
Chen et al. / J Zhejiang Univ Sci A   2007 8(5):748-754 748

 
 
 
 

LS-SVM model based nonlinear predictive control for MCFC system* 
 

CHEN Yue-hua†, CAO Guang-yi, ZHU Xin-jian 
(Institute of Fuel Cell, Department of Automation, Shanghai Jiao Tong University, Shanghai 200030, China) 

†E-mail: chenqi78@sjtu.edu.cn 
Received Mar. 23, 2006;  revision accepted Oct. 21, 2006 

 

Abstract:    This paper describes a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). In 
order to improve MCFC’s generating performance, prolong its life and guarantee safety, it must be controlled efficiently. First, the 
output voltage of an MCFC stack is identified by a least squares support vector machine (LS-SVM) method with radial basis 
function (RBF) kernel so as to implement nonlinear predictive control. And then, the optimal control sequences are obtained by 
applying genetic algorithm (GA). The model and controller have been realized in the MATLAB environment. Simulation results 
indicated that the proposed controller exhibits satisfying control effect. 
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INTRODUCTION 
 

According to analyses of molten carbonate fuel 
cells (MCFCs) system, the dynamics of MCFC sys-
tem is nonlinear with multi-input and multi-output as 
well as multiple recycling gas flow loops, multiple 
phase flows and complex chemical and electro-
chemical reactions. It is very difficult to model and 
control MCFC system. Performance and availability 
of MCFC are greatly dependent on its output voltage, 
which is crucial for improving MCFC performance 
and life so that the output voltage is controlled in an 
appropriate range. 

The MCFC model must be established in order 
that an object can be controlled efficiently. A detailed 
1D mechanism model of an MCFC system is pre-
sented in (Yoshiba et al., 2004). Cell voltage distri-
bution can be calculated by this method. However, it 
takes much time to solve these complex mechanism 
equations. Neural networks are used to model 
nonlinear systems in (Shen et al., 2002; Wang et al., 

2006). Least squares support vector machine 
(LS-SVM) method is used to model the operating 
temperature of a PEMFC (proton exchange mem-
brane fuel cell) stack in (Li et al., 2006) and obtain 
satisfying effect. The same method is utilized by 
Vong et al.(2006) to predict the automotive engine 
power and torque. Compared with neural networks, 
LS-SVM method can offer some advantages. There-
fore, in this paper, an LS-SVM model is established to 
predict the output voltage of an MCFC plant. 
Nonlinear predictive controllers are proposed by 
many researchers. Nonlinear predictive model based 
controllers for controlling PEMFCs are proposed in 
(Golbert and Lewin, 2004); and Zhu (2002) described 
a nonlinear predictive control algorithm based on 
neural network predictive model. A fuzzy logic con-
troller is also presented in (Schumacher et al., 2004) 
to control miniature PEMFCs. In simulation experi-
ments, these controllers worked well. Genetic algo-
rithm (GA) method for optimization problem is de-
scribed by (Elliott et al., 2005; Belarbi et al., 2005); 
simulations showed that the GA is a robust, efficient 
and fast method for optimization problem. 

In this paper, a nonlinear predictive control al-
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gorithm based on an LS-SVM predictive model is 
proposed to control the output voltage of an MCFC 
system. First, the system configuration of the MCFC 
system is described briefly. Then LS-SVM formula-
tions for nonlinear function estimation are presented. 
A predictive model of MCFC is obtained using 
LS-SVM method. Based on this nonlinear predictive 
model, GA is used to obtain the optimal output of the 
predictive controller. Numerical experiments showed 
the effectiveness of the proposed control algorithm 
and performance comparison between the proposed 
controller and a traditional fuzzy controller is also 
presented. 
 
 
SYSTEM CONFIGURATION OF AN MCFC 
PLANT 
 

The fuel cell stacks are MCFC type with external 
reforming and operating at ambient pressure, with the 
configuration of the whole plant being presented in 
Fig.1 (Lunghi et al., 2003). 

 
 
 
 
 
 
 
 
 
 
 
 
 
The fuel used is natural gas. In order to obtain 

higher cell efficiency, the natural gas is pre-heated 
using the heat content of the cathodic gas at heat ex-
changer C. For this purpose a valve is used to split the 
cathodic gas stream into two parts which are used to 
produce steam needed for the reforming process in 
HRSG and pre-heat the fuel. The fuel reacts with the 
steam provided by the heat recovery steam generator 
(HRSG) in the reformer. Reactions in MCFC are 
presented as follows (Yoshiba et al., 2004): 

 
Reformer reaction: 4 2 2CH H O CO 3H ,+ → +    (1)      
Shift reaction: 2 2 2CO H O CO H ,+ ↔ +             (2) 

Cathode reaction: 2
2 2 3

1 O CO 2e CO ,
2

− −+ + →    (3) 

Anode reaction: 2
2 3 2 2H CO CO H O 2e .− −+ → + +    (4) 

 
The anode exhaust gas exits the stack and the 

unutilized fuel is burned in a combustor. After com-
bustion and before re-entering the stack, the gas is 
cooled until the temperature reaches the appropriate 
value required. The heat released can be utilized by 
the gas turbine (at heat exchanger B) for the purpose 
of improving cell efficiency. For the same reason, the 
exhaust gas from the turbine is sent to the heat ex-
changer A that increases the temperature of the air 
supplied to the combustor. The parameters of the 
MCFC plant are summarized in Table 1 (Ishikawa 
and Yasue, 2000). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LS-SVM FORMULATION FOR NONLINEAR 
FUNCTION ESTIMATION  
 

SVM is one of the methods by which the statis-
tical learning theory can be introduced to nonlinear 
system identification. Comparing SVM with other 
nonlinear identification approaches, the advantages of 
SVM method are presented as follows: 

(1) The learning algorithms of traditional 
nonlinear identification approaches, including neural 
networks (Shen et al., 2002; Wang et al., 2006), fuzzy 
modeling, etc., are almost always based on the ex-
pectation risk minimization principle. These kinds of 
algorithms often lead to the problem of over fitting. 

Fig.1  MCFC plant configuration 

Table 1  The parameters of a 50 kW MCFC plant 
Parameters Values 

Current density (mA/cm2) 50~300 

Pressure of the stack (MPa) 0.1 
Available area (m2) 1 

Operating temperature (°C) 650 
Number of single cells 80 
Flux of anode inlet gas (kg/h) 4.2~26 
Flux of cathode inlet gas (kg/h) 9~56 
Coefficient of fuel utilization 0.7 
Coefficient of air utilization 0.3 
Components of anode inlet gas CH4/H2O=1:2
Components of cathode inlet gas Air/CO2=7:3
Output power of MCFC system (kW) 50 
Sampling periodicity (s) 0.2 
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That is, less training error may result in poorer gen-
eralization performance. Based on statistical learning 
and the structural risk minimization principle, SVM 
can give attention to both expectation risk and gen-
eralization performance (Li et al., 2006). 

(2) SVM formulates the training process as a 
quadratic programming (QP) problem of minimizing 
the data fitting error function plus regularization, 
which produces a global solution instead of many 
local ones. And another important advantage of SVM 
over other traditional nonlinear identification meth-
ods is its ability to handle high nonlinearity. Similar to 
nonlinear regression, SVM transforms the low di-
mensional nonlinear input data space into 
high-dimensional linear feature space through a 
nonlinear mapping: ( ): ,knm⋅ →ϕ m is the dimen-
sion of input data space, and nk is the dimension of the 
unknown feature space (which can be infinite di-
mensional). Then linear function estimation over the 
feature space can be performed (Vong et al., 2006).  

On the basis of classical SVM, Suykens and 
Vandewalle (2000) presented LS-SVM approach, in 
which the following function is used to approximate 
the unknown function: 

 
T( ) ( ) ,b= +y x w xϕ                       (5) 

 

where m∈x  are the input data, ∈y  are the 

output data, ( ): knm⋅ →ϕ  is the nonlinear function 
that maps the input space into a higher dimension 
feature space. 

Given training data 1{ , }M
i i i=x y  where M denotes 

the number of training data, LS-SVM approach de-
fines an optimization problem as follows: 

 

T 2

, , 1

1 1min ( , ) ,
2 2

M

kb k

γ
=

= + ∑w e
J w e w w e 0,γ >  

s.t. T ( ) ,k k kb= + +y w x eϕ   k=1, 2, …, M,     (6) 
 

where ek are slack variables and γ is the regularization 
factor. 

To solve this optimization problem, one defines 
the following Lagrange function: 

 

T
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M

k k k k
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=
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 (7)                                                              

where αk are Lagrange multipliers. The conditions for 
optimality 
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can be expressed as the solution to the following set 
of linear equations after elimination of w and ek: 
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T
1[0 ] ,M= y y                       (9) 

where  
T( ) ( ) ( , ), , 1,  ...,  ,k l k l k l M=    =x x K x xϕ ϕ       (10) 

 
according to Mercer’s conditions. One has several 
possibilities for the choice of this kernel function 
K(xk,xl), including linear, polynomial, splines, RBF. 
In the sequel of this paper we will focus on RBF 
kernels 
 

2 2( , ) exp{ || || / },k k σ= − −K x x x x          (11) 

 
where σ is the width parameter of RBF.  

The resulting LS-SVM model for function es-
timation becomes 

 
2 2

1 1

( ) ( , ) exp( || || / ) ,
M M

k k k k
k k

b bσ
= =

= + = − − +∑ ∑y x K x x x xα α

  (12) 
 
where αk, b∈  are the solution of Eq.(9), xk is 
training data, x is the new input case. 
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TRAINING AND PREDICTIVE RESULTS 
 

Practically, output voltage of MCFC is influ-
enced by many input control parameters. For sim-
plicity, the operating temperature and pressure of the 
MCFC stack are kept constant during the experiments. 
Then the output voltage is dependent on the current 
density and flow rates of reactant gases. For the ap-
plication of LS-SVM approach, the following ad-
justable parameters are selected to be the input vector: 

 
stack a c{ ( ), ( ), ( )},k k k k=x I F F and { ( )},k k=y V   (13) 

 
where Istack is the current density of MCFC stack 
(mA/cm2), Fa is the flow rates of anode gas (kg/h), Fc 
the flow rates of cathode gas (kg/h) and V the output 
voltage of MCFC stack (V). 

The following NARMAX model 
 
( ) [ ( 1), ( 2), , ( ),

           ( 1), ( 2), , ( )] ( )
y

x

k f k k k n

k k k n k

= − − −

− − − +

y y y y
x x x e

  (14) 

 
is employed to denote the output voltage. nx and ny 
denote the input and output order of the system, re-
spectively. The training data set is expressed as 
D={dk}, for example, when nx=ny=3, dk contains the 
following parameters:  
 

[ ( 1), ( 2), ( 3),
   ( 1), ( 2), ( 3), ( )].

k k k
k k k k
− − −

− − −
x x x
V V V V

        (15) 

 
All the 1000 experimental sampled data points 

from the power test of the 50 kW MCFC in the In-
stitute of Fuel Cell, Shanghai Jiao Tong University 
are divided into two sets: training set and testing set, 
where training set contains 900 data points and testing 
set containing the remaining 100 data points. These 
data points contain voltage response values under 
various current densities of the stack and gas flow 
rates, which will be used for establishing LS-SVM 
model of MCFC stack and evaluating the model 
performance. The identification structure of MCFC 
system is shown in Fig.2, where TDL is the tapped 
delay line. The parameters used in the training and 
testing process are summarized: nx=3, ny=3, γ =10, σ 
=0.1.  

For establishing LS-SVM model and evaluating 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

its performance, 10-fold cross validation method is 
used, which can be found in LS-SVMlab1.5 
(Pelckmans et al., 2003), an MATLAB toolbox under 
MS Windows XP. All the 1000 data points are ran-
domly divided into 10 disjunct sets. At each iteration, 
one of these sets (testing set) is used to estimate the 
MSE performance index of the model trained on the 
other 9 sets (training set). At last, the 10 different 
MSE performance indexes are averaged. MSE per-
formance index is defined as follow: 

 
2

MSE
1

1 ˆ( ( )) ,
M

k
k

E k
M =

= −∑ y y               (16) 

 
where M is the number of data points in the test set, yk 
is the actual output voltage value and ˆky  the output of 
LS-SVM model at instance k. Then, the accuracy rate 
is calculated using Eq.(17): 
 

2

1

1 ˆ1 [( ) / ] 100%.
M

k k k
k

Accuracy
M =

 
= − − ×  

 
∑ y y y   (17) 

 
Under a 3.0 GHz Pentium IV PC with 1 GB 

RAM on board, training LS-SVM model and esti-
mating the model performance takes about 43 s. The 
average MSE obtained is 1.45, and the best MSE is 
only 0.54. In the best case, comparison between the 
actual output voltage values with the predicted volt-
age values by LS-SVM model is shown in Fig.3, with 
the predicted errors also given. As can be seen from 
Fig.3, the predicted results are in good agreement 
with the actual test results, and the maximal predicted 
error is not beyond 0.24 V. The accuracy calculated 
by Eq.(17) is 98.17%.  

Fig.2  Schematic of the identification structure of 
MCFC stack with LS-SVM 
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To illustrate the advantages of LS-SVM method, 
the results are compared with those obtained from 
training a radial basis function neural network 
(RBFNN). As neural network is similar to LS-SVM, 
it is also a well-known universal estimator. Function 
“newrb” in MATLAB neural network toolbox is 
chosen to train an RBF network. The same training 
and testing sets are also used. The parameters used in 
RBFNN training process and test results are shown in 
Table 2. 
 
 
 
 
 
 
 
 
 
 

The performance of RBFNN is commendable; it 
produces less MSE than the average value of 
LS-SVM, what is more, LS-SVM produces better 
accuracy and needs less training time. According to 
the test results, the identification accuracy of 
LS-SVM is high and the model can be trained fast. 
Therefore this model can be used to predict the volt-
age responses that make it possible to design a 
nonlinear predictive controller of MCFC stack. 

NONLINEAR MODEL PREDICTIVE CON-
TROLLER 
 

The structure of nonlinear predictive control 
system of MCFC stack is given in Fig.4. In the figure, 
the predictive output voltage ˆ ( )k j+V  for p steps 
ahead is obtained by LS-SVM model: 

 

2 2

1

ˆ ( ) exp( || ( ) || / ) ,  0 ,
N

n n
n

k j k j b j pσ
=

+ = − + − + ≤ ≤∑V x xα

     (18) 
 
where N is the number of data points in the training 
set. Supposing the actual output voltage at k instance 
is V(k), the predictive error at k instance is: 
 

ˆ( ) ( ) ( ),k k k= −e V V                      (19) 
 
then the predictive output voltage of the feedback 
system for p steps can be defined as: 
 

p
ˆ( ) ( ) ( ),  0 .k j k j k j p+ = + + ≤ ≤V V e       (20) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Referenced trajectories of output voltage are in-
troduced to avoid excessive movement of the control 
input, which are defined as: 
 

d sp( ) ( ) (1 ) ,  0 ,  0 1,j jk j c k c j p c+ = + − ≤ ≤ < <V V V                         

(21) 
 
where Vsp is the set point of output voltage. 

Table 2  Parameters in training process and test re-
sults by RBFNN 

Items Values 
Number of neurons 34 
Width parameter of RBF 0.1 
MSE 1.21 
Accuracy (%) 97.13 
Training time (s) 65 

 
Fig.4  Structure of the nonlinear predictive control
system of an MCFC stack 

Fig.3  Predicted voltage by LS-SVM method. (a)
Comparison between actual voltage and predicted
voltage by LS-SVM model; (b) The predicted error 
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The optimization problem for the predictive 
controller is the minimization of the sum of squared 
errors between the referenced trajectory and the pre-
dictive output, with an additional penalty imposed on 
excessive changes in the manipulated variables (Zhu, 
2002): 

 

2
p d

1

2

1

( ) [ ( ) ( )]

          [ ( ) ( 1)] ,

p

j
j

l

i
i

J k q k j k j

r k i k i

=

=

= + − +

+ + − + −   

∑

∑

V V

x x
 

0 ,  0 ,  0,  0.j ij p i l q r≤ ≤ ≤ ≤ ≥ >            (22)                                                                                                                    
 

The weight parameters qj and ri are used to in-
crease the importance of specific variables at given 
instances. For example, the weights may increase 
over time to ensure rapid convergence with no offset 
(Golbert and Lewin, 2004). p is predictive horizon 
and l is control horizon. In this case, we choose p=l=4.  

In order to obtain the solution of the optimization 
problem, we consider a single objective float number 
encoded GA. We have opted for this GA because, in 
general, it is known that real coded GA performs 
better than binary coded GA for high precision opti-
mization problem (Elliott et al., 2005). The genetic 
operators and the parameters used for this GA are 
taken as follows (Belarbi et al., 2005): (1) population 
size npop=50; (2) fitness function F(k)=1/J(k); (3) 
uniform arithmetic two-point crossover, crossover 
probability pc=0.85; (4) non-uniform mutation prob-
ability pm. 

One chromosome is composed of three 
sub-chromosomes: the first denotes the current den-
sity of MCFC stack Istack, the second is the flowrate of 
anode inlet gas Fa, and the last represents the flowrate 
of cathode inlet gas Fc. The current density values and 
the flowrate values of anode inlet gas are normalized 
within the range [000,999], and the cathode flowrate 
within the range [0000,9999]. The chromosome vk is 
thus structured as [Istack, Fa(k), Fc(k)].  

Fitness values of all chromosomes are calculated 
and we sort the chromosomes from greater to lower 
fitness. Truncation selection scheme is used, that is, 
the 50% best chromosomes are selected and repro-
duced correspond to their fitness value until the 
number of offspring is equal to the size of the popu- 
 

lation. The offspring generation replaces the parent 
population. 

A non-uniform mutation operator is used, which 
enables fine local tuning and is defined as follows: 
The mutation possibility of each chromosome is in 
inverse proportion to its fitness: 

 

m pop( ) 0.10 0.01 ( ) / .k kp v F v n= −            (23) 
 

After searching for several times, the optimal 
control moves X(k)=[x(k+1), …, x(k+l)] can be ob-
tained. The first of the future control moves x(k+l) is 
implemented, and the entire optimization is repeated 
from the next step on, and so on. 
 
 
SIMULATION RESULTS 
 

In this section, we present simulations of using 
the predictive control algorithm based on LS-SVM 
model. Fig.5 shows the performance obtained with 
the predictive controller. When the current density 
has several step changes, the output voltage changes 
suddenly at first, then the predictive controller con-
trols the output voltage to the required level in only 6 
s without overshoot.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When MCFC stack works at rated power, we get 
the tracking curve of the controlled output voltage 
shown in Fig.6. A traditional fuzzy controller is also 
used in the simulation experiment. For detailed de-
scription please see (Schumacher et al., 2004). 

 

Fig.5  Performance of the predictive controller 
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The performance of traditional fuzzy controller 

is commendable, its overshoot is about 2.7 V, and its 
convergence time is 33 s. Comparatively, the per-
formance of the predictive controller is better than 
that of the traditional fuzzy controller, it needs only 7 
s to reach the steady state with no overshoot. 

Figs.5 and 6 show that under various current 
densities, the proposed controller can regulate and 
control the MCFC output voltage to change smoothly 
and quickly to its stable target value. Therefore it is 
feasible to use this proposed controller for MCFC 
stack. 
 
 
CONCLUSION 
 

The output voltage is an important variable 
controlled in MCFC system. However, the relation of 
output voltage and current density is nonlinear and 
complex, indicating that nonlinear control is required 
to adequately regulate the output voltage in the case 
of drastic current changes. An LS-SVM predictive 
model is put forward to study the sampling data. Then 
a nonlinear predictive control algorithm using GA is 
proposed. In simulations, use of the nonlinear model 
predictive control enables accurate control in such a 
nonlinear and complex system, the performance of 
proposed controller is satisfying. 
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