
Zhang et al. / J Zhejiang Univ Sci A 2007 8(1):42-49 42

A hardware/software co-optimization approach for
embedded software of MP3 decoder*

ZHANG Wei†, LIU Peng†‡, ZHAI Zhi-bo

(Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China)
†E-mail: zhang1wei3@21cn.com; liupeng@isee.zju.edu.cn
Received Feb. 23, 2006; revision accepted May 24, 2006

Abstract: In order to improve the efficiency of embedded software running on processor core, this paper proposes a hard-
ware/software co-optimization approach for embedded software from the system point of view. The proposed stepwise methods
aim at exploiting the structure and the resources of the processor as much as possible for software algorithm optimization. To
achieve low memory usage and low frequency need for the same performance, this co-optimization approach was used to optimize
embedded software of MP3 decoder based on a 16-bit fixed-point DSP core. After the optimization, the results of decoding 128
kbps, 44.1 kHz stereo MP3 on DSP evaluation platform need 45.9 MIPS and 20.4 kbytes memory space. The optimization rate
achieves 65.6% for memory and 49.6% for frequency respectively compared with the results by compiler using floating-point
computation. The experimental result indicates the availability of the hardware/software co-optimization approach depending on
the algorithm and architecture.

Key words: Hardware/software co-optimization, DSP, Embedded software, MP3 decoder
doi:10.1631/jzus.2007.A0042 Document code: A CLC number: TN911.7

INTRODUCTION

The rapid evolution of current consumer elec-
tronic systems has been demanding that embedded
systems have extremely short time-to-market simul-
taneously with very low costs. As a result, it is better
by implementing large parts of the system function-
ality in embedded software running on processor core.
The solutions range from general-purpose processor
cores, digital signal processor cores (DSPs) and ap-
plication-specific instruction-set processor cores
(ASIPs). To achieve high efficiency of software run-
ning on processors with specific architectures, the
software optimization had become a main problem
(Pospiech and Olsen, 2003).

During the development of our MP3 (ISO/IEC

11172-3, 1993) decoder, the same problem was en-
countered. MP3 decoder adopts DSP core, RISC, and
dual core architecture introduced by many researchers
(Lee K.S. et al., 2001; 2002; Lee K.H. et al., 2001;
Yao et al., 2004). But most of them mainly paid at-
tention to the algorithm optimization and did not give
a general method for embedded software optimization
exploiting the processor architectural features.

As the embedded software runs on DSP and
ASIP, the high-level language compiler may not
make full use of the processor architectural features.
Especially for lost-cost, high-volume embedded ap-
plications, insufficient computing performance and
insufficient memory sizes require manual optimiza-
tion (Goossens et al., 1997). And exploiting archi-
tectural features can be as important as choosing the
right algorithms in optimizing software running on
such processors or IP core with high efficiency (An-
guita and Martinez-Lechado, 2005). So an approach
for embedded software optimization on specific
processor architecture is required.

‡ Corresponding author
* Project supported by the Key-Tech Program of Zhejiang Province,
China (No. 021101559), and the Fok Ying Tong Education Founda-
tion (No. 94031), China

Journal of Zhejiang University SCIENCE A
ISSN 1009-3095 (Print); ISSN 1862-1775 (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

Zhang et al. / J Zhejiang Univ Sci A 2007 8(1):42-49 43

Hardware/software co-design techniques are
important in the development of DSP applications,
especially for resource constrained SoC (System on
Chip) design (Nattawut and Alex, 2004). In order to
deal with partitioning and scheduling problem in DSP
system, a systematic approach to hardware/software
co-design targeting data-intensive applications is
given (Wiangtong et al., 2005). In order to decrease
hardware cost and chip area, a hardware/software
partition method for fixed-point DSP system design is
suggested (Zhou et al., 2005), and MP3 decoder
based on media extensions with embedded processor
is proposed (Huang et al., 2005). These methods can
be learned for embedded software optimization.

In this paper, a hardware/software co-optimiza-
tion approach for embedded software is presented.
The proposed stepwise methods aim at exploiting the
structure and resources of processor as much as pos-
sible to software algorithm optimization. And with
the hardware and software co-optimization, we can
get the most efficiency to meet the embedded system
constraints such as performance, cost, hardware re-
sources, power consumptions, and so on.

The paper is organized as follows. A hard-
ware/software co-optimization approach for embed-
ded software is presented in Section 2. Software op-
timization of an MP3 decoder implemented on a 16-bit
DSP core is described in detail in Section 3. The
evaluation platform and optimization results are pre-
sented in Section 4. Finally, the conclusions are given.

HARDWARE/SOFTWARE CO-OPTIMIZATION
APPROACH

Generally, software should be optimized for
system performance by matching the program code to
the processor architecture. This procedure includes
both hardware and software parts. For specific appli-
cations in different fields, specific methods have been
introduced. But in order to find a general approach
exploiting the processor architectural features to do
software optimization, we should not only analyze and
optimize algorithm in high-level language, but also
achieve full understanding of hardware features,
which include the architecture, the micro-architecture,
the pipeline structure, the peripheral interface, and so
on. Based on such an analysis, software optimization

can be mapped on these features efficiently. The ap-
proach is an interactive procedure including both
hardware and software from the system point of view.
According to the strategy, hardware/software co-op-
timization scheme is explored in the following four
steps. The proposed hardware/software co-optimiza-
tion flow is shown in Fig.1.

Step 1: Complexity optimization
The first step in complex system design is an

analysis of the system under study in order to fully
comprehend its basic structure, to measure its com-
plexity, so as to discover the bottlenecks and the most
critical constitutive module.

Hence, hardware limited resource should be
analyzed, including memory size, arithmetic units,
register, and data type. And algorithmic complexity
for processor computation, storage and data-transfer
ability should be analyzed. During algorithm opti-
mization, hardware analysis results should be taken
into account. There must be trade-off among com-
putation load, the complexity of data conveying and
the size of coefficients. Software modules are parti-
tioned and performance is estimated in C language.
This process can help designer to decide the program
structure and find optimization goals. The hardware
and software analysis results will guide the software
optimization work.

Step 2: Memory usage optimization

Hardware
resources
analysis

Algorithm
profiling and
optimization

Complexity
optimization

Memory usage
optimization

Data precision
optimization

Memory structure
and

size analysis

Computational
requirements
optimization

I/O processing
optimization

Operation
parallelism and

CPI optimization

Instruction
parallelism and

pipeline structure
analysis

Data schedule
optimization

Interface and
coprocessor units

analysis

Architecture Algorithm

Hardware Software

Fig.1 Hardware/software co-optimization flow

Zhang et al. / J Zhejiang Univ Sci A 2007 8(1):42-49 44

The optimization of memory usage is one of the
most critical steps in the development of efficient and
low-power implementations. The memory structure,
the bit width of datapath and register need to be ana-
lyzed. As for limited hardware memory size, program
and data optimization are both required.

Memory usage is partitioned into several sec-
tions, such as program code, coefficient tables, tem-
poral variable, global variable, stacks, and so on. The
data precision and coefficient table length need to be
considered in this step. And also the stack and buffer
size need to be optimized for specific field with dif-
ferent system requirements.

Step 3: Computational requirements optimization
In a cost and power-sensitive embedded system,

lower frequency requirements mean low power dis-
sipation, which are better for the same performance.
The instruction-level parallelism needs to be explored
and the pipeline stall needs to be eliminated as much
as possible to reduce computational requirements.
Exploiting the software processing parallelism is also
important. Generally, different modules with low
dependency can be parallelized. And for a special
processor, specific algorithm may be adopted to ex-
ploit the architectural features.

To reduce CPI (cycles per instruction), main
efforts are paid to reduce control hazards of the pipe-
line micro-architecture. Loop unrolling and instruc-
tion reordering are performed to reduce CPI and ex-
ploit the instruction-level parallelism.

Step 4: I/O processing optimization
The I/O processing is becoming a main problem

as important as software processing on the embedded
processor core. Sometimes the data transfer occupies
a large part of total processing time.

The interface and coprocessor units for I/O
processing of embedded processor are analyzed and
employed. Data schedule mechanism needs to be
optimized to reduce the data transferring demands
and I/O bandwidth requirements. And DSP process-
ing in core and in I/O can be parallelized by exploiting
hardware units efficiently.

HARDWARE/SOFTWARE CO-OPTIMIZATION
TECHNIQUES FOR MP3 DECODER

MP3 is the most popular decoding format for

playback of high quality compressed audio for port-
able devices. According to ISO 11172-3 standard,
MP3 decoding process can be divided into nine
modules, as shown in Fig.2.

MediaDSP16, a 16-bit DSP core is chosen as the

target processor, which is designed by the Department
of Information Science & Electronic Engineering of
Zhejiang University (Chen et al., 2004). The archi-
tecture of MediaDSP16 shown in Fig.3 has the fol-
lowing features:

(1) 16-bit fixed-point DSP.
(2) Four stages pipeline (IF, ID, EX and MEM).
(3) Three computational units (ALU, SHIFTER

and MAC).
(4) Two address generating units (DAG1,

DAG2).
(5) Modified Harvard architecture.
(6) Single-cycle instruction execution.
(7) Dual operand fetches in one cycle.
(8) Multifunction instructions.
(9) Zero-overhead loop.

Alias reduction

IMDCT

Frequency inversion

Synthesis filter band

PCM DATA

Preprocessing

Huffman decoding

Requantization

Reordering

Stereo decoding

MP3 bitstream

Fig.2 MP3 decoding process

DSP Core

MEM ADDR Generators

DAG1 DAG2
Program
sequencer

PMA
DMA
PMD
DMD

Arithmatic units

ALU MAC Shifter
Register

file

On-chip memory

PMEM DMEM

JTAG

Flag

DMA/BOOT
Controller

Timer

 B
IU

EXTA
EXTD EX

TPM
EX

TD
M

B

O
O

T
M

EM

IO

Space

Fig.3 MediaDSP16 architecture

Zhang et al. / J Zhejiang Univ Sci A 2007 8(1):42-49 45

MediaDSP16 architecture has some RISC fea-
tures in the micro-architecture design, including
methods of local-homogenous register set and
RISC-like pipeline to eliminate control and data
hazards. DSP can provide powerful computation
ability, which includes the abundant addressing mode
and instruction level parallelism. MP3 decoder is
implemented based on this DSP by using the pro-
posed hardware/software co-optimization approach.

During the optimization process, the features of
instruction set, micro-architecture, and pipeline of
DSP are taken into account for effective running and
lower CPI value. C language is used to build the
program framework and assemble language is used to
write some time-consuming modules in order to
balance the flexibility and efficiency.

Step 1: Complexity optimization
The target DSP hardware resources have been

carefully calculated to map this algorithm. The DSP
provides separated 16k words on-chip data memory
(16-bit width) and 16k words on-chip program
memory (24-bit width). The on-chip program mem-
ory can be reconfigured as no-overlap program sec-
tion and data section. The DSP supports multi-mode
such as index and circular addressing and multifunc-
tion instructions to realize computation and memory
access simultaneously. Abundant memory access
modes, instruction-level parallelism, enhanced con-
trol ability of DSP can benefit both the con-
trol-intensive part and computation-intensive part of
MP3 decoding algorithm.

Algorithm profiling and optimization are
adopted in the software. The statistical results of
profiling of the main steps of ISO reference MP3
decoder employing floating-point computation is
shown in Table 1. Subband synthesis, IMDCT, re-
quantization, Huffman decoding, are most time-
consuming modules in MP3 decoder.

Fast algorithms (Lee, 1984; Konstantinides,
1994; Britanak and Rao, 2001) are adopted in the
time-consuming modules to do high-level optimiza-
tion, which can reduce the computation load and
memory requirement for DSP.

Konstantinides (1994)’s method reduces the
number of operations in synthesis polyphase filter
bank by transforming the matrix operation in a 32
discrete cosine transform (DCT) and some reorder
operations. We implement DCT using Lee (1984)’s
fast DCT algorithm, which divides DCT recursively
into two smaller DCTs. This method eliminates 96%
of the multiplications and 90% of the additions.

Following Britanak and Rao (2001)’s method,
we reduce IMDCT to a fast DCT computation and
some data copying operations. This method elimi-
nates 93% of the multiplications and 74% of the ad-
ditions for long blocks. For short blocks, it eliminates
82% of the multiplications and 41% of the additions.
The results of operation reduction are shown in Table
2.

Step 2: Memory usage optimization
For the modified Harvard architecture of this

16-bit fixed-point DSP, part of data can be relocated
in program memory. And for the 16-bit memory and
register width, 16-bit data precision is used in proc-
essing. For limited memory, proper coefficient table
precision needs to be analyzed and calculated.

Since DSP has 16-bit data path, multiply opera-
tion using data in excess of 16 bits will be calculated
by more than one instruction. Therefore, not only the
accuracy for output data but also operational com-
plexity need to be considered. Data precision was
optimized to decrease the computation complexity
while not causing too much sound quality loss. Be-
cause of the 16-bit data width, we should make a
trade-off between dynamic range and data precision
in the floating-point to fixed-point conversion.

Table 2 Complexity optimization results
IMDCT (operations)

Algorithm
Long block Short block

IDCT
(operations)

Mul 648 72 2048
ISO reference

Add 630 66 1984
Mul 47 13 80

Fast algorithm
Add 165 39 209

Table 1 Profiling of ISO reference decoder
Module CPU time (%)

Huffman decoding 4.1
Requantization 16.9
Stereo processing 1.2
IMDCT 17.9
Subband synthesis 58.2
Other 1.7

Zhang et al. / J Zhejiang Univ Sci A 2007 8(1):42-49 46

In MP3 decoding process, fixed-point program
conversion was needed for the following modules:
requantization, joint stereo decoding, IMDCT,
anti-aliasing and synthesis. In each module, the dy-
namic range of each of the operation data was ana-
lyzed to do proper scaling.

For example, first precision loss arises in the
requantization stage where the Huffman data are re-
quantized to spectral values. The equation is

xri=sgn(isi)×|isi|4/3×2a,

where
a=(global_gain[gr]−210)/4−scalefac_multiplier×

{scalefac_1[sfb][ch][gr]+preflag[gr]×pretab[sfb]}.

For each output value ‘is’ from the Huffman
decoding and is4/3 can be done either by table lookup
or by explicit calculation. For efficiency of operation,
table lookup method is preferred in calculation of is4/3.
But because of the wide dynamic range of isi, this
lookup table requires a large amount of memory us-
age. To reduce the memory usage without significant
loss of accuracy caused by truncation errors, a lookup
table size reduction algorithm was adopted:
|is|4/3=|is′|4/3×16, where is′=is/8.

This algorithm reduces lookup table size by a
factor of 8. The value of is varies from 0 to 8206 (The
standard value is 8191, but actually it should be 8206
with 15 must be add to the given value). However, the
probability of is, which is greater than 256, is very
low according to the results of statistics taking from
many MP3 test streams. Therefore, 256-sized lookup
table is adopted and for the higher isi value linear
interpolation method is applied to approximate it. By
using this method in requantization, accuracy loss is
kept in a small range, when the memory usage and
computation complexity reduced obviously. The data
memory and program memory usage optimization
results are shown in Table 3 and Table 4.

Step 3: Computational requirement optimization
The DSP provides instruction-level parallelism

with parallel execution of computation and memory
access, which means the full use of system resources
in each cycle. To realize effective memory access, the
DSP provides two dedicated address-generating units
(DAG1, DAG2) to support multi-mode such as index
and circular addressing together with high memory
access bandwidth. One computation combined with
move operation (include load/store) are supported. In
one cycle, five operations can be completed with the
multifunction instructions at most, including one
computation, two memory access, two data pointers
update.

In order to use multifunction instructions to re-
duce the number of instruction for computation, the
operation parallelism was carefully analyzed and
properly arranged to exploit hardware features. To
improve pipeline running efficiency, instruction se-
quence was reorganized manually and loop instruc-
tion was used to optimize the CPI by delay slot tech-
niques.

For example, in the IMDCT module, the main
time-consuming computation formula is

1

2

0

πcos 2 1 (2 1) .
2 2

n

i k
k

nx X i k
n

−

=

 = + + +
∑

The main computation is multiplication and ac-

cumulation. The code is relatively short size with
plenty of loop operation. It is suitable for multifunc-
tion instruction to improve data parallelism. In the
computation, one operand is fetched from the coeffi-
cient table, and the other operand is in data memory
from the results of the last module processed. As DSP
can fetch dual operands in one cycle, the coefficient
table can be put in the program memory. Moreover,

Table 4 Program memory spaces optimization results

Program space
Algorithm

Before
optimization

 (byte)

After
optimization

(byte)

Optimization
ratio (%)

Huffman 4503 3107 31.0
IMDCT 6900 2649 61.6
IDCT 2325 1308 43.7
Total 40533 20307 49.9

Table 3 Data memory usage optimization results

Data space
Algorithm

Before
optimization

(byte)

After
optimization

(byte)

Optimization
 ratio (%)

Huffman 5640 3400 39.7
IMDCT 5160 2588 49.8
Synthesis 10996 5904 46.3

Zhang et al. / J Zhejiang Univ Sci A 2007 8(1):42-49 47

multifunction instructions support the computation
and two memory accesses in one cycle. So one MAC
computation and two operands load can be finished in
one cycle. Besides this, zero-overhead loop operation
supported by DSP was used to cut down pipeline stall.
Also IDCT computation can utilize these mechanisms,
data and instructions need to be arranged properly,
and parallel operation and CPI reduction can be re-
alized by hardware features.

The optimization reduces the program instruc-
tions and execution cycles. The results are shown in
Table 4 and Table 5.

Step 4: I/O processing optimization
Data transfer and scheduling were optimized by

utilizing the DMA unit in hardware. According to
limited on-chip memory resources, the raw MP3
stream and the decoded stream are stored in off-chip
memory, while the frequently used coefficients are
stored in on-chip RAM. So data scheduling becomes
a bottleneck in the decoding process. In order to re-
duce the memory access times, buffer mechanism was
used in the on-chip DM, and DMA unit was used to
transfer the raw MP3 stream data to buffer and the
decoded PCM data to audio D/A.

Compared with shift bitstream buffer, circular
bitstream buffer was used to reduce data transfer from
buffer end to head. As DMA transfers data without
CPU interference, the I/O processing and decoding
processing can be parallelized. The mechanism of
DMA transfer with circular buffer is shown in Fig.4.

While I/O processing occupies nearly 10% of
total processing time, with parallel operation, much
I/O processing time is saved. MP3 decoder needs 45.9
MIPS after optimization compared with 52.1 MIPS
before optimization, which gets 11.9% optimization
ratio.

EVALUATION PLATFORM AND OPTIMIZA-
TION RESULTS

In order to evaluate the optimization results of
MP3 decoder, an evaluation platform including
hardware and software is designed.

The software platform includes compiler, as-
sembler, simulator, and communication module,
which uses USB interface to communicate with
hardware platform. The connection diagram of the
evaluation board is shown in Fig.5. As FPGA has
programmable ability, many interface modules have
been implemented, including communication cores
based on USB protocol, memory controller, audio
interface controller. A photograph of a hardware
evaluation platform equipped with the FPGA is
shown in Fig.6.

This platform was used to evaluate the optimiza-

tion performance of MP3 decoder. Before optimiza-
tion, because compiler cannot utilize the architectural

Table 5 Computation requirements optimization results

Execution cycles
Algorithm

Before

optimization
(byte)

After
optimization

(byte)

Optimization
ratio (%) CPI

Huffman 201704 90576 55.1 1.166
IMDCT 311165 105808 65.0 1.286
IDCT 11398 3219 72.8 1.477
Total 3511322 1371052 60.9 1.255

Fig.5 Diagram of the evaluation platform

Memory
controller

D/A
controller

16-bit
DSP

USB core

Software

Audio
D/A

Hardware

Memory
system

FPGA
Power
clock

Compiler

Assembler

SimulatorC
om

m
un

ic
at

io
n

in
te

rf
ac

e

C
om

m
un

ic
at

io
n

in
te

rf
ac

e

B
us

 in
te

rf
ac

e

Bitstream buffer
Circular bitstream buffer in on-chip memory

Unused Used

After Huffman decoding

Filled with new data Unused

DMA transport parallel with decoding process

Used Used Unused

The second frame decoding parallel with DMA transfer decoded PCM samples

DMA transport parallel with decoding process

Filled with data Unused

Fig.4 Circular bitstream buffer with DMA transport

Filled with data

Zhang et al. / J Zhejiang Univ Sci A 2007 8(1):42-49 48

features and fast algorithms are not implemented, the
result is not satisfactory. After the optimization, es-
pecially the hardware/software co-optimization, the
architectural features can sufficiently be exploited,
and nearly 65.6% computation load and 49.6%
memory usage can be optimized. The total optimiza-
tion results are shown in Table 6.

In order to measure the sound quality of output
PCM for proposed optimization approach, a com-
parison between the decoded floating-point data and
fixed-point data is provided in Table 7. Although
coefficient precision is reduced, the accuracy in de-
coded audio quality does not decrease much.

CONCLUSION

In this paper, a hardware/software co-optimi-
zation approach for embedded software is proposed
from the system point of view. The proposed step-

wise methods aim at exploiting the structure and
resources of the processor as much as possible for
software algorithm optimization. According to these
optimization techniques, software optimization of an
MP3 decoder based on 16-bit fixed-point DSP has
been implemented. The experimental result indicates
the availability of this approach depending on the
algorithm and processor architecture. In future work,
this approach can be generalized for other multimedia
algorithm optimizations on embedded processor.

References
Anguita, M., Martinez-Lechado, J.M., 2005. MP3 optimiza-

tion exploiting processor architecture and using better
algorithms. IEEE Micro., 25(3):81-92. [doi:10.1109/MM.
2005.57]

Britanak, V., Rao, K.R., 2001. An efficient implementation of
the forward and inverse MDCT in MPEG audio coding.
IEEE Signal Processing Letters, 8(2):48-51. [doi:10.
1109/97.895372]

Chen, J.C., Yao, Q.D., Liu, P., Shi, C., 2004. MD16, DSP with
Some RISC Features for Embedded System. IEEE Int.
Conf. Signal Processing Proceedings, p.144-147.

Goossens, G., van Praet, J., Lanneer, D., Geurts, W., Kifli, A.,
Liem, C., Paulin, P.G., 1997. Embedded software in
real-time signal processing systems: design technologies.
Proc. IEEE, 85(3):436-454. [doi:10.1109/5.558718]

Huang, W.K., Lin, I.T., Chen, S.W., Huang, I.J., 2005. A
Cost-effective Media Processor for Embedded Applica-
tions. ISCAS 2005, p.6122-6125.

ISO/IEC 11172-3, 1993. Informational Technology—Coding
of Moving Pictures and Associated Audio for Digital:
Storage Media at up to about 1.5 Mbit/s. Part 3: Audio.
1st Ed.

Konstantinides, K., 1994. Fast subband filtering in MPEG
audio coding. IEEE Signal Processing Letters, 1(2):26-
28. [doi:10.1109/97.300309]

Lee, B.G., 1984. A new algorithm to compute the discrete
cosine transform. IEEE Trans. Acoustic Speech Signal
Processing, 32(6):1243-1245. [doi:10.1109/TASSP.1984.
1164443]

Lee, K.H., Lee, K.S., Hwang, T.H., Park, Y.C., Youn, D.H.,
2001. An architecture and implementation of MPEG au-
dio layer3 decoder using dual-core DSP. IEEE Trans.
Consumer Electronics, 47(4):928-933. [doi:10.1109/30.
982810]

Lee, K.S., Oh, H.O., Park, Y.C., Youn, D.H., 2001. High
Quality MPEG-Audio Layer3 Algorithm for a 16-bit DSP.
ISCAS 2001, p.205-208.

Lee, K.S., Park, Y.C., Youn, D.H., 2002. Software optimiza-
tion of the MPEG-audio decoder using a 32-bit MCU
RISC processor. IEEE Trans. Consumer Electronics,
48(3):671-676. [doi:10.1109/TCE.2002.1037059]

Table 6 Total optimization results

 Before
optimization

After
optimization

Optimization
ratio (%)

Program space
(kbytes) 40.5 20.4 49.6

Execution cycles
 (MIPS) 133.4 45.9 65.6

Table 7 Data precision optimization results
Total

samples
Different
samples

RMS of
difference (dB)

Max
difference

276524 103220 55.2 102

Fig.6 Evaluation platform photograph

Zhang et al. / J Zhejiang Univ Sci A 2007 8(1):42-49 49

Nattawut, T., Alex, D., 2004. Hardware-software Co-design of
Resource Constrained Systems on a Chip. Distributed
Computing Systems Workshops, Proceedings 24th In-
ternational Conference, p.818-823.

Pospiech, F., Olsen, S., 2003. Embedded Software in the SoC
World. How HdS Helps to Face the HW and SW Design
Challenge. Proc. IEEE, Custom Integrated Circuits Con-
ference, p.653-658.

Wiangtong, T., Cheung, P.Y.K., Luk, W., 2005. Hardware/
software codesign: a systematic approach targeting data-

intensive applications. IEEE Signal Processing Magazine,
22(3):14-22. [doi:10.1109/MSP.2005.1425894]

Yao, Y.B., Yao, Q.D., Liu, P., Xiao, Z.B., 2004. Embedded
software optimization for MP3 decoder implemented on
RISC core. IEEE Transactions on Consumer Electronics,
50(4):1244-1249. [doi:10.1109/TCE.2004.1362526]

Zhou, F., Yang, J., Shi, L.X., Zhang, Y., 2005. Hardware-
software Partition of Fixed-point Hardware Accelerator
from Statistical Perspective. International Conference on
ASIC, p.148-151. [doi:10.1109/ICASIC.2005.1611272]

JZUS-A focuses on “Applied Physics & Engineering”

¾ Welcome your contributions to JZUS-A
Journal of Zhejiang University SCIENCE A warmly and sincerely welcomes scientists all over

the world to contribute Reviews, Articles and Science Letters focused on Applied Physics & Engi-
neering. Especially, Science Letters (3−4 pages) would be published as soon as about 30 days (Note:
detailed research articles can still be published in the professional journals in the future after Science
Letters is published by JZUS-A).

¾ JZUS is linked by (open access):

SpringerLink: http://www.springerlink.com;
CrossRef: http://www.crossref.org; (doi:10.1631/jzus.xxxx.xxxx)
HighWire: http://highwire.stanford.edu/top/journals.dtl;
Princeton University Library: http://libweb5.princeton.edu/ejournals/;
California State University Library: http://fr5je3se5g.search.serialssolutions.com;
PMC: http://www.pubmedcentral.nih.gov/tocrender.fcgi?journal=371&action=archive

Welcome your view or comment on any item in the journal, or related matters to:
Helen Zhang, Managing Editor of JZUS
Email: jzus@zju.edu.cn, Tel/Fax: 86-571-87952276/87952331

SCIENCE A
Journal of Zhejiang University

Editor-in-Chief: Wei YANG
ISSN 1009-3095 (Print); ISSN 1862-1775 (Online), monthly

www.zju.edu.cn/jzus; www.springerlink.com
jzus@zju.edu.cn

