
Liang et al. / J Zhejiang Univ Sci A 2007 8(6):857-863 857

Indexing the bit-code and distance for fast KNN search
in high-dimensional spaces*

LIANG Jun-jie†1,2, FENG Yu-cai1

(1College of Computer Science & Technology, Huazhong University of Science and Technology, Wuhan 430074, China)
(2Faculty of Mathematics & Computer Science, Hubei University, Wuhan 430062, China)

†E-mail: ljjhubu@163.com
Received Aug. 22, 2006; revision accepted Dec. 5, 2006

Abstract: Various index structures have recently been proposed to facilitate high-dimensional KNN queries, among which the
techniques of approximate vector presentation and one-dimensional (1D) transformation can break the curse of dimensionality.
Based on the two techniques above, a novel high-dimensional index is proposed, called Bit-code and Distance based index (BD).
BD is based on a special partitioning strategy which is optimized for high-dimensional data. By the definitions of bit code and
transformation function, a high-dimensional vector can be first approximately represented and then transformed into a 1D vector,
the key managed by a B+-tree. A new KNN search algorithm is also proposed that exploits the bit code and distance to prune the
search space more effectively. Results of extensive experiments using both synthetic and real data demonstrated that BD out-
performs the existing index structures for KNN search in high-dimensional spaces.

Key words: High-dimensional spaces, KNN search, Bit-code and distance based index (BD), Approximate vector
doi:10.1631/jzus.2007.A0857 Document code: A CLC number: TP311

INTRODUCTION

Various new database applications have been
developed in many respects, such as data warehous-
ing and content-based multimedia information re-
trieval. In these applications, one of the most fre-
quently used but expensive operations is to find ob-
jects in databases that are similar to a given query
object. Nearest neighbor search is a central require-
ment in such cases (Chavez et al., 2001). Since the
databases are very large and consist of millions of
data objects with several tens to a few hundreds of
dimensions, it is essential to use appropriate multi-
dimensional indexing techniques to achieve efficient
search of the data.

There is extensive research on solving the near-
est neighbor search problem, with a large number of
multi-dimensional indexes being developed for this

purpose. However, most of these structures are based
on partitioning the data space (Fonseca and Jorge,
2003; Hjaltson and Samet, 2003). Because of the
‘curse of dimensionality’, these methods are out-per-
formed on average by a simple sequential scan if the
number of dimensions exceeds around 10 (Weber et
al., 1998). To break this curse, many new proposals
are presented, such as approximate vector presenta-
tion and 1D transformation. However, most of these
proposals do not efficiently utilize the advantages of
1D transformation and data approximation and typi-
cally perform well for certain cases only (dimen-
sionality, data distribution, query type, etc.).

In this paper, we propose a novel index structure
for fast KNN search, called Bit-code and Distance
based index (BD). The basic idea of BD is that a
high-dimensional vector is first approximately rep-
resented and then transformed into a 1D value, with
the key being managed by a B+-tree. This is done
using a two-step algorithm. In the first step, the
high-dimensional data space is split into 2d ′ (d′<d)

Journal of Zhejiang University SCIENCE A
ISSN 1673-565X (Print); ISSN 1862-1775 (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

* Project (No. [2005]555) supported by the Hi-Tech Research and De-
velopment Program (863) of China

Liang et al. / J Zhejiang Univ Sci A 2007 8(6):857-863 858

partitions, where d′ is the number of dimensions on
which the space is partitioned. Each partition can be
represented by a unique bit string of length d′, called
bit code. A data point is then approximated by the bit
code of the partition it falls into. In the second step,
each data point is transformed into a 1D value, termed
as key, by the distance with respect to the reference
point. This allows the key to be indexed using a
B+-tree structure and KNN search to be performed
using 1D range search. In the process of KNN search,
with the bit code we can rapidly eliminate irrelevant
partitions that are not intersected by the query without
the expensive distance computation. Then, we can
determine which key values inside an affected parti-
tion are affected by the query. Therefore, the BD can
reduce both I/O and computation costs for KNN
search.

We implemented the BD method together with a
new KNN search algorithm, and conducted an ex-
tensive performance study to evaluate their effec-
tiveness. Our results showed that the proposed
schemas can provide fast response time without sac-
rificing the quality of the answers. Moreover, through
appropriate choice of partition scheme, the BD
method can compute the complete answer set much
faster than the existing index structures on both real
life and synthetic high-dimensional datasets.

The rest of this paper is organized as follows. In
Section 2, we give an overview of the related work. In
Section 3, we introduce and discuss our new tech-
nique, the BD. Then we present the experimental
results and analyze the benefits of BD in Section 4.
Section 5 concludes the paper.

RELATED WORK

Many index structures have been proposed for
similarity search in high-dimensional spaces. Most of
them are based on data space partitioning, which
include the R*-tree, the X-tree, the SR-tree, the
TV-tree and many others. Although these methods
generally perform well at low dimensionality, they
suffer greatly from the curse of dimensionality (Beyer
et al., 1999; Hinneburg et al., 2000). Recent proposals
to tackle this problem can be categorized into three
approaches: dimensionality reduction, data approxi-
mation, and 1D transformation.

Dimensionality reduction methods (Jin et al.,
2003) map the high-dimensional space into a low-
dimensional space which can be indexed efficiently
using existing multi-dimensional indexing techniques.
The main idea is to condense the original space into a
few dimensions along which the information is
maximized. Such methods yield approximate nearest
neighbors, however, since dimensionality reduction
incurs information loss.

Representations of the original data points using
smaller and approximate representations have also
been proposed as a means of aiding high-dimensional
indexing and searching by applying the efficiency of
sequential scan. There are two examples VA-file
(Weber et al., 1998) and BID (Cui et al., 2005) that
are related to our work. The VA-file represents the
original data points by much smaller vectors, which
are then sequentially scanned to obtain a very small
set of candidates. However, the VA-file cannot adapt
effectively to different data distributions, mainly due
to its unified cell-partitioning scheme. Different from
the VA-file, the BID employs one bit to represent
each feature vector of a point and the number of
bit-difference is used to prune away the further points,
so that it can support approximate KNN search in the
main memory environment. Although the BID speeds
up the search with no distance computation, no
guarantee can be given on the accuracy of the result.

One-dimensional transformations provide an-
other direction for high-dimensional indexing
(Berchtold et al., 1998; Yu et al., 2001; 2004; Zhang
et al., 2004). PT (Berchtold et al., 1998) and iDistance
(Yu et al., 2001) are such efficient methods. PT di-
vides the d-dimensional data space into 2d pyramids
and then cuts each pyramid into slices, each of which
forms a data page. It allows mapping from
d-dimensional space to single-dimensional space.
However, PT is only highly adapted to hyper-
cube-shaped window queries over uniform data,
which limits its usefulness in real applications. The
iDistance relies on clustering the data and indexing
the distance of each data point to its corresponding
reference point. The choice of partition and reference
point provides the iDistance technique with degrees
of freedom that most other techniques do not have.
However, when dimensionality exceeds 30, the equal
distance phenomenon occurs, so the effectiveness of
pruning degenerates rapidly.

Liang et al. / J Zhejiang Univ Sci A 2007 8(6):857-863 859

BIT-CODE AND DISTANCE BASED INDEX

In this section, we first present our encoding
strategy and data compact representation for high-
dimensional data points. We then present a KNN
search algorithm that can be used to facilitate
searching using the proposed technique. Finally, we
discuss how the basic schema can be optimized.

Data representation

To support bit-code and distance based similar-
ity search, we need a reference point, and partition the
data space on some dimensions d′ (<d). Based on the
distribution of the data, we can determine a threshold
value d′. We shall defer the discussion on d′ to the
subsection of “Tuning of d′”. The choices of the ref-
erence point are as follows: the center of the space is
selected if the data are uniformly distributed; for
clustered data, we can group the data points into a set
of clusters by existing techniques, such as K-means,
BIRCH or CURE (Guha et al., 1998), and hence the
center of all the centroids is selected.

For the rest of this paper, we assume the data
space to be the d-dimensional unit hyper-sphere, with
the reference point O(o1, o2, ..., od). Let Dist(·,·) be a
metric distance function for pairs of points. In our
research, we use the Euclidean distance as the dis-
tance function, although other distance functions may
be used for certain applications.
Definition 1 (Bit Code) The bit code S(s1, s2, ..., sd′)
of a random point P(p1, p2, ..., pd) is defined as

1, ,
 1 .

0, otherwise,
i i

i

p o
s i d

>
′= ≤ ≤



The intuitive meaning of Definition 1 is that the

bit code S of a point P depends on its feature vectors
on dimensions d′, that is to say, the value of si is just
the bit code of pi. Therefore, a d-dimensional vector
can be approximately represented by the bit code of
the partition it falls into, with length d′. In the 2D
example depicted in Fig.1, the space has been divided
into 4 partitions, encoded by ‘00’, ‘01’, ‘10’ and ‘11’
respectively.
Definition 2 (1D Key) A data point P(p1, p2, ..., pd)
with bit code S(s1, s2, ..., sd′) has an index key as

() (,),pKey Value S C Dist P O= ⋅ +

where Value(S) is a function that returns an integer
value of S, and Dist(P,O) is the distance between P
and O, and C is a constant to stretch the data range.

Note that, in Definition 2 the function Value(S)
can be defined as Value(S)=20⋅s1+21⋅s2+…+2d′−1⋅sd′.
Potentially, any function can be used if they can keep
all partitions apart. In the d-dimensional unit space,
Dist(P,O) has the maximum value d1/2, such that
C=d1/2 can serve to partition the single dimension
space into regions and all points in partition S will be
mapped to the range [Value(S)⋅C, (Value(S)+1)⋅C].

Given the transformation determining the key
value of a point, it is a simple task to build an efficient
index structure such as the B+-tree. Note that although
we index our data using a 1D key, we store
d-dimensional points plus the corresponding 1D key
in the leaf nodes of the B+-tree.

KNN search

The algorithm for KNN search often begins by
searching a small ‘sphere’, and incrementally
enlarges the search space till all the K nearest
neighbors are found. However, due to the variation of
the position of the query point and the density of the
data distribution, it is difficult to determine the radius
of the beginning query sphere and its increment in the
iteration process. For the BD, we present a new KNN
search algorithm with the main idea as follows: We
first obtain a KNN answer set as the initial query
sphere within the partition the query point falls into;
and then, we have to examine which partitions are
affected by the query; and finally, we have to deter-
mine the ranges inside the partitions. Note that once
the KNN result is modified, so is the query sphere.
Moreover, those partitions close to the query are
examined before the faraway partitions, which can be
determined by their bit codes with respect to the par-

Fig.1 (a) Space partition in 2D space; (b) Search
regions based bit code and distance

2D

1D

01

00

11

10

(a)

2D

1D

01

00

11

10 Q
R

(b)

Liang et al. / J Zhejiang Univ Sci A 2007 8(6):857-863 860

tition the query falls into, so that the radius of the
query sphere and the efficient range of the B+-tree can
be reduced as soon as possible. Fig.2 summarizes the
algorithm for KNN search with the BD method.

Our KNN search algorithm has many advantages

over the commonly used method mentioned above: (1)
The repeated scanning of a branch of the B+-tree is
avoided. (2) According to the value of dimensions d′
and the data distribution, it is most possible all the K
nearest neighbors are in the same partition as the
query point, so that the beginning radius of the query
sphere cannot be too large. (3) The query sphere is
tuned so appropriately that a query requires less
searching to retrieve the exact KNN answers. (4) It
can provide an approximate KNN result, which can
be returned to the users immediately and refined as
more accurate answers are obtained in the subsequent
examination. In the 2D example depicted in Fig.1b,
for the query range with center Q and radius R, it
intersects several partitions with bit codes ‘10’ and
‘11’, with the shaded ranges having to be searched.
Lemma 1 (Intersection of a Partition and a Sphere)
A partition T(t1, t2, ..., td′) is intersected by a hyper-
sphere with center Q(q1, q2, ..., qd) and radius R if and
only if

, | | ,

 1 ,
0 or 1, otherwise,

i i i
i

s q o R
t i d

− ≥
′= ≤ ≤



where S(s1, s2, ..., sd′) is the bit code of Q.
Proof The query sphere intersects partition T(t1,
t2, ..., td′), iff there exists a point P(p1, p2, ..., pd) inside
the sphere which falls into partition T. Thus the dis-
tance of all coordinates |pi−qi| must be smaller than R
if i<d′. More formally: ∀i∈[1, d′], |pi−qi|≤R.

For the value of qi, there are two cases to con-
sider:
Case 1 |qi−oi|≥R

In this case if qi>oi, then pi>oi always holds. It
can be similarly derived that pi<oi holds if qi<oi. Thus,
P has the same bit code on the ith dimension as Q,
formally ti=si.
Case 2 |qi−oi|<R

In this case we have pi>oi or pi<oi. It implies that
the bit code of P on the ith dimension is not related to
qi.
Lemma 2 (Interval of Intersection of Query and Par-
tition) For a search sphere with query point Q and
search radius R, the intersection key interval within an
affected partition T(t1, t2, ..., td′) is defined as

[Value(T)⋅C+Dist(Q,O)−R,Value(T)⋅C+Dist(Q,O)+R].

Tuning of d′
Next, we discuss how the threshold value d′ can

be determined. Clearly, different d′ values should be
used for different data distributions. The determina-
tion of d′ affects the effectiveness of bit codes. The
ideal scenario is to have a large d′ and a large number
of dimensions encoded in a bit code. A larger d′ will
lead to intolerable exponential number of partitions.
However, a much smaller d′ will incur much infor-
mation loss. As a result, a trade-off has to be made.

For real world applications datasets are often
skewed and some features are more important than
the other features. We select d′ by employing Princi-
ple Component Analysis (PCA) (Jolliffe, 1986). As
we know, PCA is the best in the mean-square error
sense, linear dimension reduction technique. There
are as many as PCs as the number of the original
dimensions. After PCA processing, most of the in-
formation in the original space is condensed into the
first few dimensions along which the variances in the
data distribution are the largest. As such, the first d′
dimensions can be selected, on which the data space is
split into 2d ′ partitions. For this purpose, before con-
structing the BD structure, we have to transform the
data into the principal component space.

For the number of dimensions d′, we adopt a
simple strategy: we estimate it based on the fan-out of
a leaf node of the B+-tree, e.g., given a set of N points,
and a fan-out of f, the number of dimensions is
d′=log2(N/f). Intuitively, such selection indicates all

Initialize S; // answer set
Examine the partition that Q falls into;
Set the query sphere as center Q and radius the

distance of the farthest object in S from Q;
L: determine the intersected partitions;

//using Lemma 1
determine the affected ranges; //using Lemma 2

Examine these ranges in a suitable order;
If S is modified then goto L;

Fig.2 The main search algorithm of BD KNN

Liang et al. / J Zhejiang Univ Sci A 2007 8(6):857-863 861

the points in a partition forms a data page, which will
reduce I/O cost for KNN search using our method.
Moreover, it is effective in partitioning the space for
the BD: (1) For a high-dimensional dataset, whether it
has a large number of points or not, it can be parti-
tioned effectively. (2) Dimensions used by partition-
ing are not related to the data distribution, which
makes the BD adaptable to different data distributions.

EXPERIMENTAL EVALUATION

To demonstrate the practical impact of the BD
and to verify our theoretical results, we performed an
extensive experimental evaluation of the BD and
compared it to the following competitive techniques:
VA-file, iDistance, Sequential Scan. Our evaluation
comprises both real and synthetic high-dimensional
datasets. The synthetic dataset contains 300 000 uni-
formly distributed points in a 60-dimensional data
space. The real dataset contains 32-dimensional color
histograms extracted from 68 040 images. The per-
formance is measured in terms of the CPU time and
the average disk page access over 100 different que-
ries. For each query, the number of nearest neigh-
bours to search is 10 unless otherwise stated. All
experiments are run on a computer with Pentium III
800 MHz CPU and 256 MB RAM. The page size is 4
kB.

Evaluation using synthetic data

In our first experiment, we measured the per-
formance behavior with varying number of data
points. We performed 10 NN queries over the
20-dimensional synthetic dataset and varied the data
size from 50 000 to 300 000.

Fig.3 shows three index structures outperform-
ing the Sequential Scan significantly. This is because
sequential scan of a dataset entails examination of
each data point and calculation of distance between
each point and the query point, which will result in
high CPU cost. Therefore, we focus on the compari-
son of the BD with the VA-file and iDistance in the
following experiments.

It is evident that the BD outperforms the VA-file
and iDistance in Fig.3: the BD achieves a speedup
factor of 18 over the iDistance, and 22.6 over the
VA-file. It indicates that the BD has the properties of

both the VA-file that accelerates sequential scan by
the use of approximate vector, and the iDistance that
reduces the range to search by the use of 1D vector.
Additionally, for the BD, a fast KNN search algo-
rithm is employed to reduce the search cost of the
B+-tree, so that the CPU cost can be improved.

In the second experiment, we determine the in-
fluence of the data space dimension on the perform-
ance of KNN queries. For this purpose, we created six
100k synthetic datasets with dimensionality 10, 20,
30, 40, 50 and 60 to run our experiments. Fig.4 shows
that the CPU time using any index structure grows
slowly with increasing dimension. However, a com-
parable deterioration of the performance with in-
creasing dimension is not observable when using the
BD. The experiment yields a speedup factor of up to
122.9 over the iDistance, and 182.4 over the VA-file.
The increasing dimensionality theoretically brings
more benefits to the BD because the data distribute
sparsely and the distance to the nearest neighbor ap-
proaches the distance to the farthest neighbor. The
BD split the high-dimensional space only on some
dimensions determined by PCA such that it has an

Fig.3 Performance of the four index structures over
data size when dim=20, K=10

Data set size (k)

El
ap

se
d

tim
e

(m
s)

0

100

200

300

400

500

50 100 150 200 250 300

Scan
BD
iDistance
VA-file

Fig.4 Performance of the four index structures over
dimension when N=100 000, K=10

Dimensionality

El
ap

se
d

tim
e

(m
s)

0

100

200

300

400

500

10 20 30 40 50 60

Scan
BD
iDistance
VA-file

Liang et al. / J Zhejiang Univ Sci A 2007 8(6):857-863 862

efficient pruning. On the other hand, the VA-file
cannot make full use of the skewing characteristics,
which makes a large amount of cells to search. By
indexing the distance of each point to the nearest
reference point, the iDistance may introduce many
false hits during KNN search with the effectiveness of
pruning degenerating rapidly as dimension increases.
Therefore, according to the characteristics of the data
distribution in high-dimensional spaces, the BD has a
smarter partition schema.

Evaluation using real dataset

In this series of experiments, we used the real
dataset extracted from 68 040 pixel images. The ef-
fects of increasing values of K in KNN search are
tested. Fig.5 shows the experimental results when K
ranges from 10 to 40. The performance of the VA-file
and iDistance is pretty close to each other. The BD
still remains a good performance. The smarter parti-
tioning schema and the pruning effectiveness of the
BD help it to benefit more from the skewness of the
color histograms.

CONCLUSION

In this paper, based on approximate vector

presentation and 1D transformation, we proposed a
new index structure, the BD. It is based on a special
partitioning schema which is optimized for high-
dimensional KNN queries, so that the BD can be
adaptable to different data distributions. By indexing
the bit-code and distance, most irrelevant data points
can be eliminated rapidly in the process of KNN
search. Furthermore, according to its characteristics, a
fast KNN algorithm is presented with many benefits.
Extensive experiments showed that the BD can
achieve better performance than many other indexing
techniques.

References
Berchtold, S., Bohm, C., Kriegel, H.P., 1998. The Pyramid-

Technique: Towards Breaking the Curse of Dimension-
ality. Proc. ACM SIGMOD Int. Conf. on Management of
Data, p.142-153.

Beyer, K., Goldstein, J., Ramakrishnam, R., 1999. When is
“Nearest Neighbor” Meaningful? Proc. 7th Int’l Conf.
Database Theory, p.1-11.

Chavez, E., Navarro, G., Baeza-Yates, R., Marroquin, J., 2001.
Searching in metric spaces. ACM Computing Surveys,
33(3):273-321. [doi:10.1145/502807.502808]

Cui, B., Shen, H.T., Shen, J., Tan, K.L., 2005. Exploring Bit-
Difference for Approximate KNN Search in High-dimen-
sional Databases. Proc. 16th Australian Database Con-
ference, p.165-174.

Fonseca, M.J., Jorge, J.A., 2003. Indexing High-dimensional
Data for Content-based Retrieval in Large Databases.
Proc. 8th International Conference on Database Systems
for Advanced Applications, p.267-274.

Guha, S., Rastogi, R., Shim, K., 1998. Cure: An Efficient
Clustering Algorithm for Large Databases. Proc. ACM
SIGMOD Int. Conf. on Management of Data, p.73-84.

Hinneburg, A., Aggarwal, C.C., Keim, D.A., 2000. What is the
Nearest Neighbor in High-dimensional Spaces. Proc. 26th
Int. Conf. on Very Large Data Bases, p.506-515.

Hjaltson, G.R., Samet, H., 2003. Index-driven similarity
search in metric spaces. ACM Trans. on Database Syst.,
28(4):517-580. [doi:10.1145/958942.958948]

Jin, H., Ooi, B.C., Shen, H.T., Yu, C., Zhou, A.Y., 2003. An
Adaptive and Efficient Dimensionality Reduction Algo-
rithm for High-dimensional Indexing. Proc. Int’l Conf.
Data Eng., p.87-98.

Jolliffe, I.T., 1986. Principal Component Analysis. Springer-
Verlag, New York.

Fig.5 Performance of the four index structures over
K when N=68 040, dim=32. (a) Elapsed time; (b) Page
access

(b)

Pa
ge

 a
cc

es
s

Data set size (k)

0

500

1000

1500

2000

2500

10 15 20 25 30 35 40

Scan
BD

iDistance
VA-file

El
ap

se
d

tim
e

(m
s)

0

40

80

120

160

(a)

Scan
BD

iDistance
VA-file

Liang et al. / J Zhejiang Univ Sci A 2007 8(6):857-863 863

Weber, R., Schek, H.J., Blott, S., 1998. A Quantitative
Analysis and Performance Study for Similarity-Search
Methods in High-dimensional Spaces. Proc. 24th Int.
Conf. on Very Large Data Bases, p.194-205.

Yu, C., Ooi, B.C., Tan, K.L., Jagadish, H.V., 2001. Indexing
the Distance: An Efficient Method to KNN Processing.
Proc. 27th Int. Conf. on Very Large Data Bases, p.421-
430.

Yu, C., Bressan, S., Ooi, B.C., Tan, K.L., 2004. Querying
high-dimensional data in single dimensional space. Int. J.
Very Large Data Bases, 13(2):105-119.

Zhang, R., Ooi, B.C., Tan, K.L., 2004. Making the Pyramid
Technique Robust to Query Types and Workloads. Proc.
Int. Conf. on Data Eng., p.313-324. [doi:10.1109/ICDE.
2004.1320007]

