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Abstract:    In this paper we investigate a variant of the scheduling problem on two uniform machines with speeds 1 and s. For this 
problem, we are given two potential uniform machines to process a sequence of independent jobs. Machines need to be activated 
before starting to process, and each machine activated incurs a fixed machine activation cost. No machines are initially activated, 
and when a job is revealed, the algorithm has the option to activate new machines. The objective is to minimize the sum of the 
makespan and the machine activation cost. We design optimal online algorithms with competitive ratio of (2s+1)/(s+1) for every 
s≥1. 
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INTRODUCTION 
 

In this paper we investigate the uniform ma-
chines scheduling problem with machine activation 
cost. This problem has application in garment pro-
duction of international trade and is motivated by the 
following scenario. Import-export company is com-
pared to scheduler in this model, and orders are jobs, 
which arrive one by one. And garment factories can 
be regarded as machines. Since jobs should be fin-
ished on time, scheduler will choose a reasonable 
number of machines to make the garments. When the 
machines accept the orders, a certain amount of cost is 
needed for the running of machinery and the workers 
getting familiar with the techniques, etc. The cost is 
fixed and proportional to the speed of the machine, 
and occurs with the running of machines. 

Formally, the problem considered in this paper 

can be described as follows. We are given a sequence 
J of independent jobs with positive processing times 
(sizes) J={p1,p2,…,pn}, which must be non-preemp- 
tively scheduled onto two uniform machines (with 
speeds of 1 and s≥1). We identify jobs with their sizes 
in this paper. Jobs arrive one by one (online over list) 
and are to be scheduled irrevocably onto these ma-
chines as soon as they are given, without any 
knowledge of the jobs that will arrive later. There are 
only two potential uniform machines to process these 
jobs. If one machine is used to process jobs, it must be 
activated and the activation cost cannot be neglected. 
And initially there are no machines activated. 

Although the machines are uniform, the costs for 
activation are different. Moreover, by normalizing all 
job sizes and machine activation cost, we assume that 
the activation cost for the machine with speed 1 is 1, 
and the other with speed s is s, without loss of gener-
ality. Let AMC be the total machine activation cost. 
The load of a machine is the sum of the sizes of the 
jobs scheduled onto it, and the makespan is the 
maximum completion time after all jobs are com-
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pleted. Then the goal is to minimize the sum of the 
makespan and the total machine activation cost. 

The performance of an online algorithm is 
measured by its competitive ratio. For a job sequence 
J and an algorithm A, let cA(J) (or in short cA) denote 
the makespan produced by A and let c*(J) (or in short 
c*) denote the optimal makespan in an offline version. 
Then the competitive ratio of A is defined as C= 
sup{cA(J)/c*(J)}. An online problem has a lower 
bound ρ if no online deterministic algorithm has a 
competitive ratio smaller than ρ. An online algorithm 
is optimal if its competitive ratio matches the lower 
bound. 

This problem is quite different from the classical 
online uniform machine scheduling problem 
Q2|online|Cmax (Cho and Sahni, 1980), where we 
typically have two uniform machines, and the sched-
uler makes no decision regarding the cost of machines 
that are used to process jobs. There has been a great 
deal of work on this problem (Epstein et al., 2001; 
Sgall, 1998). For non-preemptive scheduling on uni-
form machines the first algorithm with a constant 
competitive ratio was given by Aspnes et al.(1997) 
and its competitive ratio is 8. This was improved by 
Berman et al.(1997); they designed 5.8285-competi-
tive deterministic and 4.3111-competitive random-
ized algorithms. Berman et al.(1997) also proved 
lower bounds of 2.4380 for deterministic and 1.8372 
for randomized algorithms for non-preemptive 
scheduling. And the lower bound of 1.8372 has been 
improved to 2 by Epstein and Sgall (2000). Dessouky 
et al.(1998) considered flowshop scheduling with 
identical jobs and uniform parallel machines. Noga 
and Seiden (2001) investigated scheduling problem 
on two machines with release times. Tan and He 
(2002) investigated scheduling problem on two 
identical machines with machine availability 
constraints. 

Imreh and Noga (1999) proposed a variant 
problem, denoted as P|online|Cmax+m and called List 
Model. The differences are: (1) no machines are ini-
tially provided, and there is sufficient large number of 
identical machines that can be activated (i.e., m=+∞), 
(2) when a job is revealed the algorithm has the option 
to activate new machines, and (3) the objective is to 
minimize the sum of the makespan and the total ma-
chine activation cost. Comparing it with our consid-
ered problem, we know that the differences are 

whether m=2 and whether the machines are uniform. 
Hence, we call our problem Restricted List Model on 
Two Uniform Machines, and denote it as 
Q2|online|Cmax+AMC. 

Panwalkar and Liman (2002) proposed another 
offline scheduling problem that there are m=+∞ 
identical machines which can be activated, and the 
objective is to find an optimal schedule, the optimal 
number of machines, and the respective due dates to 
minimize the weighted sum of earliness, tardiness, 
and machine activation cost. Cao et al.(2005) con-
sidered a scheduling problem where finite machines 
are provided. The objective is to minimize the sum of 
the total weighted job tardiness penalties and the total 
machine activation cost. 

For the List Model problem, Imreh and Noga 
(1999) presented an online algorithm Aρ with a com-
petitive ratio of at most (1 5) / 2 1.618,+ ≈  while the 
lower bound was 4/3. Dósa and He (2004) made an 
improvement by presenting an algorithm with a com-
petitive ratio of at most (3 2 6) / 5 1.5798.+ ≈  Jiang 
and He (2005) extended it to consider preemptive 
online and semi-online algorithms for List Model 
problem. It is remarkable that the good performance 
of the algorithms in (Imreh and Noga, 1999; Dósa and 
He, 2004; Jiang and He, 2005; 2006) is based on that 
we are allowed to activate a large number of machines 
if needed. He et al.(2006) extended it to consider 
online algorithms for List Model problem with finite 
identical machines. To our best knowledge, there is 
no result about Q2|online|Cmax+AMC. 

In this paper, we consider the problem 
Q2|online|Cmax+AMC and design optimal online 
algorithms with competitive ratio of (2s+1)/(s+1) for 
every s≥1. The paper is organized as follows. In Sec-
tion 2 we present some notations and preliminary 
results. Then we consider the problem with 1≤s≤φ and 
s>φ (where (1 5) / 2 1.618φ = + ≈  is the golden ratio) 
in Sections 3 and 4, respectively. Some remarks are 
presented in Section 5. 
 
 
PRELIMINARY KNOWLEDGE 
 

In the remainder of the paper, we use the fol-
lowing notations to simplify the presentation. Denote 

max max{ | 1, , }j ip p i j= =  and 
1

.j
j ii

P p
=

=∑  Let M1 
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and Ms be the two potential uniform machines with 
speeds 1 and s, respectively. We call moment j as the 
time right after the jth job is scheduled. Let Li,j denote 
the current load of machine Mi at moment j (j>0) in an 
online algorithm A, i=1 or s. Let A

jC  be the current 

makespan yielded by Algorithm A at moment j, and 
mj be the current machine activation cost yielded by 
Algorithm A at moment j. Denote by A A

j j jc C m= +  

the objective function value produced by Algorithm A 
at moment j. Let C* and m* be the makespan and the 
machine activation cost in an optimal solution of the 
offline version, respectively. Then the objective 
function value yielded by Algorithm A and the opti-
mal value of offline version are A A

n nc C m= +  and 
c*=C*+m*, respectively. 

Now we present the lower bound of the consid-
ered problem. 
Theorem 1    There is no online algorithm for the 
problem Q2|online|Cmax+AMC with a competitive 
ratio of smaller than (2s+1)/(s+1). 
Proof    Assume that an algorithm A exists and it has a 
competitive ratio C<(2s+1)/(s+1). 

(1) We first show C≥(2s+1)/(s+1) for the case of 
1≤s≤φ. The first two jobs p1=N and p2=sN arrive, 
where N is a very large positive number. We can 
conclude that both machines must be activated right 
after scheduling the first two jobs. Otherwise, no 
more jobs arrive.  

We assume only one machine is activated by 
Algorithm A. It implies that 
 

cA≥min{1+N+sN,s+(N+sN)/s}=s+N(1+s)/s, 
 
which, together with c*=N+s+1, leads to  
 

*

(1 ) /
1

Ac s N s s
c N s

+ +
≥

+ +
→

1 2 1.
1

s s
s s
+ +

≥
+

 

 
The above formula holds because we can choose 

N to be large enough and with the assumption of s≤φ. 
Hence, Algorithm A must activate the two ma-

chines to process the first two jobs. Then how to 
choose the following jobs to avoid C<(2s+1)/(s+1)? 

Note that the lower bound (2s+1)/(s+1) of 
Q2|online|Cmax is obtained by using the adversary 
method, where an adversary presents the online al-
gorithm with several different sequences that make 

the algorithm unable to work well simultaneously. 
Thus, for Q2|online|Cmax+AMC, we just choose these 
sequences as the following jobs after activating the 
two machines, but all the job sizes of these sequences 
are multiplied by a sufficiently large positive number 
L such that the sizes of the first two jobs can be ig-
nored when L→+∞. Hence, the arguments for ob-
taining the lower bound of Q2|online|Cmax can work 
for our problem. It yields that the lower bound of our 
problem is at least (2s+1)/(s+1) when 1≤s≤φ. 

(2) We next show C≥(2s+1)/(s+1) for the case 
s>φ. Consider a sequence of jobs with each job pi=ε 
∀i, where ε is a very small positive number. If p1 is 
assigned to machine Ms, then no other new jobs arrive. 
Therefore we have cA=s+ε/s while the optimal value is 
1+ε. It follows that C≥(s+ε/s)/(1+ε)→s>(2s+1)/(s+1) 
because we can choose ε to be arbitrary small and s>φ. 
So we assume that Algorithm A assigned the first job 
to machine M1.  

Moreover, we can claim that Algorithm A must 
assign the first k jobs (if any) to M1 to avoid 
C<(2s+1)/(s+1), with k satisfying Pk=(s3−s)/(s2−s−1). 
Otherwise, we let pl (1<l≤k) be the first job to be 
assigned to machine Ms, and no other new jobs arrive 
after scheduling pl. Then the total size of jobs as-
signed to M1 is Pl−1. And we have 
 

cA= 1+s+Pl−1=1+s+Pl−pl=1+s+Pl−ε. 
 

If Pl≤s, then the optimal value is 1+Pl. It follows 
that 
 

1 2 1 2 1   ( 0).
1 1 1

l

l

s P s sC
P s s

ε ε ε
+ + − + − +

≥ ≥ → →
+ + +

 

 

If s<Pl≤Pk=(s3−s)/(s2−s−1), then the optimal cost 
is at most s+Pl/s. Similarly, we can obtain that 
 

1 2 1 2 1   ( 0).
/ 1 1
l

l

s P s sC
s P s s s

ε ε ε
+ + − + − +

≥ ≥ → →
+ + +

 

 

Thus Algorithm A must assign the first k jobs to 
the machine M1 completely. Then no other new jobs 
arrive. It implies that the objective value yielded by 
Algorithm A is 1+Pk, while the optimal cost is at most 
s+Pk/s. It follows that C≥(1+Pk)/(s+Pk/s)=(2s+1)/(s+ 
1) due to the value of Pk. Hence the desired lower 
bound is obtained and the proof of Theorem 1 is 
completed. 
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The following lemma gives a lower bound of the 
optimal value. 
Lemma 1    The optimal value of the considered 
problem satisfies 
 

max
* min 1 , ,max 1 ,1 .

1
n n n

n
P P p

c P s s s
s s s

   ≥ + + + + + +  +   
 

 
In particular, c*≥s+1 when Pn≥s. 

Proof    If only one machine is activated in an optimal 
solution, then we have c*≥min{1+Pn, s+Pn/s}. Oth-
erwise, the optimal makespan is at least max{Pn/(s+1), 

max / },np s which follows that 
 

* maxmax{1 /( 1),1 / }.n nc s P s s p s≥ + + + + +  
 

The following lemma is easy to obtain. 
Lemma 2    Let x and y be two positive numbers. Let 
f1=(1+s+x/s)/(1+x+y) and f2=(1+s+x/s)/[s+(x+y)/s]. 

(1) If x+y>2s, x≥sy and x≥s, then max{f1, f2}≤ 
(2s+1)/(s+1); 

(2) If x+y>s and x≥sy, then max{f1, f2}≤(2s+1)/ 
(s+1). 
 
 
AN OPTIMAL ONLINE ALGORITHM FOR 1≤s≤φ  
 

In this section, we design an optimal online al-
gorithm for 1 (1 5) / 2 1.618,s φ≤ ≤ = + ≈ which can be 
formally described as follows: 

 
Algorithm H1 

Step 1: If p1<s, activate M1, and schedule p1 onto 
M1. Otherwise, activate Ms, and schedule p1 onto Ms. 
Let k=1. 

Step 2: If no new job arrives, stop. Otherwise, let 
k=k+1. 

Step 3: If only M1 is activated, and  
Step 3.1: If L1,k−1+pk<s, schedule pk onto M1. 

Return to Step 2. 
Step 3.2: If L1,k−1+pk≥s, activate Ms and schedule 

pk onto Ms. Return to Step 2. 
Step 4: If only Ms is activated, and  
Step 4.1: If Ls,k−1+pk<2s, schedule pk onto Ms. 

Return to Step 2. 
Step 4.2: If Ls,k−1+pk≥2s, activate M1 and sched-

ule pk onto M1. Return to Step 2. 

Step 5: If both machines are activated, schedule 
pk by Post-Greedy rule (Post-Greedy rule means that 
schedule pk onto some machine such that the job is 
completed as early as possible. That is, if pk+L1,k−1≤ 
(pk+Ls,k−1)/s, pk is scheduled onto M1, and onto Ms 
otherwise). Return to Step 2. 
Lemma 3    If only one machine is activated by Al-
gorithm H1, then cH1/c*≤(2s+1)/(s+1). 
Proof    If only machine M1 is activated, then Pn<s 
from the algorithm rule. It is clear that cH1=1+Pn, 
while from Lemma 1, c*≥1+Pn=cH1 holds trivially for 
Pn<s. Obviously Algorithm H1 is optimal. 

If only machine Ms is activated, furthermore if 
only one job arrives, then it is obvious that the current 
scheduling is optimal. Otherwise, there are at least 
two jobs revealed, then we have p1≥s and s≤Pn<2s by 
the algorithm rule. Thus cH1=s+Pn/s<s+(2s)/s=s+2, 
while from Lemma 1, we get cH1/c*≤(2+s)/(s+1) =1+ 
(s+1)−1≤(2s+1)/(s+1). Now the proof of Lemma 3 is 
completed. 

We next focus on the cases that both machines 
are activated. Let pl be the job that determines the 
makespan yielded by Algorithm H1. 
Lemma 4    If pl is scheduled by Step 1, i.e., l=1, then 
cH1/c*≤(2s+1)/(s+1). 
Proof    If p1 is scheduled on M1, i.e. p1<s, then we 
have cH1=1+s+p1<1+s+s=2s+1. It is easy to obtain 
that Pn>s because the machine Ms is also activated 
after scheduling p1. Therefore, by Lemma 1, we have 
c*≥1+s. It follows that cH1/c*≤(2s+1)/(s+1). 

If p1 is scheduled on Ms, i.e. p1≥s, then we can 
conclude that p1 is the unique job processed on Ms, 
and we have cH1=1+s+p1/s and p1/s≥L1,n, implying 

max= .l np p  It is easy to obtain that p1+L1,n=Pn>2s be-
cause the machine M1 is also activated after assigning 
p1. From Lemma 1, we get c*≥min{1+p1+L1,n, 
s+(p1+L1,n)/s, 1+s+p1/s}. Therefore, by Lemma 2(1) 
with x=p1 and y=L1,n, we have 
 

H1
1 1

*
1 1, 1 1,

1 / 1 / 2 1max , ,1 .
1 ( ) / 1n n

s p s s p sc s
c p L s p L s s

 + + + + + ≤ ≤ 
+ + + + +  

 
The proof is completed. 

Lemma 5    If pl is scheduled by Step 3, then 
cH1/c*≤(2s+1)/(s+1). 
Proof    pl is scheduled by Step 3, we conclude that 
the two machines are activated in the order of M1, Ms, 
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which implies that Pn≥s. Two cases are considered 
according to the assignment of pl. 
Case 1    pl is scheduled onto machine M1 by Step 3.1. 
Then we get H1

1, 1 ,n l lC L p s−= + < resulting in cH1≤1+s+ 
s=1+2s. While according to the rule of Algorithm H1 
and Lemma 1, we have c*≥1+s and thus cH1/c*≤ 
(2s+1)/(s+1). 
Case 2    pl is scheduled onto machine Ms by Step 3.2. 
It is clear that pl is the unique job scheduled onto 
machine Ms, which yields that cH1=1+s+pl/s. Together 
with the definition of pl, we have max .l np p=  While 
from Lemma 1, it follows that c*≥min{1+pl+L1,n, 
s+(pl+L1,n)/s, 1+s+pl/s}.  

It is obvious that pl+L1,n=Pn≥s and pl/s≥L1,n due 
to the definition of pl. Therefore, by Lemma 2(2) with 
x=pl and y=L1,n, we have 
 

H1

*
1, 1,

1 / 1 / 2 1max , ,1 .
1 ( ) / 1

l l

l n l n

s p s s p sc s
c p L s p L s s

 + + + + + ≤ ≤ 
+ + + + +  

 

Therefore, the proof of Lemma 5 is completed. 
Lemma 6    If pl is scheduled by Step 4, then cH1/c*≤ 
(2s+1)/(s+1). 
Proof    Since pl is scheduled by Step 4, we can con-
clude that the two machines are activated in the order 
of Ms, M1, which implies that Pn≥2s. Two cases are 
considered according to the assignment of pl by Al-
gorithm H1. 
Case 1    pl is scheduled onto machine Ms by Step 4.1, 
then we have Ls,l−1+pl<2s. It follows that cH1=1+s+ 
(Ls,l−1+pl)/s<1+s+2=3+s. It is easy to obtain that 
c*≥2+s from Pn≥2s and Lemma 1. Hence, together 
with 1≤s, we have cH1/c*≤(3+s)/(2+s)=1+(2+s)−1≤ 
(2s+1)/(s+1). 
Case 2    pl is scheduled onto machine M1 by Step 4.2. 
It is clear that pl is the unique job scheduled onto 
machine M1 and pl>Ls,n/s due to the definition of pl. 
We have cH1=1+s+pl. 

If only one machine is activated in the optimal 
solution, then with Pn≥2s we have c*≥min{1+Pn, 
s+Pn/s}=s+Pn/s. It is true that Ls,n>pl>s  by the rule of 
Step 1. Together with 1≤s≤φ, we obtain 

 
H1

*
,

1 1
/ ( ) /

l l

n l s n

s p s pc
c s P s s p L s

+ + + +
≤ =

+ + +
 

1 1 2 1.
( ) / 1 / 1

l l

l l

s p s p ss
s p s s s p s s

+ + + + +
≤ = ≤ ≤

+ + + + +
 

Otherwise, both machines are activated in the 
optimal solution, and then we have 
 

* maxmax{1 /( 1),1 / }.n nc s P s s p s≥ + + + + +  
 

If pl>sLs,n (implying max ),l np p= then we have 
c*≥1+s+pl/s, which leads to 
 

H1

*

1 2 1,
1 / 1

l

l

s pc ss
c s p s s

+ + +
≤ ≤ ≤

+ + +
 

 

together with 1≤s≤φ. If pl≤sLs,n, then we obtain 
c*≥1+s+(pl+Ls,n)/(s+1) with Pn=pl+Ls,n. Hence, we 
have 
 

H1
,

*
, ,

11 2 1.
1 11

1

s nl

l s n s n

s sLs pc ss
p Lc s L ss

s

+ ++ + +
≤ ≤ ≤ ≤

+ + + ++ +
+

 

 
Lemma 7    If pl is scheduled by Step 5, then cH1/c* 

≤(2s+1)/(s+1). 
Proof     pl is scheduled by Step 5 of Algorithm H1, 
then we have Pn>s. We distinguish two cases ac-
cording to the number of machines activated in the 
optimal solution. 
Case 1    Only one machine is activated in the optimal 
solution, and then we have  
 

c*≥min{1+Pn, s+Pn/s}=s+Pn/s  due to Pn>s. 
 

We claim that cH1≤1+s+Pn/s by the following 
reason. If pl is scheduled onto Ms, it is obvious         
that H1

nC =(pl+Ls,l−1)/s≤Pn/s. Otherwise, by the Post- 

Greedy rule of Algorithm H1, we have H1
nC =pl+L1,l−1 

<(pl+Ls,l−1)/s≤Pn/s. Hence, we have 
 

H1

*

1 / 1 11 1
/ / 1
n

n n

s P sc
c s P s s P s s

+ +
≤ = + < +

+ + +
 

2 11 .
1 1

s s
s s

+
≤ + ≤

+ +
 

 
Case 2    Both machines are activated in the optimal 
solution, and then the optimal machine activation cost 
is 1+s, which is the same as the machine activation 
cost of Algorithm H1. In order to obtain cH1/c*=(1+s+ 

H1
nC )/(1+s+C*)≤(2s+1)/(s+1), we only need to prove 

that H1 */nC c ≤(2s+1)/(s+1) in the following argument. 
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It is easy to obtain that Pn≤(1+s)C* and pl≤ 
max
np ≤sC*.  

If pl is assigned to M1, we have H1=nC L1,l−1+ 
pl≤(Ls,l−1+pl)/s by Post-Greedy rule of Algorithm H1. 
It yields that s(Ls,l−1+pl)≤Ls,l−1+pl, which follows that  
 

(s+1) H1
nC =(s+1)(L1,l−1+pl)=s(L1,l−1+pl)+(L1,l−1+pl) 
≤Ls,l−1+pl+L1,l−1+pl≤Pn+pl                                        

≤(s+1)C*+sC*=(2s+1)C*.                           
 

Otherwise, if pl is assigned to Ms, then we have 
H1
nC =(pl+Ls,l−1)/s≤L1,l−1+pl  by  Post-Greedy  rule  of 

Algorithm H1. Thus 
 

(s+1) H1
nC ≤Ls,l−1+pl+L1,l−1+pl≤Pn+pl 

≤(s+1)C*+sC*=(2s+1)C*.                
 

Therefore, the proof of Lemma 7 is completed. 
Theorem 2    The competitive ratio of Algorithm H1 
is C≤(2s+1)/(s+1), when 1≤s≤φ, and it is optimal. 
Proof     The result is direct from Lemmas 3~7, and 
Theorem 1 shows that Algorithm H1 is optimal. 

Note that our result exactly matches that on two 
identical machines scheduling with machine activa-
tion cost when s=1 (He et al., 2006). 
 
 
AN OPTIMAL ONLINE ALGORITHM FOR s>φ 
 

In this section, we present an optimal online al-
gorithm for the problem with s>φ, which can be for-
mally described as follows: 

 
Algorithm H2 

Step 1: If p1>s, activate Ms and schedule p1 and 
all the future jobs onto Ms, stop. Otherwise, activate 
M1, and schedule p1 onto M1. Let k=1. 

Step 2: If no new job arrives, stop. Otherwise, let 
k=k+1. 

Step 3: If only M1 is activated and L1,k−1+pk<s, 
schedule pk onto M1. Otherwise, activate Ms and 
schedule pk onto Ms. Return to Step 2. 

Step 4: If both machines are activated, schedule 
pk by Post-Greedy rule. Return to Step 2. 
Remark 1    If p1>s, then Algorithm H2 only activates 
the machine Ms and schedules all the jobs on it. Al-

though in this case we can also activate the machine 
M1 to share a part of the load of machine Ms, it does 
not help to reduce the competitive ratio of Algorithm 
H2. 
Lemma 8    If only one machine is activated by Al-
gorithm H2, then cH2/c*≤(2s+1)/(s+1). 
Proof    If Algorithm H2 only activates M1, then we 
have Pn<s by the rule of Step 3. It is obvious that 
Algorithm H2 is optimal. Otherwise, H2 only acti-
vates Ms, then we have Pn≥p1>s and cH2=s+Pn/s by the 
rule of Step 1. By Lemma 1 and 1+Pn>s+Pn/s due to 
Pn>s, we have 
 

c*≥min{1+Pn, s+Pn/s, 1+s+Pn/(s+1)} 
=min{s+Pn/s, 1+s+Pn/(s+1)}.                        

 

Then together with (1 5) / 2,s> +  we get 
 

H2

*

/
max 1,

1 /( 1)
n

n

s P sc
c s P s

 +
≤  

+ + + 
 

          
/ /

max 1, max 1,
/( 1) /( 1)

n n

n n

s P s P s
s P s P s

   +
< ≤   

+ + +   
   

=1+1/s≤(2s+1)/(s+1).                                        
 

Therefore, the proof of Lemma 8 is completed. 
We next consider the cases that both machines 

are activated by Algorithm H2. Let pl be the job that 
determines the makespan yielded by Algorithm H2. 
Lemma 9    If pl is scheduled by Step 1, then cH2/c* 

≤(2s+1)/(s+1). 
Proof    The proof is similar to that of Lemma 4, so we 
omit it here. 
Lemma 10    If pl is scheduled by Step 3, then cH2/c* 

≤(2s+1)/(s+1). 
Proof    Since both machines are activated, we have 
Pn>s due to the rule of Step 3. Two following cases 
are considered according to the position of pl. 
Case 1    pl is scheduled onto M1, then from the algo-
rithm rule, we have 
 

cH2=1+s+pl+L1,l−1<1+s+s=2s+1. 
 
By Pn>s and Lemma 1, we have c*≥s+1. It follows 
that cH2/c*≤(2s+1)/(s+1). 
Case 2    pl is scheduled onto Ms, then the proof is 
similar to that of Case 2 in Lemma 5, so we omit it.  

Therefore, the proof of Lemma 10 is completed. 
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Lemma 11    If pl is scheduled by Step 4, then cH2/c* 

≤(2s+1)/(s+1). 
Proof    The proof is similar to that of Lemma 7, so we 
omit it. 
Theorem 3    The competitive ratio of Algorithm H2 
is C≤(2s+1)/(s+1), when (1 5) / 2,s φ> = +  and it is 
optimal. 
Proof    The competitive ratio of Algorithm H2 is 
obtained directly from Lemmas 8~11. And the opti-
mality of Algorithm H2 is a direct consequence of 
Theorem 1. 
 
 
CONCLUSION 
 

In this paper, we considered the problem of 
Q2|online|Cmax+AMC. We showed that, due to the 
machine activation cost, the considered problem be-
comes harder to approximate than the classical 
scheduling problem on two uniform machines 
Q2|online|Cmax with regard to competitive analysis. 
We designed optimal online algorithms with com-
petitive ratios of (2s+1)/(s+1) for all values of s. And 
each algorithm consists of two parts, an activating 
strategy, which decides when a potential machine is 
activated, and a scheduling algorithm, which assigns 
jobs to machines. 

For future research, it is of interest to develop 
algorithms for the general Restricted List Model on 
Uniform Machines problem Qm|online|Cmax+AMC for 
m≥3. 
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