
Su et al. / J Zhejiang Univ SCIENCE A 2006 7(Suppl. II):245-251 245

An algorithm for reducing loss rate of high-speed TCP

SU Fan-jun†1,2, PAN Xue-zeng1, WANG Jie-bing1, WAN Zheng1

 (1School of Computer Science, Zhejiang University, Hangzhou 310027, China)
(2College of Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

†E-mail: sufanjun@163.com
Received Dec. 21, 2005; revision accepted Feb. 26, 2006

Abstract: Some high-speed protocols such as HSTCP have been proposed to improve the ability of bandwidth utilization in
high-speed networks. However, the increased scalability of high-speed TCP leads to many dropped packets in a single loss event in
drop tail environment. In addition, there exists burstiness on short time scales that may cause lots of packets loss. In this paper, we
analyze the problem of packet loss, and then propose ACWAP (Adaptive Congestion Window Adjustment plus Pacing) algorithm
to reduce the loss rate of high-speed TCP. Along with pacing algorithm for avoiding burstiness on short time scales, ACWAP uses
delay information to estimate the network state and adaptively changes the increase parameter to 1 before congestion to reduce the
number of dropped packets. Many simulation results show our proposed algorithm can reduce the number of dropped packets in a
single loss event, alleviate synchronized loss phenomena and improve the RTT unfairness while keeping the advantages of
high-speed TCP.

Key words: High-speed, Loss rate, HSTCP, Congestion control
doi:10.1631/jzus.2006.AS0245 Document code: A CLC number: TP393

INTRODUCTION

Over the past few decades, though the traffic on
the Internet has increased by several orders of mag-
nitude, the Internet still works well, which attributes
primarily to the congestion control algorithms of TCP
(Jacobson, 1988).

However, the same congestion control algorithm
performs badly in high-speed networks with band-
width larger than 1 Gbps, or even 10 Gbps (Floyd,
2003). In order to enhance the performance of TCP in
high-speed networks, HSTCP (Floyd, 2003), STCP
(Kelly, 2003), BIC (Xu et al., 2004), LTCP (Bhan-
darkar et al., 2004) are proposed. HSTCP and STCP
change the congestion window adjustment algorithm
by making a(w) and b(w) become the function of
congestion window size, where a(w) and b(w) are
increase parameter and decrease parameter respec-
tively. BIC and LTCP also increase the scalability of
standard TCP. Though the increased scalability of
high-speed protocols is the requirement for full
bandwidth utilization, some adverse effects arise

together.
HSTCP has been adopted by IETF, so many re-

searchers focus on the performance of HSTCP. To
improve the convergence performance of HSTCP, a
new algorithm (Nabeshima and Yata, 2004) was
proposed recently. Pan et al.(2006) proposed
CW-HSTCP to reduce the RTT unfairness of HSTCP.
Barman et al.(2004) researched the effect of router
buffer size on the performance of HSTCP. Souza and
Agarwa (2003) concluded that HSTCP has a better
performance with RED (Floyd and Jacobson, 1993)
queue management through simulation evaluation.

However, DT (Drop Tail) queue management is
widely used due to its simplicity. Floyd (2003)
pointed out that when DT queue management is
adopted, there are at most a(w) dropped packets per
loss event in a DT environment as the scalability of
HSTCP, and burstiness on short time scales is severe
because of the large congestion window achieved by
HSTCP, but he had not deeply analyzed the problem.

Huge packet loss requires retransmission, which
increases the burden of the sender and wastes network

Journal of Zhejiang University SCIENCE A
ISSN 1009-3095 (Print); ISSN 1862-1775 (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

Su et al. / J Zhejiang Univ SCIENCE A 2006 7(Suppl. II):245-251 246

resource. Consequently, we present an algorithm to
reduce the loss rate of HSTCP. Our experiments
showed that the number of dropped packets in one
loss event is related to a(w) and that packets are not
dropped successively to result in severe synchronized
loss. On the basis of a deep analysis, we propose
ACWAP (Adaptive Congestion Window Adjustment
plus Pacing). The basic idea is that the sender adap-
tively changes a(w) to 1 before congestion according
to the variation of RTT, which is a reflection of net-
work state (Brakmo and Peterson, 1995; Kuzmanovic
and Knightly, 2003). To avoid burstiness, we also
adopt pacing algorithm. ACWAP-HSTCP is the
combination of HSTCP and ACWAP algorithm. We
did some simulations using ns2 to evaluate the per-
formance of ACWAP-HSTCP. Simulation results
showed that ACWAP can reduce the number of
dropped packets, alleviate synchronized loss and RTT
unfairness. Particularly, ACWAP-HSTCP can coexist
with HSTCP fairly and can be deployed gradually in
Internet. Briefly speaking, our algorithm is scalable.
In addition to HSTCP, ACWAP algorithm can be
combined with some other algorithms, such as STCP,
LTCP.

SLIDING WINDOW MECHANISM AND CON-
GESTION CONTROL MECHANISM OF TCP
AND HSTCP

Sliding window mechanism

TCP uses sliding window mechanism and
end-to-end acknowledgments to provide reliable data
transfer across a network (Stevens, 1994). Fig.1
shows the TCP window management mechanism.
The window size (W) is determined as the minimum
of receiver’s advertised buffer space and the conges-
tion window size of sender. The sender allows up to
W outstanding or unacknowledged packets at a time.

This results in a “usable window” size equal to W
minus the number of outstanding packets. After re-
ceiving a new ACK packet, the window will slide to
right.

Congestion control mechanism

Congestion control mechanism of TCP and
HSTCP consists of slow start, congestion avoidance,
fast recovery and so on. In congestion avoidance
phase, TCP and HSTCP use the following algorithm
to adjust congestion window:

A new ACK: w←w+a(w)/w, (1)
Congestion: w←w−b(w)×w, (2)

where w denotes congestion window size (cwnd), a(w)
and b(w) are additive increase and multiplicative
decrease parameters respectively. For standard TCP,
a(w)=1, b(w)=0.5. For HSTCP, a(w) and b(w) be-
come the function of w. As w increases, a(w) will
increases, while b(w) decreases. For example, when
w=118, a(w)=2, and b(w)=0.44. When w=347,
a(w)=4, and b(w)=0.38. Floyd (2003) gives a detailed
introduction of HSTCP.

PACKET LOSS ANALYSIS

In this section, we analyze the packet loss prob-
lem of HSTCP with drop tail queue management
using simulation. We adopted ns2 simulator (version
2.26). Simulation topology and configuration are the
same as those in (Pan et al., 2006).

Simulation results

Let the bandwidth of the bottleneck link be 1
Gbps and run three HSTCP flows (H1, H2, H3) with
different RTT. Fig.2 shows the congestion window
evolution and results of a detailed analysis are listed
in Table 1, through which we conclude as follows:

(1) The number of dropped packets has relation
to a(w).

(2) There is severe synchronized loss between
HSTCP flows, which means that multiple competing
flows simultaneously encounter loss events. Xu et
al.(2004) pointed out that synchronized loss and the
character of HSTCP were the causative reasons for
the severe RTT unfairness. Compared with HSTCP

Outstanding Usable window

Window Acknowledged

Fig.1 TCP window management

Data Data

Su et al. / J Zhejiang Univ SCIENCE A 2006 7(Suppl. II):245-251 247

flows, standard TCP flow (denoted as R1) enconters
less congestion.

Analysis of packet loss problem

A simple simulation is carried out for deep
analysis to gain understanding of packet loss details.
One HSTCP connection is established without back-
ground traffics, and the bottleneck bandwidth was set
to 500 Mbps. Some simulation results are presented in
Fig.3, where Wc denotes the congestion window size
when congestion occurs. From Fig.3a, we can find
that Wc=8400. Our simulation results showed in one
congestion event 26 packets equaling the value of
a(Wc) dropped. Moreover, we find that packets are
not dropped successively with the sequence gap of
dropped packets being about 323. For example, given
that the sequence number of one dropped packet is i,
the sequence number of the next dropped packet is
about (i+323).

If wi and RTTi denote the congestion window
size and RTT of flow i respectively, throughput of
flow i equals wi/RTTi. When throughput reaches 500
Mbps (Fig.3b), the queue length of the router will
increase too (Fig.3c), resulting in the increase of RTT
as shown in Fig.3d, where narrow solid line denotes
instantaneous RTT, and bold solid line denotes

smoothed RTT (the saw-toothed shape is caused by
coarse timer granularity). When the router queue
buffer overflows and if the sender increases its
throughput further, the router will drop some packets.
Once one packet is dropped, the sender can detects
packet loss after one RTT through 3 duplicated ACK
packets (Stevens, 1994). In interval of one RTT, the
congestion window will increase by a(w), which will
all be dropped, so the number of dropped packets in
one congestion event is a(w).

Next, we explain why the packets are not
dropped successively. The sending process deduced
from Fig.3 is shown in Fig.4. We mentioned in Sec-
tion 2 that HSTCP is based on sliding window
mechanism (as shown in Fig.1). If receiver’s buffer
has no limit, the sender will send all the packets al-
lowed back-to-back, and the usable window will be-
come 0. Once a new ACK packet is received, the
sender acknowledges one data packet and updates the
congestion window according to Eq.(1), together with
the window sliding rightward one packet. The usable
window will become 1 again, leading to one packet
being sent. Therefore, the interval of two data packets
(denoted as t in Fig.4) is affected by the bottleneck
link bandwidth, which is called ACK-clock mecha-
nism (Jacobson, 1988). As shown in Fig.4, once a
new ACK packet is received and the calculated in-
creases of congestion window reach 1, the usable
window will become 2 that allow 2 packets such as
packet a and packet b to be sent back-to-back. If the
router overflows, packet b will be dropped since it is a
bursty packet. According to Eq.(1), the congestion
window increment is a(w)/w for a new ACK packet,
so w/a(w) ACK packets are required to let the in-
crement reach 1 (as shown in Fig.4), which means
such burstiness occurs in every w/a(w) data packets.
In our simulation, when congestion occurs, Wc=8400,
and a(Wc)=26, so the interval of dropped packets’
sequence number is about 323.

The un-successive packets loss leads to severe

Table 1 Simulation results of HSTCP during 50~400 s

Flow RTT (ms) Bandwidth
utilization (%)

Congestion
numbers

Dropped packets number
in one congestion event

Cwnd size when
congestion a(w)

H1 60 78.34 83 31.61 6653~7219 23~25
H2 120 7.96 62 11.59 1007~1946 8~12
H3 180 0.93 56 3.78 119~293 2~4
R1 120 1.71 20 2.25 112~443 1

0

0

0

0

0

Time (s)

C
w

nd
 si

ze
 (p

ac
ke

ts
)

H3

R1

H2

Fig.2 The congestion window evolution of HSTCP
under DT router

8000

6000

4000

2000

0
0 100 200 300 400

H1

Su et al. / J Zhejiang Univ SCIENCE A 2006 7(Suppl. II):245-251 248

synchronized loss. An interval of RTT is needed for
the sender to detect a congestion event. For standard
TCP, after detecting congestion, a short RTT flow
decreases its throughput, so it is possible for a long
RTT flow to avoid packet loss. For HSTCP flows,
there are a(w) [a(w)≥1] dropped packets per RTT and
packets are not dropped successively, which increases
the possibility of synchronized packet loss. For ex-
ample, in Table 1, for flow H2, RTT=120 ms. When
congestion occurs, there are about 10 dropped packets,
which means the interval of two dropped packets is at
most 12 ms that is smaller than the RTT of flow H1,
so severe synchronized loss occurs.

In an actual network, the situation is more com-
plex. Congestion, reordering on the reverse path, or
idling of the connection are common occurrences. On
the other hand, in high-speed networks, a very large
congestion window, such as a congestion window of
83000, can be achieved by HSTCP flows. Therefore,
an ACK packet may acknowledge hundreds or thou-

sands of packets, which leads to a large burst on short
time scales. This is the reason why the number of loss
packets of H1 in Fig.2 is larger than a(w).

In short, the increased scalability of high-speed
TCP and burstiness on short time scales are the
causative reason of the large number of dropped
packets.

ACWAP ALGORITHM AND ACWAP-HSTCP

In this section, based on the above analysis, we
propose ACWAP algorithm and ACWAP-HSTCP
which is the application of ACWAP to HSTCP.

The main idea of ACWAP is that the sender
adaptively changes the value of a(w) to 1 before
congestion. The variation of RTT reflects the network
state (Brakmo and Peterson, 1995; Kuzmanovic and
Knightly, 2003), which can be used to predict con-
gestion. In our algorithm, we use an exponentially
smoothed high accuracy RTT estimate that is sup-
ported by standard TCP (Stevens, 1994).

Let RC denote current RTT value, RTTmin denote
the minimum of RTT and RTTmax denote the maxi-
mum of RTT, then RTTmin is determined by propaga-
tion delay, so (RC−RTTmin) is caused by router queue

10000

8000

6000

4000

2000

0

1500

1200

900

600

300

0

800

600

400

200

0

160

140

120

100

80

0 20 40 60 80 100 0 20 40 60 80 100

0 20 40 60 80 100 0 20 40 60 80 100

C
w

nd
 si

ze
 (p

ac
ke

ts
)

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts

)

Th
ro

ug
hp

ut
 (p

ac
ke

ts
)

RT
T

(m
s)

Time (s) Time (s)

Time (s) Time (s)

(a) (b)

(c) (d)
Fig.3 Simulation results of single HSTCP flow. (a) Congestion window evolution versus time; (b) Throughput
versus time; (c) Queue length in DT router versus time; (d) RTT versus time

a b c d

t w/a(w) packets

Fig.4 The microcosmic sending process

… … …

Su et al. / J Zhejiang Univ SCIENCE A 2006 7(Suppl. II):245-251 249

Initial values:
RTT_min=10000; // the minimum of RTT
RTT_max=0; // the maximum of RTT
numofcon=0; // the number of congestion
β=0.8;

On receiving a new ACK in congestion avoidance phase:
interval=RTT/cwnd;
// cwnd is the congestion window size
if(RTT<RTT_min)

RTT_min=RTT;
if(RTT>RTT_max)

RTT_max=RTT;
diff=RTT_max–RTT_min;
if((RTT>=RTT_min+β*diff)&&numofcon>=2)

a(w)=1;
else

a(w)=increment();
//increment() is used to calculate a(w)

On congestion occurring:
cwnd=cwnd*(1–b(w));
numofcon+=1
RTT=RTT_min;

On sending data:
output(interval);
// send data after interval

increase and (RTTmax−RTTmin) is the biggest increased
delay. We use the following equation to predict
congestion:

RC≥RTTmin+β×(RTTmax−RTTmin), (3)

where β is congestion factor. If Eq.(3) is satisfied, a(w)
is set to 1.

To avoid large burstiness on short time scales,
we also adopt pacing algorithm as a supplement. Let
Interval denote the sending interval of packets, then
Interval=RC/w.

A challenge in implementation is the need for a
fine-grained timer. This problem was studied by Aron
and Druschel (2000), whose work results showed that
the soft timer technique allows the system timer to
achieve 10 µs granularity without significant system
overhead.

When a connection is established, RTTmin and
RTTmax are unknown to the sender, so a detection
phase is needed. After being established, a connection
will experience slow start phase and congestion
avoidance phase (Stevens, 1994). Through slow start
phase, a connection can get RTTmin, but RTTmax may
not be correct, because during slow start phase, the
congestion window increases exponentially. There-
fore, a congestion epoch in congestion avoidance
phase is needed. We use a variable, numofcon (as
shown in Fig.5) to let the change of a(w) be carried
out after two congestion events have occurred since a
connection is established.

ACWAP-HSTCP is the combination of HSTCP
and ACWAP. Namely, ACWAP-HSTCP serves as
HSTCP at first, but once Eq.(3) is satisfied, ACWAP
algorithm will come into effect by changing a(w) to 1.
If β=1, ACWAP-HSTCP will serve as HSTCP com-
pletely. Fig.6 shows an example of the congestion
window evolution of ACWAP-HSTCP. The details of
ACWAP-HSTCP are shown in Fig.5.

SIMULATION EVALUATION

In this section, we evaluate ACWAP algorithm
through ACWAP-HSTCP using simulation. Simula-
tion topology and configuration are the same as those
in (Pan et al., 2006).

To evaluate the fairness between high-speed

TCP flows, fair index (Chiu and Jain, 1989) is used as
follows:

2
2

1 1

() ,
n n

i i
i i

FI x x n x
= =

 =

∑ ∑

where xi (xi≥0) is the link utilization of flow i.

Case of single high-speed flow

We set β=0.8, and run a single ACWAP-HSTCP
flow with 500 Mbps bottleneck bandwidth. The
congestion window evolution of our algorithm is
shown in Fig.6 which can be compared with Fig.3a. It
is easy to find that during 40~100 s ACWAP-HSTCP
can reduce the number of congestion events from 6 to

Fig.5 Pseudo-codes of ACWAP-HSTCP

0

0

0

0

0 8000

6000

4000

2000

0
0 20 40 60 80 100

Time (s)

C
w

nd
 si

ze
 (p

ac
ke

ts
)

Fig.6 The congestion window evolution of
ACWAP-HSTCP

Su et al. / J Zhejiang Univ SCIENCE A 2006 7(Suppl. II):245-251 250

4. Our simulation results also show that only one
packet is dropped in one congestion event during
congestion avoidance phase.

The case of several high-speed flows with different
RTT

We run three ACWAP-HSTCP flows with
different RTT for 400 s with β being 0.8. The bot-
tleneck bandwidth is set to be 1 Gbps. We list the
simulation results in Table 2 for comparison with
those in Table 1.

We can find that the number of dropped packets

and congestion events both decrease greatly. More-
over, our algorithm can alleviate RTT unfairness,
because ACWAP can avoid severe synchronized
packet loss. Compared with the case of single
high-speed flow, the average number of dropped
packets in one congestion event is more than 1, be-
cause of packets overlap of different flows. However,
the number of dropped packets is still much less than
that of HSTCP, which is easily found by comparing of
Table 1 and Table 2.

Compatibility and the choice of β

Up to now, there are several proposed
high-speed TCP protocols, so compatibility of a new
protocol must be considered. Here we study how
ACWAP-HSTCP can coexist with HSTCP.

We run a HSTCP flow and an ACWAP-HSTCP
flow for 400 s. The simulation results are shown in
Figs.7, 8 and 9.

The compatibility of ACWAP-HSTCP depends
on the choice of β. We can find that ACWAP-HSTCP
flow with a small β such as 0.2 has low loss rate (as
shown in Fig.7) but poor fairness (as shown in Fig.8
and Fig.9). On the other hand, for a too large β, such
as 0.9, though good fairness is achieved (Fig.9), the
loss rate is high (Fig.7).

It is easy to understand that the smaller β is, the

earlier ACWAP algorithm works. That is to say, with
a small value of β, ACWAP-HSTCP can change a(w)
to 1 early that will reduce the number of congestion
events and avoid synchronized loss. However,
HSTCP flow increases the congestion window faster
than ACWAP-HSTCP flow. Therefore, with a small β,
ACWAP-HSTCP has lower less rate but poor fairness
than HSTCP. Compared with a big β, good fairness is

Table 2 Simulation results of ACWAP-HSTCP during
50~400 s

Flow RTT
(ms)

Bandwidth
utilization

(%)

Congestion
event

number

Dropped packets
number in one

congestion
f1 60 56.32 35 2.56
f2 120 21.23 22 1.60
f3 180 12.21 13 1.20

0.4

0.6

0.8

1.0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
β

Fa
ir

in
de

x

Fig.9 Fairness index versus β

0

20

40

60

80

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
β

Fig.8 Bandwidth utilization of two flows

B
an

dw
id

th
 u

til
iz

at
io

n
(%

)
HSTCP

ACWAP-HSTCP

0

2

4

6

8

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
β

Fig.7 Loss rate of two flows versus β

Lo
ss

 ra
te

HSTCP

ACWAP-HSTCP

Su et al. / J Zhejiang Univ SCIENCE A 2006 7(Suppl. II):245-251 251

achieved but the loss rate is high. Especially when
β=0.9, it is possible for the sender not to change a(w)
to 1 before congestion as the effect of ACWAP de-
pends on the RTT estimate accuracy, which may be
affected by some factors such as congestion on the
reverse path.

Therefore, considering fairness and loss rate,
β=0.8 is optimal.

CONCLUSION

In this paper, we propose ACWAP to reduce the
loss rate of high-speed protocols. ACWAP adaptively
changes a(w) to 1 according to the network state.
What is more, pacing is used to avoid burstiness.
ACWAP-HSTCP, a combination of HSTCP and
ACWAP, is an application of ACWAP algorithm.
Simulation results showed ACWAP can reduce the
congestion events number, cut down loss rate, and
alleviate RTT unfairness of HSTCP. Moreover,
ACWAP-HSTCP has good compatibility with
HSTCP.

References
Aron, M., Druschel, P., 2000. Soft timers: efficient micro-

second software timer support for network processing.
ACM Trans. on Computer Systems, 18(3):197-228.
[doi:10.1145/354871.354872]

Barman, D., Smaragdakis, G., Matta, I., 2004. The Effect of
Router Buffer Size on HighSpeed TCP Performance.
Proceedings of IEEE Globecom, Dallas, p.1617-1621.

Bhandarkar, S., Jain, S., Reddy, A.N., 2004. LTCP: A Layer-
ing Technique for Improving the Performance of TCP in
HighSpeed Networks. INTERNET DRAFT: draft-bhan-
darkar-ltcp-01.txt.

Brakmo, L., Peterson, L., 1995. TCP Vegas: End to end con-
gestion avoidance on a global Internet. IEEE Journal on
Selected Areas in Communications, 13(8):1465-1480.
[doi:10.1109/49.464716]

Chiu, D., Jain, R., 1989. Analysis of the increase and decrease
algorithms for congestion avoidance in computer net-
works. Computer Networks and ISDN Systems,
17(1):1-14. [doi:10.1016/0169-7552(89)90019-6]

Floyd, S., 2003. HighSpeed TCP for Large Congestion Win-
dows. RFC 3649.

Floyd, S., Jacobson, V., 1993. Random early detection gate-
ways for congestion avoidance. IEEE/ACM Transactions
on Networking, 1(4):397-413. [doi:10.1109/90.251892]

Jacobson, V., 1988. Congestion avoidance and control. ACM
SIGCOMM Computer Communication Review, 18(4):
314-329. [doi:10.1145/52325.52356]

Kelly, T., 2003. Scalable TCP: Improving performance in
high-speed wide area networks. ACM SIGCOMM Com-
puter Communication Review, 33(2):83-91. [doi:10.
1145/956981.956989]

Kuzmanovic, A., Knightly, E., 2003. TCP-LP: A Distributed
Algorithm for Low priority Data Transfer. Proceedings of
IEEE INFOCOM, San Francisco, p.1691-1701.

Nabeshima, M., Yata, K., 2004. Improving the Convergence
Time of HighSpeed TCP. IEEE International Conference
on Networks, p.19-23.

Souza, E., Agarwa, D., 2003. A HighSpeed TCP Study:
Characteristics and Deployment Issues. LBNL Technical
Report LBNL-53215. Http://www.icir.org/floyd/hstcp.
html.

Stevens, W.R., 1994. TCP/IP Illustrated, Volume 1: the Pro-
tocols. Addison-Wesley.

Pan, X.Z., Su, F.J., Lü, Y., Ping, L.D., 2006. CW-HSTCP: Fair
TCP in high-speed networks. Journal of Zhejiang Uni-
versity SCIENCE A, 7(2):172-178. [doi:10.1631/jzus.
2006.A0172]

Xu, L., Harfoush, K., Rhee, I., 2004. Binary Increase Conges-
tion Control (BIC) for Fast Long-distance Networks.
Proceedings of INFOCOM, Hong Kong, p.2514-2524.

