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Abstract:    Various index structures have recently been proposed to facilitate high-dimensional KNN queries, among which the 
techniques of approximate vector presentation and one-dimensional (1D) transformation can break the curse of dimensionality. 
Based on the two techniques above, a novel high-dimensional index is proposed, called Bit-code and Distance based index (BD). 
BD is based on a special partitioning strategy which is optimized for high-dimensional data. By the definitions of bit code and 
transformation function, a high-dimensional vector can be first approximately represented and then transformed into a 1D vector, 
the key managed by a B+-tree. A new KNN search algorithm is also proposed that exploits the bit code and distance to prune the 
search space more effectively. Results of extensive experiments using both synthetic and real data demonstrated that BD out-
performs the existing index structures for KNN search in high-dimensional spaces. 
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INTRODUCTION 
 

Various new database applications have been 
developed in many respects, such as data warehous-
ing and content-based multimedia information re-
trieval. In these applications, one of the most fre-
quently used but expensive operations is to find ob-
jects in databases that are similar to a given query 
object. Nearest neighbor search is a central require-
ment in such cases (Chavez et al., 2001). Since the 
databases are very large and consist of millions of 
data objects with several tens to a few hundreds of 
dimensions, it is essential to use appropriate multi- 
dimensional indexing techniques to achieve efficient 
search of the data. 

There is extensive research on solving the near-
est neighbor search problem, with a large number of 
multi-dimensional indexes being developed for this 

purpose. However, most of these structures are based 
on partitioning the data space (Fonseca and Jorge, 
2003; Hjaltson and Samet, 2003). Because of the 
‘curse of dimensionality’, these methods are out-per- 
formed on average by a simple sequential scan if the 
number of dimensions exceeds around 10 (Weber et 
al., 1998). To break this curse, many new proposals 
are presented, such as approximate vector presenta-
tion and 1D transformation. However, most of these 
proposals do not efficiently utilize the advantages of 
1D transformation and data approximation and typi-
cally perform well for certain cases only (dimen-
sionality, data distribution, query type, etc.). 

In this paper, we propose a novel index structure 
for fast KNN search, called Bit-code and Distance 
based index (BD). The basic idea of BD is that a 
high-dimensional vector is first approximately rep-
resented and then transformed into a 1D value, with 
the key being managed by a B+-tree. This is done 
using a two-step algorithm. In the first step, the 
high-dimensional data space is split into 2d ′ (d′<d) 
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partitions, where d′ is the number of dimensions on 
which the space is partitioned. Each partition can be 
represented by a unique bit string of length d′, called 
bit code. A data point is then approximated by the bit 
code of the partition it falls into. In the second step, 
each data point is transformed into a 1D value, termed 
as key, by the distance with respect to the reference 
point. This allows the key to be indexed using a 
B+-tree structure and KNN search to be performed 
using 1D range search. In the process of KNN search, 
with the bit code we can rapidly eliminate irrelevant 
partitions that are not intersected by the query without 
the expensive distance computation. Then, we can 
determine which key values inside an affected parti-
tion are affected by the query. Therefore, the BD can 
reduce both I/O and computation costs for KNN 
search. 

We implemented the BD method together with a 
new KNN search algorithm, and conducted an ex-
tensive performance study to evaluate their effec-
tiveness. Our results showed that the proposed 
schemas can provide fast response time without sac-
rificing the quality of the answers. Moreover, through 
appropriate choice of partition scheme, the BD 
method can compute the complete answer set much 
faster than the existing index structures on both real 
life and synthetic high-dimensional datasets. 

The rest of this paper is organized as follows. In 
Section 2, we give an overview of the related work. In 
Section 3, we introduce and discuss our new tech-
nique, the BD. Then we present the experimental 
results and analyze the benefits of BD in Section 4. 
Section 5 concludes the paper. 
 
 
RELATED WORK 
 

Many index structures have been proposed for 
similarity search in high-dimensional spaces. Most of 
them are based on data space partitioning, which 
include the R*-tree, the X-tree, the SR-tree, the 
TV-tree and many others. Although these methods 
generally perform well at low dimensionality, they 
suffer greatly from the curse of dimensionality (Beyer 
et al., 1999; Hinneburg et al., 2000). Recent proposals 
to tackle this problem can be categorized into three 
approaches: dimensionality reduction, data approxi-
mation, and 1D transformation. 

Dimensionality reduction methods (Jin et al., 
2003) map the high-dimensional space into a low- 
dimensional space which can be indexed efficiently 
using existing multi-dimensional indexing techniques. 
The main idea is to condense the original space into a 
few dimensions along which the information is 
maximized. Such methods yield approximate nearest 
neighbors, however, since dimensionality reduction 
incurs information loss. 

Representations of the original data points using 
smaller and approximate representations have also 
been proposed as a means of aiding high-dimensional 
indexing and searching by applying the efficiency of 
sequential scan. There are two examples VA-file 
(Weber et al., 1998) and BID (Cui et al., 2005) that 
are related to our work. The VA-file represents the 
original data points by much smaller vectors, which 
are then sequentially scanned to obtain a very small 
set of candidates. However, the VA-file cannot adapt 
effectively to different data distributions, mainly due 
to its unified cell-partitioning scheme. Different from 
the VA-file, the BID employs one bit to represent 
each feature vector of a point and the number of 
bit-difference is used to prune away the further points, 
so that it can support approximate KNN search in the 
main memory environment. Although the BID speeds 
up the search with no distance computation, no 
guarantee can be given on the accuracy of the result. 

One-dimensional transformations provide an-
other direction for high-dimensional indexing 
(Berchtold et al., 1998; Yu et al., 2001; 2004; Zhang 
et al., 2004). PT (Berchtold et al., 1998) and iDistance 
(Yu et al., 2001) are such efficient methods. PT di-
vides the d-dimensional data space into 2d pyramids 
and then cuts each pyramid into slices, each of which 
forms a data page. It allows mapping from 
d-dimensional space to single-dimensional space. 
However, PT is only highly adapted to hyper-
cube-shaped window queries over uniform data, 
which limits its usefulness in real applications. The 
iDistance relies on clustering the data and indexing 
the distance of each data point to its corresponding 
reference point. The choice of partition and reference 
point provides the iDistance technique with degrees 
of freedom that most other techniques do not have. 
However, when dimensionality exceeds 30, the equal 
distance phenomenon occurs, so the effectiveness of 
pruning degenerates rapidly. 
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BIT-CODE AND DISTANCE BASED INDEX 
 

In this section, we first present our encoding 
strategy and data compact representation for high- 
dimensional data points. We then present a KNN 
search algorithm that can be used to facilitate 
searching using the proposed technique. Finally, we 
discuss how the basic schema can be optimized. 

 
Data representation 

To support bit-code and distance based similar-
ity search, we need a reference point, and partition the 
data space on some dimensions d′ (<d). Based on the 
distribution of the data, we can determine a threshold 
value d′. We shall defer the discussion on d′ to the 
subsection of “Tuning of d′”. The choices of the ref-
erence point are as follows: the center of the space is 
selected if the data are uniformly distributed; for 
clustered data, we can group the data points into a set 
of clusters by existing techniques, such as K-means, 
BIRCH or CURE (Guha et al., 1998), and hence the 
center of all the centroids is selected. 

For the rest of this paper, we assume the data 
space to be the d-dimensional unit hyper-sphere, with 
the reference point O(o1, o2, ..., od). Let Dist(·,·) be a 
metric distance function for pairs of points. In our 
research, we use the Euclidean distance as the dis-
tance function, although other distance functions may 
be used for certain applications. 
Definition 1 (Bit Code)    The bit code S(s1, s2, ..., sd′) 
of a random point P(p1, p2, ..., pd) is defined as 
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The intuitive meaning of Definition 1 is that the 

bit code S of a point P depends on its feature vectors 
on dimensions d′, that is to say, the value of si is just 
the bit code of pi. Therefore, a d-dimensional vector 
can be approximately represented by the bit code of 
the partition it falls into, with length d′. In the 2D 
example depicted in Fig.1, the space has been divided 
into 4 partitions, encoded by ‘00’, ‘01’, ‘10’ and ‘11’ 
respectively.  
Definition 2 (1D Key)    A data point P(p1, p2, ..., pd ) 
with bit code S(s1, s2, ..., sd′) has an index key as 
 

( ) ( , ),pKey Value S C Dist P O= ⋅ +  

 
 
 
 
 
 
 
 
 
 
 
where Value(S) is a function that returns an integer 
value of S, and Dist(P,O) is the distance between P 
and O, and C is a constant to stretch the data range. 

Note that, in Definition 2 the function Value(S) 
can be defined as Value(S)=20⋅s1+21⋅s2+…+2d′−1⋅sd′. 
Potentially, any function can be used if they can keep 
all partitions apart. In the d-dimensional unit space, 
Dist(P,O) has the maximum value d1/2, such that 
C=d1/2 can serve to partition the single dimension 
space into regions and all points in partition S will be 
mapped to the range [Value(S)⋅C, (Value(S)+1)⋅C]. 

Given the transformation determining the key 
value of a point, it is a simple task to build an efficient 
index structure such as the B+-tree. Note that although 
we index our data using a 1D key, we store 
d-dimensional points plus the corresponding 1D key 
in the leaf nodes of the B+-tree. 
 
KNN search 

The algorithm for KNN search often begins by 
searching a small ‘sphere’, and incrementally 
enlarges the search space till all the K nearest 
neighbors are found. However, due to the variation of 
the position of the query point and the density of the 
data distribution, it is difficult to determine the radius 
of the beginning query sphere and its increment in the 
iteration process. For the BD, we present a new KNN 
search algorithm with the main idea as follows: We 
first obtain a KNN answer set as the initial query 
sphere within the partition the query point falls into; 
and then, we have to examine which partitions are 
affected by the query; and finally, we have to deter-
mine the ranges inside the partitions. Note that once 
the KNN result is modified, so is the query sphere. 
Moreover, those partitions close to the query are 
examined before the faraway partitions, which can be 
determined by their bit codes with respect to the par-

Fig.1  (a) Space partition in 2D space; (b) Search
regions based bit code and distance 
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tition the query falls into, so that the radius of the 
query sphere and the efficient range of the B+-tree can 
be reduced as soon as possible. Fig.2 summarizes the 
algorithm for KNN search with the BD method. 
 
 
 
 
 
 
 
 
 
 
 

 
Our KNN search algorithm has many advantages 

over the commonly used method mentioned above: (1) 
The repeated scanning of a branch of the B+-tree is 
avoided. (2) According to the value of dimensions d′ 
and the data distribution, it is most possible all the K 
nearest neighbors are in the same partition as the 
query point, so that the beginning radius of the query 
sphere cannot be too large. (3) The query sphere is 
tuned so appropriately that a query requires less 
searching to retrieve the exact KNN answers. (4) It 
can provide an approximate KNN result, which can 
be returned to the users immediately and refined as 
more accurate answers are obtained in the subsequent 
examination. In the 2D example depicted in Fig.1b, 
for the query range with center Q and radius R, it 
intersects several partitions with bit codes ‘10’ and 
‘11’, with the shaded ranges having to be searched. 
Lemma 1 (Intersection of a Partition and a Sphere)   
A partition T(t1, t2, ..., td′) is intersected by a hyper- 
sphere with center Q(q1, q2, ..., qd) and radius R if and 
only if 
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where S(s1, s2, ..., sd′) is the bit code of Q. 
Proof    The query sphere intersects partition T(t1, 
t2, ..., td′), iff there exists a point P(p1, p2, ..., pd) inside 
the sphere which falls into partition T. Thus the dis-
tance of all coordinates |pi−qi| must be smaller than R 
if i<d′. More formally: ∀i∈[1, d′], |pi−qi|≤R. 

For the value of qi, there are two cases to con-
sider: 
Case 1    |qi−oi|≥R 

In this case if qi>oi, then pi>oi always holds. It 
can be similarly derived that pi<oi holds if qi<oi. Thus, 
P has the same bit code on the ith dimension as Q, 
formally ti=si. 
Case 2    |qi−oi|<R 

In this case we have pi>oi or pi<oi. It implies that 
the bit code of P on the ith dimension is not related to 
qi. 
Lemma 2 (Interval of Intersection of Query and Par-
tition)    For a search sphere with query point Q and 
search radius R, the intersection key interval within an 
affected partition T(t1, t2, ..., td′) is defined as 

 

[Value(T)⋅C+Dist(Q,O)−R,Value(T)⋅C+Dist(Q,O)+R]. 
 

Tuning of d′ 
Next, we discuss how the threshold value d′ can 

be determined. Clearly, different d′ values should be 
used for different data distributions. The determina-
tion of d′ affects the effectiveness of bit codes. The 
ideal scenario is to have a large d′ and a large number 
of dimensions encoded in a bit code. A larger d′ will 
lead to intolerable exponential number of partitions. 
However, a much smaller d′ will incur much infor-
mation loss. As a result, a trade-off has to be made. 

For real world applications datasets are often 
skewed and some features are more important than 
the other features. We select d′ by employing Princi-
ple Component Analysis (PCA) (Jolliffe, 1986). As 
we know, PCA is the best in the mean-square error 
sense, linear dimension reduction technique. There 
are as many as PCs as the number of the original 
dimensions. After PCA processing, most of the in-
formation in the original space is condensed into the 
first few dimensions along which the variances in the 
data distribution are the largest. As such, the first d′ 
dimensions can be selected, on which the data space is 
split into 2d ′  partitions. For this purpose, before con-
structing the BD structure, we have to transform the 
data into the principal component space. 

For the number of dimensions d′, we adopt a 
simple strategy: we estimate it based on the fan-out of 
a leaf node of the B+-tree, e.g., given a set of N points, 
and a fan-out of f, the number of dimensions is 
d′=log2(N/f). Intuitively, such selection indicates all 

Initialize S;    // answer set 
Examine the partition that Q falls into; 
Set the query sphere as center Q and radius the 

distance of the farthest object in S from Q; 
L: determine the intersected partitions; 

//using Lemma 1 
determine the affected ranges;  //using Lemma 2

Examine these ranges in a suitable order; 
If S is modified then goto L; 

Fig.2  The main search algorithm of BD KNN
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the points in a partition forms a data page, which will 
reduce I/O cost for KNN search using our method. 
Moreover, it is effective in partitioning the space for 
the BD: (1) For a high-dimensional dataset, whether it 
has a large number of points or not, it can be parti-
tioned effectively. (2) Dimensions used by partition-
ing are not related to the data distribution, which 
makes the BD adaptable to different data distributions. 
 
 
EXPERIMENTAL EVALUATION 
 

To demonstrate the practical impact of the BD 
and to verify our theoretical results, we performed an 
extensive experimental evaluation of the BD and 
compared it to the following competitive techniques: 
VA-file, iDistance, Sequential Scan. Our evaluation 
comprises both real and synthetic high-dimensional 
datasets. The synthetic dataset contains 300 000 uni-
formly distributed points in a 60-dimensional data 
space. The real dataset contains 32-dimensional color 
histograms extracted from 68 040 images. The per-
formance is measured in terms of the CPU time and 
the average disk page access over 100 different que-
ries. For each query, the number of nearest neigh- 
bours to search is 10 unless otherwise stated. All 
experiments are run on a computer with Pentium III 
800 MHz CPU and 256 MB RAM. The page size is 4 
kB. 

 
Evaluation using synthetic data 

In our first experiment, we measured the per-
formance behavior with varying number of data 
points. We performed 10 NN queries over the 
20-dimensional synthetic dataset and varied the data 
size from 50 000 to 300 000.  

Fig.3 shows three index structures outperform-
ing the Sequential Scan significantly. This is because 
sequential scan of a dataset entails examination of 
each data point and calculation of distance between 
each point and the query point, which will result in 
high CPU cost. Therefore, we focus on the compari-
son of the BD with the VA-file and iDistance in the 
following experiments. 

It is evident that the BD outperforms the VA-file 
and iDistance in Fig.3: the BD achieves a speedup 
factor of 18 over the iDistance, and 22.6 over the 
VA-file. It indicates that the BD has the properties of 

 
 
 
 
 
 
 
 
 
 
 
 

both the VA-file that accelerates sequential scan by 
the use of approximate vector, and the iDistance that 
reduces the range to search by the use of 1D vector. 
Additionally, for the BD, a fast KNN search algo-
rithm is employed to reduce the search cost of the 
B+-tree, so that the CPU cost can be improved. 

In the second experiment, we determine the in-
fluence of the data space dimension on the perform-
ance of KNN queries. For this purpose, we created six 
100k synthetic datasets with dimensionality 10, 20, 
30, 40, 50 and 60 to run our experiments. Fig.4 shows 
that the CPU time using any index structure grows 
slowly with increasing dimension. However, a com-
parable deterioration of the performance with in-
creasing dimension is not observable when using the 
BD. The experiment yields a speedup factor of up to 
122.9 over the iDistance, and 182.4 over the VA-file. 
The increasing dimensionality theoretically brings 
more benefits to the BD because the data distribute 
sparsely and the distance to the nearest neighbor ap-
proaches the distance to the farthest neighbor. The 
BD split the high-dimensional space only on some 
dimensions determined by PCA such that it has an  
 

 
 
 
 
 
 
 
 
 

 
 
 

Fig.3  Performance of the four index structures over 
data size when dim=20, K=10 
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Fig.4  Performance of the four index structures over
dimension when N=100 000, K=10 
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efficient pruning. On the other hand, the VA-file 
cannot make full use of the skewing characteristics, 
which makes a large amount of cells to search. By 
indexing the distance of each point to the nearest 
reference point, the iDistance may introduce many 
false hits during KNN search with the effectiveness of 
pruning degenerating rapidly as dimension increases. 
Therefore, according to the characteristics of the data 
distribution in high-dimensional spaces, the BD has a 
smarter partition schema. 

 
Evaluation using real dataset 

In this series of experiments, we used the real 
dataset extracted from 68 040 pixel images. The ef-
fects of increasing values of K in KNN search are 
tested. Fig.5 shows the experimental results when K 
ranges from 10 to 40. The performance of the VA-file 
and iDistance is pretty close to each other. The BD 
still remains a good performance. The smarter parti-
tioning schema and the pruning effectiveness of the 
BD help it to benefit more from the skewness of the 
color histograms. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

CONCLUSION 
 
In this paper, based on approximate vector 

presentation and 1D transformation, we proposed a 
new index structure, the BD. It is based on a special 
partitioning schema which is optimized for high- 
dimensional KNN queries, so that the BD can be 
adaptable to different data distributions. By indexing 
the bit-code and distance, most irrelevant data points 
can be eliminated rapidly in the process of KNN 
search. Furthermore, according to its characteristics, a 
fast KNN algorithm is presented with many benefits. 
Extensive experiments showed that the BD can 
achieve better performance than many other indexing 
techniques. 
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