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Abstract:    An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) 
signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often confronted with the 
problem of insufficient data points and noisy circumstances, which led to unsatisfactory results. Compared with fractal dimension 
as well as the standard ApEn, the improved ApEn can extract information underlying sEMG signals more efficiently and accu-
rately. The method introduced here can also be applied to other medium-sized and noisy physiological signals. 
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INTRODUCTION 
 

Surface EMG (sEMG) signals recorded from 
skin surface have been widely used in fields such as 
prosthesis control, rehabilitation, muscle fatigue 
analysis and clinical diagnosis (Chang et al., 1996; 
Park and Stelmach, 2006; Zijdewind et al., 1998; 
Doorenbosch and Harlaar, 2004; Georgakis et al., 
2003; Abel et al., 1996). When it comes to controlling 
a prosthesis what action to carry out next, recognizing 
the rehabilitation condition of post-operational mus-
cles, or judging the degree of muscle fatigue (Sparto 
et al., 2000) etc., it is of great importance to accu-
rately extract the signature information from sEMG 
signals.  

Many parameters have been successfully ap-
plied to classify sEMG signals (Jang et al., 1994; 
Zardoshti-Kermani et al., 1995; Kang et al., 1995; 
1996; Gupta et al., 1997; Englehart et al., 1999; Hu et 
al., 2005; Crawford et al., 2005; Huang et al., 2005; 

Kim et al., 2006), among which nonlinear dynamical 
analysis is a quite powerful approach. The calcula-
tions of most nonlinear dynamic measures, however, 
are frequently confronted with insufficient data points 
and noisy backgrounds. Wolf et al.(1985) pointed out 
that the required data points to get a reasonable esti-
mate of correlation dimension were up to 30m for an 
m-dimensions attractor. In 1991, Pincus (1991) pro-
posed approximate entropy (ApEn) for a measure of 
system complexity that is applicable to noisy and 
short datasets with data points typically between 100 
and 5000 (Pincus and Goldberger, 1994). Given N 
points, ApEn(m, r, N) is approximately equal to the 
negative average natural logarithm of the conditional 
probability that vectors similar for m points remain 
similar at the next point, where the similarity of two 
vectors is judged in terms of their absolute coordi-
nates.  

We present here an improved ApEn where two 
vectors’ similarity is based on their shapes rather than 
their absolute coordinates, and then employed it to 
extract features from sEMG signals. Results showed 
that, compared with fractal dimension as well as the 
standard ApEn, the improved ApEn can more effi-
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ciently characterize the same two different patterns of 
sEMG signals once dealt with by Hu et al.(2005). 

 
 

MATERIALS AND METHODS 
 
Subjects and data acquisition 

The signal collection was completed at the EMG 
room of Shanghai Huashan Hospital in China. Thirty 
healthy volunteers participated in this study, all of 
whom gave their informed consent before partici-
pating. Each subject was requested to execute two 
different kinds of actions: forearm supination (FS) 
and forearm pronation (FP), during which sEMG 
signals were collected. Skin surface of the area of 
interest was abraded with alcohol beforehand, and 
two sets of 5-mm diameter discs electrodes were 
placed over the flexor carpi radialis and the extensor 
carpi radialis longus on the right forearm. Signals 
were digitally sampled at a rate of 1000 Hz and the 
bandwidth of the amplifier-filter was 10 Hz to 500 
Hz. 

 
Improved ApEn 

For a time series of N data {u(i):1≤i≤N}, form 
vector sequences x(1) through x(N−m+1) as follows: 

 
x(i)={u(i), u(i+1), …, u(i+m−1)}.             (1) 

 
Here, x(i) represents m consecutive u values, starting 
with the ith point. Generalize vector sequences {x(i), 
1≤i≤N−m+1} by removing a baseline as follows: 
 

V(i)={u(i)−v0(i), u(i+1)−v0(i), …, u(i+m−1)−v0(i)} 
 ={v(i), v(i+1), …, v(i+m−1)},                         (2) 

 
where the baseline can be obtained by averaging the 
m consecutive u values in vector x(i) 
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Define the distance d[V(i), V(j)] between vectors 

V(i) and V(j) 
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Average the natural logarithms of ( )m
iC r  over i 
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Then the ApEn of the sequence can be estimated 
by 
 

ApEn(m, r, N)=φm(r)−φm+1(r).             (7) 
 

Choices of parameters 
How the input parameters are chosen (Pincus 

and Goldberger, 1994) gives rise not only to statistical 
estimation issues but also to parameter issues. The 
parameters m and r must be fixed for each calculation 
of ApEn, where m is the length of compared runs, and 
r is the tolerance for accepting matches. A choice of 
m=2 is superior to m=1, in that it allows more detailed 
reconstruction of the joint probabilistic dynamics of 
the process. Typically, m>2 is unfavorable due to the 
need of very large values of N or r, while N is often 
small for a physiological dataset, and too large an r 
value may lead to the loss of detailed information. 
Accordingly, we set m=2 in our experiments. 

As an effective filter, the tolerance r should also 
be carefully selected. Too small an r value will result 
in salient influence from noise, while too large an r 
value, as mentioned above, is supposed to be avoided 
for fear of information loss. Pincus (1995) concluded 
that a value between (0.1~0.25)×SD of r produces 
good statistical validity of ApEn(m, r, N) for m=1 and 
m=2 when dealing with most datasets, where SD is 
the standard deviation of the original datasets. We 
found in our experiments that a value of r=0.2SD 
worked well for the characterization of sEMG signals, 
which was thus set as the tolerance in our calculation 
of ApEn. 

 
 

RESULTS AND DISCUSSION 
 

For the two patterns of sEMG signals (Hu et al., 
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2005), we first calculated the approximate entropy 
values using the improved ApEn, and then compared 
the results with those of fractal dimension. The ap-
proximate entropy values of FP and FS signals dis-
tribute among 0.7~0.9 and 1.1~1.3 respectively. No 
mix region exists in the approximate entropy values 
of the two motions, and the division of the two clus-
ters is apparent (Fig.1). Though fractal dimensions 
(Hu et al., 2005) of filtered FP and FS signals can be 
distinguished more possibly than those of raw FP and 
FS signals (Fig.2), there are still some mix points of 
the two clusters, so it is somewhat ambiguous when 
judging which cluster some of the points fall in. 
Comparing the parameters of approximate entropy 
with those of fractal dimension when characterizing 
the two motions graphically, we can see that the 
former works better than the latter. 

In addition, the efficiency of the two parameters 
as features of sEMG signal classification was also 
tested on the basis of two statistics (Hu et al., 2005), 
namely, dispersion of the clusters and distance be-
tween different cluster centers. The lower the disper-
sion and the larger the distance are, the more appro-
priate a parameter is to be a feature. Employing 
standard deviation in one cluster as the estimation of 
cluster dispersion and the average value as the esti-
mation of cluster center, we calculated these two 
statistics of the two parameters (Table 1). The clus-
ter-to-cluster distance of fractal dimension appears 
much larger than that of approximate entropy, but it 
does not necessarily mean that fractal dimension is 
superior to approximate entropy as a feature of sEMG 
signal classification, because the two parameters bear 
different numerical values. If generalized through the 
division by the mean value of the two clusters’ centers, 
the cluster-to-cluster distance of approximate entropy 
will then be closer to that of fractal dimension, 0.4105 
and 0.5061 respectively. When taking the other sta-
tistic, cluster dispersion which is more important than 
cluster distance to measure the efficiency of a feature, 
into account, we can find that the standard deviations 
of approximate entropy for the two clusters (0.0330 
for FP and 0.0515 for FS) are much smaller than those 
of fractal dimension (0.2286 for FP and 0.3166 for 
FS). In consequence, approximate entropy is more 
appropriate to be a feature of sEMG signal than 
fractal dimension. 

Cluster dispersion and cluster-to-cluster distance 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2   Distribution of fractal dimensions for (a) filtered
sEMG signals and (b) raw sEMG signals (Hu et al.,
2005). Squares (□) and circles (○) symbolize FS and FP
signals, respectively 

Table 1  Statistics of fractal dimensions for filtered sig-
nals and approximate entropy for raw signals 

SD 
 

Dg  
(FP, FS)

D  
(FP, FS) (FP) (FS)

Fractal dimension 0.5061 0.8653 0.2286 0.3166
Improved ApEn 0.4105 0.4189 0.0330 0.0515
Dg: Generalized cluster-to-cluster distance; D: Original clus-
ter-to-cluster distance; SD: Standard deviation 

Fig.1  Distribution of approximate entropy calculated
by improved ApEn. Squares (□) and circles (○) sym-
bolize approximate entropy values of FS and FP signals
respectively 

0 5 15 20 25 30 

Number of volunteers 

1.0

0.9

0.8

0.7

1.2

1.1

1.4

1.3

A
pE

n 

0 5 10 15 20 25 30 
Number of volunteers 

1.0

0.5

2.0

1.5

3.0

2.5

Fr
ac

ta
l d

im
en

si
on

 

(a) 

0 5 10 15 20 25 30 

1.0

0.5

2.0

1.5

3.0

2.5

Fr
ac

ta
l d

im
en

si
on

 

Number of volunteers 

(b) 

10 



Chen et al. / J Zhejiang Univ SCIENCE B   2006 7(10):844-848 847

were also calculated for approximate entropy pa-
rameters obtained by the standard ApEn, and are 
listed in Table 2 along with those by the improved 
ApEn. Smaller cluster dispersion values for FP and 
FS of the improved ApEn algorithm, together with 
larger cluster-to-cluster distance of it, imply that 
features by the improved ApEn can identify the two 
kinds of actions more efficiently than those of the 
standard ApEn. 

 
 
 
 
 
 
 
 
 

CONCLUSION 
 

Due to the low pass filter effect of tissues be-
tween motor units and the surface electrode on motor 
unit action potentials (MUAPs), MUAPs with dif-
ferent distances from surface electrode have different 
amplitudes and frequencies. Rather than simple 
summation of MUAPs, surface EMG signal is 
nonlinear combination of all MUAPs generated 
within the pick-up area of the electrode. The 
non-linearity underlying surface EMG signals can 
hardly be described by simple linear superposition 
models. Successful application of nonlinear dynamic 
analysis to other biological signals such as EEG and 
ECG provides a new way to characterize complex 
EMG signals. 

Most nonlinear dynamic measures like K-S en-
tropy and fractal dimensions need very large data 
volume to describe a strange attractor, which is hard 
to satisfy when dealing with surface EMG signals. 
Another problem the most nonlinear parameters fre-
quently come across in dealing with sEMG signals is 
the noisy background. Unlike most entropy and 
fractal dimensions, ApEn stops short via small em-
bedding dimension m and coarse tolerance r, sacri-
ficing an attempt to reconstruct the full process dy-
namics. In consequence, ApEn is applicable to data-
sets with a relatively small number of data points in 
addition to its robustness to noise through the selec-
tion of tolerance r. Less data points needed together 

with smaller embedding dimension in the calculation 
of ApEn also greatly shorten the calculation time, 
which makes real-time application possible. Much 
smaller cluster dispersions of approximate entropy 
than fractal dimension indicate that ApEn is more 
suitable for characterizing sEMG signals. Besides, 
smaller cluster dispersions and larger cluster-to- 
cluster distance of the improved ApEn than the 
standard ApEn imply that the former can more effi-
ciently extract information from sEMG signals. 

In the improved ApEn, similarity between two 
vectors is based on their shapes rather than their ab-
solute coordinates, and thus two vectors’ approxima-
tion can be characterized more reasonably, and the 
measurement of complexity for the time series ana-
lyzed is more satisfying. The method presented here 
can also be applied to other physiological signals with 
medium-sized data length in noisy background, 
which are hard to deal with through most linear and 
nonlinear algorithms. 
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