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Abstract:    Let Z=(Zt)t≥0 be a Bessel process of dimension δ (δ>0) starting at zero and let K(t) be a differentiable function on [0, ∞) 
with K(t)>0 (∀t≥0). Then we establish the relationship between Lp-norm of log1/2(1+δJτ) and Lp-norm of sup Zt[t+k(t)]–1/2 (0≤t≤τ) 
for all stopping times τ and all 0<p<+∞. As an interesting example, we show that ||log1/2(1+δLm+1(τ))||p and ||supZt∏[1+Lj(t)]–1/2||p 
(0≤j≤m, j∈Z; 0≤t≤τ) are equivalent with 0<p<+∞ for all stopping times τ and all integer numbers m, where the function Lm(t) (t≥0) 

is inductively defined by Lm+1(t)=log[1+Lm(t)] with L0(t)=1. 
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INTRODUCTION 
 

Throughout this paper, we shall work with a 
filtered complete probability space (Ω,F,(Ft),P) sat-
isfying the usual conditions. Let B=(Bt)t≥0 be a stan-
dard Brownian motion with B0=0. Denote by ú+ the 
set of all non-negative real numbers. 

Recall that a diffusion process X starting at x≥0 
is called the square of a Bessel process of dimension 
δ>0 if  

 

0d d 2 | | d ,   ,t t tX t X B X xδ= + =             (1) 

 
Clearly, this equation has a unique non-negative 
strong solution X, i.e., such that, for each t≥0 random 
variable Xt is = ( ,B

t sF Bσ 0≤s≤t)-measurable. The 
process X is called the square of a Bessel process of 

dimension δ>0 (in symbol, X∈BESQδ(x)) (Revuz and 
Yor, 1998). The expression r=δ/2−1 is called the 
index of the process. The process tZ X=  (X∈ 

BESQδ(x)) is called a Bessel process of dimension 
δ>0 starting at .x  The Bessel process Z of dimen-
sion δ>0 is a continuous non-negative Markovian 
process. The Bessel processes of dimension δ≥1 are 
submartingales, and the Bessel processes of dimension 
0<δ<1 are not semimartingales. See (Revuz and Yor, 
1998) for Bessel processes with non-negative di-
mension. Furthermore, we can extend Bessel proc-
esses of dimension δ>0 to δ<0 (Dubins et al., 1993; 
Göing-Jaeschke and Yor, 2003). 

The main aim of this paper is to present an Lp 
(0<p<+∞) estimate on the ratio of the form 
supZt[t+k(t)]–1/2 (0≤t≤τ) for all stopping times τ, 
where Z is a Bessel process of dimension δ>0 starting 
at zero and ( )t K t  is a differentiable function on ú+ 
with K(t)>0 (∀t≥0). Our fundamental theorem is 
Theorem 1, where, for X∈BESQδ(0) with δ>0 we 
show that the inequalities 
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hold for all stopping times τ and all 0<p<+∞, where 
bp=9(e+2ep)(1+2p)/p. As an interesting example, for 
every stopping time τ and every non-negative integer 
number m we have 
 

1/ 2
1

0 0/ 2

/ 4 1/ 2
/ 2 1

1 log (1+ ( )) sup (1+ ( ))
2

            8 2 log (1 ( )) ,

m

m t jp t jp p

p m p

L Z L t
b

b L

τ

δ

δ τ

δ τ

+
≤ ≤ =

+

≤

≤ +

∏

 
with 0<p<+∞, where the function 1( )mt L t+  on ú+ is 
inductively defined by 
 

Lm+1(t)=log(1+Lm(t)),   m≥0, 
 
with L0(t)=1 (Graversen and Peskir, 2000; Yan, 2003; 
Yan and Zhu, 2004; 2005; Yan and Ling, 2005).  

Finally, as an extension to inequalities (2), we 
consider the Lp estimate on the solution of the equa-
tion 

 

2
0d ( ( ) ( ) )d 2 ( ) d ,   ,t t t tX f t h t X t f t X B X xδ= − + =  

 
where δ>0 and f, h:ú+→ú+ two continuous functions 
with f(t)>0 (∀t≥0). 
 
 
RESULT AND PROOF 
 

In this section we shall give the proof of ine-
qualities (2) and some related inequalities. Let 

( )t K t  be a differentiable function on ú+ with 
K(t)>0 (∀t≥0) and let δ>0. Assume that a: ú+→ú+ is 
the solution to the equation 

 
2d ( ) 2 ,    (0) 1,

d ( ) ( )
a K t aa a
t K t K t

′
− = − =           (3) 

and that 
  / 2 / 2 / 2 1 / 2

 0  0

1( ) e d e d ,   0.
2

x tt sG x t t s s xδ δ− − −= ≥∫ ∫   (4) 

Define the function ( , ) ( , )t x F t x  by F(t,x)= 
G(a(t)x)=1. Then 
 

2

2

( ) 2 ( ) ,
( ) ( ) ( )

F K t x F x F a t
t K t x K t x K t

δ ′∂ − ∂ ∂
+ + =

∂ ∂ ∂
    (5) 

 
and F(t,0)=0. 

On the other hand, it is not difficult to check that 
the inequalities 

 
2 / 2 / 4 / 22 (e 1) / ( ) 2(e 1) /x xG xδ δ δ− − ≤ ≤ −      (6) 

 
hold ∀x≥0. Clearly, the upper bound in inequalities (6) 
is optimal, since / 2

0
lim{ ( ) /[2(e 1) / ]} 1.x

x
G x δ

→
− =  

The lower bound in inequalities (6) may be re-
placed by 

 
/ 2

(1 ) / 22 e 1 ,
1

x
δ

εε
δ ε

− − −
 

 
with a fixed constant ε∈(0,1). 

Now, for x≥0 we define the function Hp:ú+→ú+ 
by  
 

Hp(G(x))=xp,   p>0. 
 
Then Hp is an increasing continuous function on ú+ 
with Hp(0)=0 for every 0<p<+∞. For x≥0 we set  
 

1 d ( ) 2 ( ).p p px
H x H s H x

s
+∞

= +∫  

 

Lemma 1    Let Hp and pH  be defined as above. 

Then for all 0<p<+∞ we have 
 

(2 / 2)log (1 ) ( ) 2 log (1 ),p p p
px H x xδδ δ++ ≤ ≤ +  x≥0,  (7) 

 

and for 0<p<1 we have 
2( ) ,    0.
1p p

pH x H x
p

−
≤ ≥

−
                (8) 

 
Proof    The inequalities (7) follow from (6). This 
implies that the function pH  is well defined for all 

0<p<+∞. 
To prove inequality (8), it is now enough to as-

sume that 
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( ) log (1 ),p
pH x A xδ= +  

with a constant A. For x≥0 we set 
 

 

1( ) d ( ).
( )p px

p

xG x H s
H x s

∞
= ∫  

 
An elementary calculation can show that for all x≥0 
and all 0<p<1 
 

0
lim ( ) /(1 ),px

G x p p
→

= −   lim ( ) 0,px
G x

→+∞
=  

and 
0 ( ) /(1 ).pG x p p≤ ≤ −  

 

It follows that 2( )
1p p

pH x H
p

−
≤

−
 for all x≥0 and all 

0<p<1. This completes the proof. 
Lemma 2    Let D=(Dt)t≥0 be a non-negative right- 
continuous process, and let A=(At)t≥0 be an increasing 
continuous process with A0=0. Assume H: ú+→ú+ is 
an increasing continuous function with H(0)=0. If for 
all bounded stopping times τ 
 

[ ] [ ],E D E Aτ τ≤  
then 
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t
E H D E H Aτ

τ≤ ≤

  ≤  
 

 

holds for all stopping times τ, where :H ú+→ú+ is 
defined by 
 

 

 

1( ) d ( ) 2 ( ),
x

H x x H s H x
s

∞
= +∫  0.x≥  

 
The proof of Lemma 2 can be found in (Revuz and 
Yor, 1998; Graversen and Peskir, 2000). The fol-
lowing lemma is a modification of Lemma 1 
(Lenglart et al., 1980), and it is a useful technique to 
obtain the Lp estimates of random variables (Barlow 
and Yor, 1981; Jacka and Yor, 1993). 
Lemma 3    Let A and B be two continuous, (Ft)- 
adapted, increasing processes, with A0=0 and B0=0. 
Assume that there exist two constants α, β>0 such 
that 
 

[( ) ] || || ( )T S TE A A B P S Tβ β α αβ
∞− ≤ <                 

 
holds for all couples (S,T) of stopping times S, T with 
S<T. Then for any 0<p<+∞, we have 

, ,|| || || || ,p p pA C Bα β∞ ∞≤  
 

where Cp,α,β=[e+ep/(αβ)](1+p/β)/p. 
Theorem 1    Let X∈BESQδ(x) with δ>0 and let 

( )t K t  be a differentiable function on ú+ with 
K(t)≥0 (∀t≥0). Then the inequalities  
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         (9) 

 
hold for all stopping times τ and all 0<p<+∞, where 

 

 0

d
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tJ
t K t

τ

τ = +∫  and bp=9(e+2ep)(1+2p)/p. 

Proof    Set Ut=Xt/K(t), t ≥0. Then, by Itô’s formula 
we have 
 

( )
d 2 d d ,

( )( )
t t

t t

U K t U
U B t

K tK t
δ ′−

= +  

 
with U0=0. Let a and G be given by Eqs.(3) and (4), 
respectively, and let F(t,x)=G(a(t)x) for t≥0, x≥0. 
From Itô’s formula and Eq.(5) it follows that 
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Noting that a−1(t)=1+t/K(t) by Eq.(3), we have a(t)Ut= 
Xt/[t+K(t)] and a(t)/K(t)=1/[t+K(t)] (∀t≥0). Combin-
ing this with Eq.(10), we find, for all bounded stop-
ping times τ 
 

0

d[ ( , )] .
( ) ( )

X tE F X E G E
K t K t

ττ
ττ

τ τ
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∫ (11) 

 
Now, for these processes Dt=F(t,Xt) and At= 
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for all stopping times τ and 0<p<1. On the other hand, 
we see that Eq.(11) implies 
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for all bounded stopping times τ, and therefore by 
applying Lemma 1, Lemma 2 to these processes 
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for all stopping times τ and all 0<p<1. Thus, for 
0<p<1 we obtain the inequalities  
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Next, we extend inequalities (12) to all 0<p<+∞ by 
Lemma 3. Consider any couple (S,T) of stopping 
times S, T with S≤T. Then, from the first inequality in 
(12) with p=1/2 and the inequality log(1+x)–log(1+y) 
≤log(1+x–y), 0≤x≤y. We find 
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where 1A stands for the indicate function of set A. It 
follows from Lemma 3 with α=1 and β=1/2 that 
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for all stopping times τ and all 0<p<+∞. To prove the 
left inequality in (9), for any couple (S,T) of stopping 
times S, T with S≤T, we have by the second inequality 
in (12) with p=1/2 
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by Lemma 3 with α=1 and β=1/2. This completes the 
proof. 
Corollary 1    Let Z be a Bessel process of dimension 
δ>0 starting at zero and let ( )t K t  be a differenti-
able function on ú+ with K(t)>0 (∀t≥0). Then the 
inequalities 
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hold for all stopping times τ and all 0<p<+∞, where 
ap=3(e+ep)(1+p)/p. 
Corollary 2    Let Z be a Bessel process of dimension 
δ>0 starting at zero and let 0<p<+∞. For every 
non-negative integer number m we define the func-
tion 1( )mt L t+  on ú+ inductively by Lm+1(t)=log[1+ 
Lm(t)] with L0(t)=t. Then the inequalities  
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hold for all stopping times τ. 
Proof    Corollary 2 follows from Corollary 1 by tak-

ing 
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= +∏  and some simple estimates. 

Corollary 3    Let r>1/2 and let Z be a Bessel process 
of dimension δ>0 starting at zero. Then we have 
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for all 0<p<+∞ and all stopping times τ.  
Proof    Take K(t)=(1+t)2r, r>1/2. Then we have ∀t≥0 
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Thus, the corollary follows from Corollary 1. 
From Corollary 3, we see that 
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for all 0<p<+∞ as r→∞. 
Corollary 4    Let Z be a Bessel process of dimension 
δ>0 starting at zero. Then we have for all 0<p<+∞ and 
all stopping times τ 
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Proof    Corollary 4 follows from Corollary 1 by 
taking K(t)=et−t, t≥0.  

From Corollary 4, we see that 
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Remark 1    From these inequalities above, one can 
perhaps get some asymptotic estimates associated 
with some random variables as δ→∞. However, we 
cannot settle this question so far. 

Finally, as the end of this paper, we extend 
Lemma 4 to general diffusion processes given by the 
equation 
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                (14) 
 

where δ>0 and f, h: ú+→ú+ two continuous functions 
with 0<a≤f(t)≤b<∞ (∀t≥0). Clearly, Eq.(14) admits a 
unique solution and the solution is strong (Ikeda and 
Watanabe, 1981; Revuz and Yor, 1998; Rogers and 
Williams, 1987), we deduce the solution X≥0 (∀t≥0). 
In the following discussion, we suppose x=0 for 
simplicity. 

Let η:R+→R+ be the solution of the equation 
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and define F: ú+×ú+→ú+ by F(t,x)=G(η(t)x), where 
G is given by Eq.(4). Then we have 
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and F(t,0)=0, ∀t≥0. It follows from Itô’s formula that 
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Thus, proceeding as in the proof of Lemma 4 one can 
give the following theorem. 
Theorem 2    Let the process X be given by Eq.(14) 
with X0=0 and let η:ú+→ú+ be the solution to Eq.(15). 
For t≥0 we define 
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where bp=9(e+2ep)(1+2p)/p, in particular, for 0<p<1 we 
have 
 

0

(2 / 2)

log (1 ) sup( ( ) )

1 2 [log (1 )],

p p
p t

t

p p

p

E J E t X

E J

τ
τ

δ
τ

α δ η

δ
α

≤ ≤

+

  + ≤    

≤ +
 

 

where αp=(1−p)/(2−p). 
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