 
showed that the number of dropped packets in one 
loss event is related to a(w) and that packets are not 
dropped successively to result in severe synchronized 
loss. On the basis of a deep analysis, we propose 
ACWAP (Adaptive Congestion Window Adjustment 
plus Pacing). The basic idea is that the sender adap-
tively changes a(w) to 1 before congestion according 
to the variation of RTT, which is a reflection of net-
work state (Brakmo and Peterson, 1995; Kuzmanovic 
and Knightly, 2003). To avoid burstiness, we also 
adopt pacing algorithm. ACWAP-HSTCP is the 
combination of HSTCP and ACWAP algorithm. We 
did some simulations using ns2 to evaluate the per-
formance of ACWAP-HSTCP. Simulation results 
showed that ACWAP can reduce the number of 
dropped packets, alleviate synchronized loss and RTT 
unfairness. Particularly, ACWAP-HSTCP can coexist 
with HSTCP fairly and can be deployed gradually in 
Internet. Briefly speaking, our algorithm is scalable. 
In addition to HSTCP, ACWAP algorithm can be 
combined with some other algorithms, such as STCP, 
LTCP. 
 
 
SLIDING WINDOW MECHANISM AND CON- 
GESTION CONTROL MECHANISM OF TCP 
AND HSTCP 
 
Sliding window mechanism 

TCP uses sliding window mechanism and 
end-to-end acknowledgments to provide reliable data 
transfer across a network (Stevens, 1994). Fig.1 
shows the TCP window management mechanism. 
The window size (W) is determined as the minimum 
of receiver’s advertised buffer space and the conges-
tion window size of sender. The sender allows up to 
W outstanding or unacknowledged packets at a time. 

 
 
 
 
 
 
 
 
 

This results in a “usable window” size equal to W 
minus the number of outstanding packets. After re-
ceiving a new ACK packet, the window will slide to 
right. 
 
Congestion control mechanism 

Congestion control mechanism of TCP and 
HSTCP consists of slow start, congestion avoidance, 
fast recovery and so on. In congestion avoidance 
phase, TCP and HSTCP use the following algorithm 
to adjust congestion window: 
 

A new ACK: w←w+a(w)/w,                 (1) 
Congestion: w←w−b(w)×w,                 (2) 

 
where w denotes congestion window size (cwnd), a(w) 
and b(w) are additive increase and multiplicative 
decrease parameters respectively. For standard TCP, 
a(w)=1, b(w)=0.5. For HSTCP, a(w) and b(w) be-
come the function of w. As w increases, a(w) will 
increases, while b(w) decreases. For example, when 
w=118, a(w)=2, and b(w)=0.44. When w=347, 
a(w)=4, and b(w)=0.38. Floyd (2003) gives a detailed 
introduction of HSTCP. 
 
 
PACKET LOSS ANALYSIS 
 

In this section, we analyze the packet loss prob-
lem of HSTCP with drop tail queue management 
using simulation. We adopted ns2 simulator (version 
2.26). Simulation topology and configuration are the 
same as those in (Pan et al., 2006).  
 
Simulation results 

Let the bandwidth of the bottleneck link be 1 
Gbps and run three HSTCP flows (H1, H2, H3) with 
different RTT. Fig.2 shows the congestion window 
evolution and results of a detailed analysis are listed 
in Table 1, through which we conclude as follows: 

(1) The number of dropped packets has relation 
to a(w). 

(2) There is severe synchronized loss between 
HSTCP flows, which means that multiple competing 
flows simultaneously encounter loss events. Xu et 
al.(2004) pointed out that synchronized loss and the 
character of HSTCP were the causative reasons for 
the severe RTT unfairness. Compared with HSTCP 
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Fig.1  TCP window management 
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flows, standard TCP flow (denoted as R1) enconters 
less congestion. 
 
Analysis of packet loss problem 

A simple simulation is carried out for deep 
analysis to gain understanding of packet loss details. 
One HSTCP connection is established without back-
ground traffics, and the bottleneck bandwidth was set 
to 500 Mbps. Some simulation results are presented in 
Fig.3, where Wc denotes the congestion window size 
when congestion occurs. From Fig.3a, we can find 
that Wc=8400. Our simulation results showed in one 
congestion event 26 packets equaling the value of 
a(Wc) dropped. Moreover, we find that packets are 
not dropped successively with the sequence gap of 
dropped packets being about 323. For example, given 
that the sequence number of one dropped packet is i, 
the sequence number of the next dropped packet is 
about (i+323). 

If wi and RTTi denote the congestion window 
size and RTT of flow i respectively, throughput of 
flow i equals wi/RTTi. When throughput reaches 500 
Mbps (Fig.3b), the queue length of the router will 
increase too (Fig.3c), resulting in the increase of RTT 
as shown in Fig.3d, where narrow solid line denotes 
instantaneous   RTT,   and   bold   solid   line   denotes 

 
 
 
 
 
 
 
 

smoothed RTT (the saw-toothed shape is caused by 
coarse timer granularity). When the router queue 
buffer overflows and if the sender increases its 
throughput further, the router will drop some packets. 
Once one packet is dropped, the sender can detects 
packet loss after one RTT through 3 duplicated ACK 
packets (Stevens, 1994). In interval of one RTT, the 
congestion window will increase by a(w), which will 
all be dropped, so the number of dropped packets in 
one congestion event is a(w).  

Next, we explain why the packets are not 
dropped successively. The sending process deduced 
from Fig.3 is shown in Fig.4. We mentioned in Sec-
tion 2 that HSTCP is based on sliding window 
mechanism (as shown in Fig.1). If receiver’s buffer 
has no limit, the sender will send all the packets al-
lowed back-to-back, and the usable window will be-
come 0. Once a new ACK packet is received, the 
sender acknowledges one data packet and updates the 
congestion window according to Eq.(1), together with 
the window sliding rightward one packet. The usable 
window will become 1 again, leading to one packet 
being sent. Therefore, the interval of two data packets 
(denoted as t in Fig.4) is affected by the bottleneck 
link bandwidth, which is called ACK-clock mecha-
nism (Jacobson, 1988). As shown in Fig.4, once a 
new ACK packet is received and the calculated in-
creases of congestion window reach 1, the usable 
window will become 2 that allow 2 packets such as 
packet a and packet b to be sent back-to-back. If the 
router overflows, packet b will be dropped since it is a 
bursty packet. According to Eq.(1), the congestion 
window increment is a(w)/w for a new ACK packet, 
so w/a(w) ACK packets are required to let the in-
crement reach 1 (as shown in Fig.4), which means 
such burstiness occurs in every w/a(w) data packets. 
In our simulation, when congestion occurs, Wc=8400, 
and a(Wc)=26, so the interval of dropped packets’ 
sequence number is about 323.  

The un-successive packets loss leads to severe 

Table 1  Simulation results of HSTCP during 50~400 s 

Flow RTT (ms) Bandwidth  
utilization (%) 

Congestion 
numbers 

Dropped packets number 
in one congestion event 

Cwnd size when 
congestion a(w) 

H1 60 78.34 83 31.61 6653~7219 23~25 
H2 120 7.96 62 11.59 1007~1946 8~12 
H3 180 0.93 56 3.78 119~293 2~4 
R1 120 1.71 20 2.25 112~443 1 
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synchronized loss. An interval of RTT is needed for 
the sender to detect a congestion event. For standard 
TCP, after detecting congestion, a short RTT flow 
decreases its throughput, so it is possible for a long 
RTT flow to avoid packet loss. For HSTCP flows, 
there are a(w) [a(w)≥1] dropped packets per RTT and 
packets are not dropped successively, which increases 
the possibility of synchronized packet loss. For ex-
ample, in Table 1, for flow H2, RTT=120 ms. When 
congestion occurs, there are about 10 dropped packets, 
which means the interval of two dropped packets is at 
most 12 ms that is smaller than the RTT of flow H1, 
so severe synchronized loss occurs.  

In an actual network, the situation is more com-
plex. Congestion, reordering on the reverse path, or 
idling of the connection are common occurrences. On 
the other hand, in high-speed networks, a very large 
congestion window, such as a congestion window of 
83000, can be achieved by HSTCP flows. Therefore, 
an ACK packet may acknowledge hundreds or thou- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

sands of packets, which leads to a large burst on short 
time scales. This is the reason why the number of loss 
packets of H1 in Fig.2 is larger than a(w). 

In short, the increased scalability of high-speed 
TCP and burstiness on short time scales are the 
causative reason of the large number of dropped 
packets. 
 
 
ACWAP ALGORITHM AND ACWAP-HSTCP 
 

In this section, based on the above analysis, we 
propose ACWAP algorithm and ACWAP-HSTCP 
which is the application of ACWAP to HSTCP. 

The main idea of ACWAP is that the sender 
adaptively changes the value of a(w) to 1 before 
congestion. The variation of RTT reflects the network 
state (Brakmo and Peterson, 1995; Kuzmanovic and 
Knightly, 2003), which can be used to predict con-
gestion. In our algorithm, we use an exponentially 
smoothed high accuracy RTT estimate that is sup-
ported by standard TCP (Stevens, 1994).  

Let RC denote current RTT value, RTTmin denote 
the minimum of RTT and RTTmax denote the maxi-
mum of RTT, then RTTmin is determined by propaga-
tion delay, so (RC−RTTmin) is caused by router queue 
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Initial values: 
RTT_min=10000;  // the minimum of RTT 
RTT_max=0;  // the maximum of RTT 
numofcon=0; // the number of congestion 
β=0.8;  

On receiving a new ACK in congestion avoidance phase: 
interval=RTT/cwnd;  
// cwnd is the congestion window size 
if(RTT<RTT_min) 

RTT_min=RTT; 
if(RTT>RTT_max) 

RTT_max=RTT; 
diff=RTT_max–RTT_min; 
if((RTT>=RTT_min+β*diff)&&numofcon>=2) 

a(w)=1; 
else 

a(w)=increment( ); 
//increment( ) is used to calculate a(w) 

On congestion occurring: 
cwnd=cwnd*(1–b(w)); 
numofcon+=1  
RTT=RTT_min; 

On sending data: 
output(interval); 
// send data after interval 

increase and (RTTmax−RTTmin) is the biggest increased 
delay. We use the following equation to predict 
congestion: 
 

RC≥RTTmin+β×(RTTmax−RTTmin),              (3) 
 
where β is congestion factor. If Eq.(3) is satisfied, a(w) 
is set to 1. 

To avoid large burstiness on short time scales, 
we also adopt pacing algorithm as a supplement. Let 
Interval denote the sending interval of packets, then 
Interval=RC/w. 

A challenge in implementation is the need for a 
fine-grained timer. This problem was studied by Aron 
and Druschel (2000), whose work results showed that 
the soft timer technique allows the system timer to 
achieve 10 µs granularity without significant system 
overhead.  

When a connection is established, RTTmin and 
RTTmax are unknown to the sender, so a detection 
phase is needed. After being established, a connection 
will experience slow start phase and congestion 
avoidance phase (Stevens, 1994). Through slow start 
phase, a connection can get RTTmin, but RTTmax may 
not be correct, because during slow start phase, the 
congestion window increases exponentially. There-
fore, a congestion epoch in congestion avoidance 
phase is needed. We use a variable, numofcon (as 
shown in Fig.5) to let the change of a(w) be carried 
out after two congestion events have occurred since a 
connection is established. 

ACWAP-HSTCP is the combination of HSTCP 
and ACWAP. Namely, ACWAP-HSTCP serves as 
HSTCP at first, but once Eq.(3) is satisfied, ACWAP 
algorithm will come into effect by changing a(w) to 1. 
If β=1, ACWAP-HSTCP will serve as HSTCP com-
pletely. Fig.6 shows an example of the congestion 
window evolution of ACWAP-HSTCP. The details of 
ACWAP-HSTCP are shown in Fig.5. 

 
 
SIMULATION EVALUATION 
 

In this section, we evaluate ACWAP algorithm 
through ACWAP-HSTCP using simulation. Simula-
tion topology and configuration are the same as those 
in (Pan et al., 2006). 

To evaluate the fairness between high-speed 

TCP flows, fair index (Chiu and Jain, 1989) is used as 
follows: 
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where xi (xi≥0) is the link utilization of flow i. 
 
Case of single high-speed flow 

We set β=0.8, and run a single ACWAP-HSTCP 
flow with 500 Mbps bottleneck bandwidth. The 
congestion window evolution of our algorithm is 
shown in Fig.6 which can be compared with Fig.3a. It 
is easy to find that during 40~100 s ACWAP-HSTCP 
can reduce the number of congestion events from 6 to  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.5  Pseudo-codes of ACWAP-HSTCP 
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4. Our simulation results also show that only one 
packet is dropped in one congestion event during 
congestion avoidance phase. 
 
The case of several high-speed flows with different 
RTT 

We run three ACWAP-HSTCP flows with 
different RTT for 400 s with β being 0.8. The bot-
tleneck bandwidth is set to be 1 Gbps. We list the 
simulation results in Table 2 for comparison with 
those in Table 1.  

 
 
 
 
 
 
 
 
 

 
We can find that the number of dropped packets 

and congestion events both decrease greatly. More-
over, our algorithm can alleviate RTT unfairness, 
because ACWAP can avoid severe synchronized 
packet loss. Compared with the case of single 
high-speed flow, the average number of dropped 
packets in one congestion event is more than 1, be-
cause of packets overlap of different flows. However, 
the number of dropped packets is still much less than 
that of HSTCP, which is easily found by comparing of 
Table 1 and Table 2. 
 
Compatibility and the choice of β 

Up to now, there are several proposed 
high-speed TCP protocols, so compatibility of a new 
protocol must be considered. Here we study how 
ACWAP-HSTCP can coexist with HSTCP.  

We run a HSTCP flow and an ACWAP-HSTCP 
flow for 400 s. The simulation results are shown in 
Figs.7, 8 and 9. 

The compatibility of ACWAP-HSTCP depends 
on the choice of β. We can find that ACWAP-HSTCP 
flow with a small β such as 0.2 has low loss rate (as 
shown in Fig.7) but poor fairness (as shown in Fig.8 
and Fig.9). On the other hand, for a too large β, such 
as 0.9, though good fairness is achieved (Fig.9), the 
loss rate is high (Fig.7). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is easy to understand that the smaller β is, the 

earlier ACWAP algorithm works. That is to say, with 
a small value of β, ACWAP-HSTCP can change a(w) 
to 1 early that will reduce the number of congestion 
events and avoid synchronized loss. However, 
HSTCP flow increases the congestion window faster 
than ACWAP-HSTCP flow. Therefore, with a small β, 
ACWAP-HSTCP has lower less rate but poor fairness 
than HSTCP. Compared with a big β, good fairness is 

Table 2  Simulation results of ACWAP-HSTCP during 
50~400 s 

Flow RTT 
(ms) 

Bandwidth 
utilization 

(%) 

Congestion 
event 

number 

Dropped packets 
number in one 

congestion 
f1 60 56.32 35 2.56 
f2 120 21.23 22 1.60 
f3 180 12.21 13 1.20 
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achieved but the loss rate is high. Especially when 
β=0.9, it is possible for the sender not to change a(w) 
to 1 before congestion as the effect of ACWAP de-
pends on the RTT estimate accuracy, which may be 
affected by some factors such as congestion on the 
reverse path. 

Therefore, considering fairness and loss rate, 
β=0.8 is optimal. 
 
 
CONCLUSION  
 

In this paper, we propose ACWAP to reduce the 
loss rate of high-speed protocols. ACWAP adaptively 
changes a(w) to 1 according to the network state. 
What is more, pacing is used to avoid burstiness. 
ACWAP-HSTCP, a combination of HSTCP and 
ACWAP, is an application of ACWAP algorithm. 
Simulation results showed ACWAP can reduce the 
congestion events number, cut down loss rate, and 
alleviate RTT unfairness of HSTCP. Moreover, 
ACWAP-HSTCP has good compatibility with 
HSTCP. 
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