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Abstract:

Let Z=(Z,)»o be a Bessel process of dimension 6 (5>0) starting at zero and let K(¢) be a differentiable function on [0, o)

with K(2)>0 (¥£20). Then we establish the relationship between L”-norm of log"?(1+&/,) and L-norm of sup Z[+k(t)] "> (0<t<7)
for all stopping times 7 and all 0<p<+o. As an interesting example, we show that |[log"’ 2(1+5Lm+1(r))||p and HsupZ,]_[[1+Lj(t)]’”2||p

(0<j<m, jeZ; 0<t<r) are equivalent with 0<p<+oo for all stopping times 7 and all integer numbers m, where the function L,,(¢) (£>0)

is inductively defined by L,,.1(¢)=log[1+L,,(f)] with Ly(z)=1.
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INTRODUCTION

Throughout this paper, we shall work with a
filtered complete probability space (£2.F,(F;),P) sat-
isfying the usual conditions. Let B=(B;)~o be a stan-
dard Brownian motion with By=0. Denote by R, the
set of all non-negative real numbers.

Recall that a diffusion process X starting at x>0
is called the square of a Bessel process of dimension
&0 if

dX, =5dt+2|X,|dB, X,=x, (1)

Clearly, this equation has a unique non-negative
strong solution X, i.e., such that, for each £0 random

variable X, is F’=o0(B,, 0<s<t)-measurable. The

process X is called the square of a Bessel process of
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dimension &>0 (in symbol, X eBESQ‘s(x)) (Revuz and
Yor, 1998). The expression r=d/2—1 is called the

index of the process. The process Z=.,/X, (Xe
BESQ’(x)) is called a Bessel process of dimension

&>0 starting at Jx. The Bessel process Z of dimen-
sion o>0 is a continuous non-negative Markovian
process. The Bessel processes of dimension &>1 are
submartingales, and the Bessel processes of dimension
0<o<1 are not semimartingales. See (Revuz and Yor,
1998) for Bessel processes with non-negative di-
mension. Furthermore, we can extend Bessel proc-
esses of dimension &>0 to <0 (Dubins et al., 1993;
Going-Jaeschke and Yor, 2003).

The main aim of this paper is to present an L
(0<p<tow0) estimate on the ratio of the form
supZ[+k()]* (0<t<r) for all stopping times 7,
where Z is a Bessel process of dimension 6>0 starting
at zero and ¢t K (¢) is a differentiable function on R+

with K(£)>0 (V£0). Our fundamental theorem is
Theorem 1, where, for XeBESQ‘y(O) with >0 we
show that the inequalities
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<|lsup !
, losse t+K(1)

‘;7

hold for all stopping times 7 and all 0<p<+oo, where
b,=9(e+2ep)"*¥ ? As an interesting example, for
every stopping time 7 and every non-negative integer
number m we have

- dt
log[1+5j-o t+K(t))

log| 1+0 4t
0 t+K(2)

P P

<4b,-2°"

1

1/2 =
T iog"2+6L,,, (T))”p% sup Z,/ g(HL, @) ,,
<\8b,, 2" [log* (1+5L,,(0))] .

with 0<p<+oco, where the function ¢t L, (¢#) on Ry is

inductively defined by
Ly (=log(1+L,(2)), m=0,

with Ly(f)=1 (Graversen and Peskir, 2000; Yan, 2003;
Yan and Zhu, 2004; 2005; Yan and Ling, 2005).

Finally, as an extension to inequalities (2), we
consider the I estimate on the solution of the equa-
tion

dX, = (6/2(t) = h()X,)dr + 2 f ()| X,|dB,, X, =x,

where 6>0 and f, h:R.—R; two continuous functions
with f{£)>0 (V£20).

RESULT AND PROOF

In this section we shall give the proof of ine-
qualities (2) and some related inequalities. Let
t— K(t) be a differentiable function on R; with

K()>0 (V£=0) and let 5>0. Assume that a: R.—R; is
the solution to the equation

da K0, 20
dt K@) K@’

a(0)=1, (3)
and that

_1 X512 112 t 5/2-1 ~s/2
G(x)—EIOt e dtJ.Os e'“ds, x20. (4)

Define the function (¢,x)— F(t,x) by F(tx)=
G(a(t)x)=1. Then

OF &—K'(t)x OF
—+ —+
o K() ox

2x O°F _ a(t)
K@) o K@)

%)

and F(¢,0)=0.
On the other hand, it is not difficult to check that
the inequalities

2702 (e 1)/ <G(x)<2(e"* =1)/5  (6)
hold Vx>0. Clearly, the upper bound in inequalities (6)

is optimal, since lim{G(x) [2(e"* =1)/5]} =1.

The lower bound in inequalities (6) may be re-
placed by

Silee
-&

with a fixed constant £€(0,1).
Now, for x>0 we define the function H,:R:—R;
by

HyGO)=", p>0.

Then H, is an increasing continuous function on R-
with H,(0)=0 for every 0<p<+oo. For x>0 we set

H =x jx”%de (s)+2H,, (x).

p

Lemma 1  Let A, and A , be defined as above.

Then for all 0<p<+oo we have

log? (14+6x) < H , (x) <272 log? (1+6x), x>0, (7)

and for 0<p<1 we have

7 (x)£2_pHp, x>0. (8)

Proof  The inequalities (7) follow from (6). This
implies that the function H , is well defined for all
0<p<+too.

To prove inequality (8), it is now enough to as-
sume that
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H ,(x)=Alog’ (1+0x),

with a constant 4. For x>0 we set

G,(x)=

An elementary calculation can show that for all x>0
and all 0<p<l1
IimG,(x)=p/(1-p), lim G, (x)=0,

and
OSGp(x)Sp/(l—p).

It follows that H (x)<

P H for all x>0 and all
-p

0<p<1. This completes the proof.

Lemma 2  Let D=(D,)so be a non-negative right-
continuous process, and let 4=(4;)~( be an increasing
continuous process with 4;=0. Assume H: R.—R; is
an increasing continuous function with H(0)=0. If for
all bounded stopping times 7

E[D,]< E[4,],
then
E[sup H(Dt)} < BUA(4,)]

0<t<r

holds for all stopping times 7, where H:R,—R; is
defined by

H(x)= xj —dH(s)+2H(x) x>0.

The proof of Lemma 2 can be found in (Revuz and
Yor, 1998; Graversen and Peskir, 2000). The fol-
lowing lemma is a modification of Lemma 1
(Lenglart et al., 1980), and it is a useful technique to
obtain the I” estimates of random variables (Barlow
and Yor, 1981; Jacka and Yor, 1993).

Lemma 3 Let 4 and B be two continuous, (F})-
adapted, increasing processes, with 4p=0 and By=0
Assume that there exist two constants ¢, £>0 such
that

E[(47 = 4{)* 1< B, |7 P(S<T)

holds for all couples (S,7) of stopping times S, 7 with
S<T. Then for any 0<p<+oo, we have

1A ,<Cpupll Bl
where C, , ~[e+ep/(ap)] PP
Theorem 1 Let XeBESQ’(x) with 8>0 and let
t— K(t) be a differentiable function on R. with

K(t)>0 (V£20). Then the inequalities

—||10g(1+5-1 |, <

p

0<t<1 +K(t)
<4b 277 ||log(1+5J,)],

)

hold for all stopping times 7 and all 0<p<+oo, where

and bp=9(e+2ep)(l+2” P,

-[ 0+ K (t)
Proof Set U=X/K(t), t >0. Then, by It6’s formula
we have

dU,=2 \/U dB +
VK (2)

with Uy=0. Let a and G be given by Eqs.(3) and (4),
respectively, and let F(t,x)=G(a(f)x) for £0, x>0.
From 1t6’s formula and Eq.(5) it follows that

o-K'(tU,
K (1)

b

Gla()X)=F(,U))
16-K'(s) 0
o K(s) ox

1/2
+2j’( U, j EF(S,Us)dBS

:'[;%F(S,Ux)ds [ = F(s,U,)ds

o\ K(s)) ox
U 822 F(s,U,)ds
0K(s) 0 x

e L 1/2_ als)
_2I0(K(s)j ~F(s,U,)dB, +j K()ds (10)

Noting that a ' (£)=1+#/K(¢) by Eq.(3), we have a()U=
X/[t+K(1)] and a(t)/K(t)=1/[t+K(¢)] (V£0). Combin-
ing this with Eq.(10), we find, for all bounded stop-
ping times 7

— XT = ’
E[F(r,Xf)]=E{G[HK(T)H_EDO t+K(t)J ()

Now, for these processes D~=F(t,X;) and A~
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d
I t—s, by Lemma 1 and Lemma 2 we get
0s+K(s)

X, YL
¢ [?Eﬁ(mqt)] }E [Sup H, (F(r,X,))}
::E[f?p£fr d j} _E{}{p(jf ds J}
0 1+ K(1) 0 14K (0)
2 2=p 2p(z+a/z)E{10gp (1+5 . dt ]}
1 p 0 I+K(l)

for all stopping times 7and 0<p<l1. On the other hand,
we see that Eq.(11) implies

c o dr
E DO P K(t)}SE[osgg F(t’K’)}

for all bounded stopping times 7, and therefore by
applying Lemma 1, Lemma 2 to these processes

2-p
I-p

IA

and 4 =sup F'(s, X ), we get
D=, 0s+K(s)  =SUpF(s. X, ), we g

o|#(t7ka)

E[Flp (iltlgF(t,Xt)ﬂ

2= E[Hp (sup F(t,Xt)ﬂ

1—
P
E| sup X,
o<e<e\ 1+ K (1)

for all stopping times 7 and all O<p<l. Thus, for
0<p<1 we obtain the inequalities

IA
v

&}
AN

T

I-p

“u

l\)

Ellog” (146, )]<EK§3P,+)1(<(¢)) }

Sf—_pzp(zwz)E[log!’ (1+6J))].
w4

-P

(12)

Next, we extend inequalities (12) to all O0<p<+ow by
Lemma 3. Consider any couple (S,7) of stopping
times S, 7 with S<T. Then, from the first inequality in
(12) with p=1/2 and the inequality log(1+x)-log(1+y)
<log(1+x—y), 0=<x<y. We find

E(\flog(1+87,) ~flog(1+575) )
SE(\/log[l+5(JT —Js)])

X
E[ ln(1+5JT1 )jlﬁ:;E sup t
{755} o<i<T1p5, t+ K (F)

1/2

P(T>S), (13)

<9|sup !
o<e<r t+ K (1) .

where 1, stands for the indicate function of set A4. It
follows from Lemma 3 with a=1 and f=1/2 that

1+2p

I, <9(e+2ep) ?

Su
psn K(t)

for all stopping times 7 and all 0<p<+oo. To prove the
left inequality in (9), for any couple (S,7) of stopping
times S, 7' with S<7T, we have by the second inequality
in (12) with p=1/2

X X
E|  [sup L — |sup !
o<t t+ K (1) osss t+ K (1)

J X x|
< [sup -
sast|t+K(6)  S+K(S))|

X
o<t<(1-S)ysr, t+ S+ K(+S)

<294 -6E( log(1+5J)1

(T>S} )

1/2
O Pes<T),

which shows for all stopping times 7 and all 0<p<+oo,

<2°"%.36(e+2ep) "

sup——
v 1+ K (1)),

by Lemma 3 with a=1 and #=1/2. This completes the
proof.

Corollary 1 Let Z be a Bessel process of dimension
>0 starting at zero and let ¢+ K(¢) be a differenti-

able function on R; with K(#)>0 (V#>0). Then the
inequalities

||log”2(1+5J )|| <[lsup

Z,
0st<r \[l‘-i-K(l‘)

<2a,-2° ||1og”2 (1+§JT)||p
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hold for all stopping times 7 and all 0<p<+co, where
a,=3(etep) .

Corollary 2 Let Z be a Bessel process of dimension
>0 starting at zero and let O<p<t+o. For every
non-negative integer number m we define the func-
tion 1= L, . (¢) on R, inductively by L,.1(¢¥)=log[1+

L,(8)] with Ly(¢)=t. Then the inequalities

supZ/ } [+L, (t)]

<2} “ [logll+5L, ., (r)]“p

logl1+5L, . (7)] H <

hold for all stopping times 7.
Proof Corollary 2 follows from Corollary 1 by tak-

ing K(¢)= H(l +L,(?)), and some simple estimates.
=0

Corollary 3 Let 7>1/2 and let Z be a Bessel process

of dimension &>0 starting at zero. Then we have

5
log” { 2 1[1 ISR H <2,
12 3 ( 1
(s { Al (Hr)”lj]p

for all 0<p<+oo and all stopping times 7.
Proof Take K(f)=(1+1)", ¥>1/2. Then we have V>0

SUj
pond (l+t)

323/2+é/4

>

Sup——
o<e<z (1+2) B

1 7z _ 7

D2+t Jii K@) (+t)

and
1 (1 12‘jgjz ds _ 1 (1 12‘}
22r-D +0)" )7 0s+K(s) " 2r-10 (14+2)”

Thus, the corollary follows from Corollary 1.
From Corollary 3, we see that

P 14
E| sup Z) | ¢
vz (142)7 | (2r=1)"

for all 0<p<+oo as r—oo.
Corollary 4 Let Z be a Bessel process of dimension

&>0 starting at zero. Then we have for all 0<p<+o and
all stopping times 7

<lsupe’Z H
0<t<r P

log[l+o(1—e”*

S23/2+6/4a

log[l+0(1-e )]

s
P

in particular, for all 0<p<+o we have

b log(1+9) <
V2a, " :
323/2*5/4ap\/10g(1+5).

Proof  Corollary 4 follows from Corollary 1 by
taking K(f)=e'—t, £0.
From Corollary 4, we see that

supe’Z,

0<t<o0

—t/2
SUp ——
12\/_6 L«w J1og(1+9)

Remark 1 From these inequalities above, one can
perhaps get some asymptotic estimates associated
with some random variables as o—o. However, we
cannot settle this question so far.

Finally, as the end of this paper, we extend
Lemma 4 to general diffusion processes given by the
equation

:|S12><23/2+5/4e2,

dX, =51 (t)- h(t)X)dt+2f(t),/ | dB,, X,=x,
(14)
where 6>0 and f, #: R,—R; two continuous functions
with 0<a<f(t)<b<wo (V£20). Clearly, Eq.(14) admits a
unique solution and the solution is strong (Ikeda and
Watanabe, 1981; Revuz and Yor, 1998; Rogers and
Williams, 1987), we deduce the solution X>0 (V£0).
In the following discussion, we suppose x=0 for
simplicity.
Let 7:R;—R; be the solution of the equation

dp/dt=htyn()=-n"f> (), n(0)=1,  (15)

and define F: R xR,—R; by F(z,x)=G(7(f)x), where
G is given by Eq.(4). Then we have

or =020
(16)

—+(5f (- h(t)X)
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and F(¢,0)=0, V#>0. It follows from It6’s formula that

Gy X,)=F(t,X,)
t 0 t
=2 f&)X, o FX)dB+ [ ()17 (5)ds.
Thus, proceeding as in the proof of Lemma 4 one can

give the following theorem.
Theorem 2  Let the process X be given by Eq.(14)

with X,=0 and let 77:R;—R, be the solution to Eq.(15).

For =0 we define
J=[ 1)/ ()ds.

Then for all 0<p<+ow and all stopping times z, we
have

supn(0)X,

0<t<r

1
7 og(+oJ )], <

P

, (17)
<2*012p |llog(1+6.J )],

where b,=9(e+2ep) ¥ % in particular, for 0<p<I we
have

a,E|log" (1+6.,) |<E [S“p(n(f)Xf)p}
0<t<r
§L2P(Z+§/2) E[]ogp (1+5JT )]3
o

p

where a,=(1-p)/(2—p).
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