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Abstract:    In this paper, we propose a novel adjustable multiple cross-hexagonal search (AMCHS) algorithm for fast block 
motion estimation. It employs adjustable multiple cross search patterns (AMCSP) in the first step and then uses half-way-skip and  
half-way-stop technique to determine whether to employ two hexagonal search patterns (HSPs) subsequently. The AMCSP can be 
used to find small motion vectors efficiently while the HSPs can be used to find large ones accurately to ensure prediction quality. 
Simulation results showed that our proposed AMCHS achieves faster search speed, and provides better distortion performance 
than other popular fast search algorithms, such as CDS and CDHS. 
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INTRODUCTION 
 

Block motion estimation is widely used in many 
motion-compensated video coding standards, such as 
ISO MPEG-1/2/4, H.263 and H.264, to exploit high 
temporal redundancy in the successive frames. Video 
frames are first divided into equally sized blocks. 
When coding the current block, a matched block in 
the previous frames is used for prediction and then 
only the difference between these two blocks is coded. 
Generally speaking, the less the difference, the fewer 
the bits needed. Hence, finding the best matched 
block is very important for improving the compres-
sion efficiency. The full search (FS) algorithm is the 
most accurate one to find the motion vectors by 
evaluating all the possible candidate points, but it 
costs too much computational resource. In order to 
replace FS, many low-complexity and fast-search 
algorithms are proposed, such as the three-step search 
(TSS), the new three-step search (NTSS), the 
four-step search (4SS) (Po and Ma, 1996), the dia-
mond search (DS) (Tham et al., 1998; Zhu and Ma, 

2000), the hexagon based search (HEXBS) (Zhu et al., 
2002; 2004), the cross-diamond search (CDS) 
(Cheung and Po, 2002), and the cross-diamond- 
hexagonal search (CDHS) (Cheung and Po, 2005) 
algorithms. 

Many fast algorithms such as NTSS, DS, and 
HEXBS employ one or more large search patterns for 
larger scope search before smaller enhanced search. 
As the global center-biased motion vector distribution 
characteristic, most motion vectors are located near 
the zero vector (Cheung and Po, 2002). Using large 
search patterns will spend computation for more 
points, especially for low-motion sequences. A 
popular approach to this problem is to change the 
order of the large and small search patterns in the 
search process and employing a half-way-stop tech-
nique to determine whether to use the larger ones, 
such as CDS and CDHS. Another possible solution is 
to use motion vector prediction to determine the size 
of the search patterns. 

Among the fast search algorithms mentioned 
above, NTSS, 4SS, DS, HEXBS and CDS get good 
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distortion performance but they use more search 
points. CDHS gets the fastest search speed among all 
the block-matching algorithms (BMAs), but its dis-
tortion performance decreases especially for se-
quences that have large motion contents. It seems to 
be difficult to combine both distortion and speed 
performances. In this paper, we proposed a novel 
adjustable multiple cross-hexagonal search (AMCHS) 
algorithm, which uses an adjustable multiple cross 
and two hexagonal search patterns in the search 
process. Simulation results showed that the speed of 
AMCHS is comparable to that of CDHS and its dis-
tortion performance is similar to that of DS.  

The rest of the paper is organized as follows. 
Section 2 indicates the limitation of the small cross 
search pattern (SCSP). Section 3 introduces the ad-
justable multiple cross search pattern and the hex-
agonal search patterns used in AMCHS. Section 4 
describes the use of Adaptation Model CL. Section 5 
describes the AMCHS algorithm. Section 6 reports 
some significant simulation results on AMCHS and 
conclusions are given in Section 7. 
 
 
LIMITATION OF SCSP 
 

SCSP is the simplest search pattern in the dis-
crete search grid and has been employed by many fast 
BMAs.  However, it has limitation when being used 
to find large motion vectors. Here we will compare 
SCSP (Fig.1a) with the large cross search pattern 
(LCSP) (Fig.1b) in terms of finding motion vectors in 
one step only. Four typical examples by using these 
two cross search patterns, which are obtained from 
simulation with “Football” sequence, are shown in 
Fig.2. It is clear that the search process depicted in 
Fig.2a has dropped into local optima while the one 
depicted in Fig.2b gets higher matching quality. 
Similar situations may often happen if the motion 
vector appears to be large, though mostly we will get 
the same motion by using these two cross search 
patterns, as shown in Fig.2c and Fig.2d, especially for 
the low-motion sequences because of the center- 
based distributions (Tham et al., 1998; Cheung and 
Po, 2002). In conclusion, SCSP cannot be used to find 
motion vectors accurately, especially for high-motion 
content.  

Since SCSP has limitation of low accuracy ac-

companied with the advantage of simplicity, can we 
improve it to get a more effective search pattern? 
Based on SCSP, we propose an adjustable multiple 
cross search pattern (AMCSP) in this paper. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SEARCH PATTERNS USED IN AMCHS 
 
Adjustable multiple cross search pattern 

As mentioned above, low accuracy of the motion 
vectors using SCSP leads to bad distortion perform-
ance. If we can find a way to judge whether the mo-
tion vector is accurate, the problem can be solved 
effectively. With reference to Fig.2c, only the block 
distortion measure (BDM) at point (0, 0), 900, is the 
smallest. In this case, even if we add 4 ending points 

Fig.1  (a) Small cross search pattern; (b) Large cross
search pattern 

(a)                                      (b) 

Fig.2  Four typical search processes by using small (a, c)
and large (b, d) cross search patterns. Search points are
labelled with the values of block distortion measure 
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of LCSP to the search process, as shown in Fig.2d, the 
current minimum point (CMP) remains at the same 
place, i.e. (0, 0). Thus, we can think that the CMP 
derived by using SCSP in Fig.2c is accurate. Then let 
us turn to the search process depicted in Fig.2a. 
Though point (0, 0) wins minimum BDM, 268, points 
(0, −1) and (0, 1) get similar BDMs, 273 and 288. If 
we use LCSP to add some search points, we may get 
better result, as shown in Fig.2b. It appears that the 
accuracy of the motion vector found by using SCSP is 
related to the BDMs of the searched points. If the 
outer searched points have much larger BDMs than 
the CMP’s BDM (CMBDM), the current motion 
vector (CMV) is accurate enough; otherwise, it is not 
reliable and more search points should be evaluated to 
enhance the search intensity. 

Here we propose a new search pattern, AMCSP, 
which is expected to be used for finding motion vec-
tors more accurately than SCSP. Its shape can be 
adjusted to fit the accuracy of the CMV. At first, we 
set a threshold BDM (TBDM), which is used to judge 
the accuracy of CMV. Adaptive threshold strategy 
aiming to get a fixed search performance can be found 
in (Sorwar et al., 2003; 2005). The TBDM used in our 
strategy is also adaptive, which is linear to CMBDM. 
The TBDM is defined as 
 

L ,TBDM CMBDM C= ×                    (1) 
 
where CL is the control parameter, which is a fixed 
value to every frame. In the search process, if one of 
the outer searched points has BDM less than TBDM, 
AMCSP will adjust its shape at the extending point 
(EP). Here we first assume CL as 1.1. Fig.3 shows two 
typical shapes of AMCSP. Fig.3a has EP while Fig.3b 
does not. We can find the minimum EP is the one with 
BDM 288 as depicted in Fig.3a among the four outer 
points with BDMs 288, 289, 273 and 303. Note that 
EP may be CMP if CMP is one of the outer searched 
points (this happens when the position of CMP 
changes).  

Finding EP is the key to adjust the shape of 
AMCSP. However it seems difficult to get it. Do we 
need to record all the searched points and choose EP 
from them? In practice we need record only several 
searched points that have the least BDMs. EP is the 
outer minimum point, which usually belongs to these 
recorded points (RPs) that have the least BDMs. 

 
 
 
 
 
 
 
 
 
 
 
 

In our algorithm, we record three RPs. Our experi-
ments showed that the increase of distortion per-
formance can be ignored while updating more RPs 
(more than three) costs too much computation. The 
minimum among these three RPs will be selected as 
the EP. It must satisfy two conditions: (1) its BDM is 
smaller than TBDM; (2) it is an outer but not a fully 
surrounded searched point. The choosing process is 
realized as follows: 
 
 
 
 
 
 
 
where binary RP[i].State indicates whether RP[i] has 
been used as EP. “0” indicates not and “1” indicates it 
has been used as EP and is fully surrounded by other 
searched points. Before the search process, the 
RP.States are all initialized as 0. Note that the RPs are 
sorted in ascending order of BDM. 

If we use AMCSP depicted in Fig.3a and Fig.3b 
to replace LCSP depicted in Fig.2b and Fig.2d re-
spectively, we can get the same or better CMP with 
fewer search points [The points (−1, −1) and (1, −1) in 
Fig.3a will be evaluated. They may have smaller 
BDMs than 264 in Fig.2b]. Note that AMCSP has 
many shapes, not only the two depicted in Fig.3. 
 
Hexagonal search patterns 

Because AMCSP is not suitable to be used to 
find large motion vectors, we must find some other 
search pattern(s) to solve the problem. Among all the 
fast BMAs, HEXBS has shown robustness in finding 
large motion vectors efficiently. The hexagonal 
search patterns, which are depicted in Fig.4, can be 

(a)                                        (b) 
Fig.3  Two typical shapes of adjustable multiple 
cross search patterns when CL=1.1. (a) TBDM=299, 
EBDM=273; (b) TBDM=990 
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for (i=1; i≤3; i++) 
  if (RP[i].BDM<TBDM) && (!RP[i].State)
  { RP[i].State=1; EP=RP[i]; 
     Adjust the Shape and go to the Search; 
     break; 
   } 
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used to find all motion vectors without limitation of 
the search range and the shape. The large hexagonal 
search pattern (LHSP) has good symmetry and can 
cover a large search scope while the small hexagonal 
search pattern (SHSP) can be used to enhance the 
search. These two search patterns are also employed 
in our proposed AMCHS to work together with 
AMCSP. 
 
 
 
 
 
 
 
 
 
 
 
 
 
ADAPTATION MODEL OF CL 

 
TBDM has a significant impact on the search 

process and is a function of CL; hence, choosing a 
suitable CL is important for good search performance. 
An adaptation model of CL based on normalized 
block least mean square (NBLMS) adaptive algo-
rithm is proposed in (Sorwar et al., 2003; 2005) and 
shows good performance to get desired search speeds 
or distortion measures. Similar model is also adopted 
in this paper. It has three modules: 

(1) Motion estimation. The input of this module 
is comprised of the video frame pair, x[m], and CL, 
where m is the frame number. The output of this 
module is the average BDM per pixel. It can be ex-
pressed as 
 

[ ] [ ]
1 L( , ),m my f x C=                        (2) 

 
where f1 is a deceasing function of CL (under sta-
tionary x). 

(2) Performance conclusion. Because of the high 
correlation between the video frames, we use the first 
m−1 frames’ outputs to predict y[m]. The error signal 
is: 

 
1

[ ] [ ] [ ]
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= −
− ∑                  (3) 

The value of e must be minimized as the adap-
tation process progresses. 

(3) Adaptation of CL. This module updates the 
value of CL for the next frame: 
 

[ 1] [ ] [ ] [ ]
L L 2 ( , ),m m m mC C f e y+ = −               (4) 

 
where f2 is a linear or nonlinear function. 

The well-known NBLMS adaptive algorithm is 
used to define the function f2. For a frame length of K, 
the input signal can be considered stable. The value of 
CL is updated like this: 
 

1 1
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Here we bound CL with [1.05, 1.30].  Our ex-

periments showed that, when CL is smaller than 1.05, 
the distortion performance is affected very much. 
When CL is larger than 1.30, the decrease of the BDM 
values can be ignored while the number of needed 
search points still increases. 
 
 
PROPOSED ADJUSTABLE MULTIPLE CROSS- 
HEXAGONAL SEARCH ALGORITHM 
 
Motion estimation for one block 

At first, we employ the simple search pattern 
AMCSP to fit the characteristic of center-biased mo-
tion vector distributions. AMCSP is designed to find 
small motion vectors, and we add a limitation to the 
adjustable multiple cross searching process. If CMP 
moves away from the search center by more than one 
pixel, the search advances to the next step. Then we 
adopt half-way-stop and half-way-skip techniques to 
determine whether to employ hexagonal search pat-
terns. That is useful for saving lots of search points 
especially for quasi-stationary or stationary blocks.  

The whole search process for one block is 
summarized as follows. 

Step 1: Initialization  
Place AMCSP at the search center, (0, 0). The 

initial shape of AMCSP is initialized like that of 
SCSP. 

Step 2: Adjustable multiple cross searching 
The candidate points on AMCSP are evaluated. 
If CMP does not occur at (0, 0), (0, 1), (−1, 0), (0, 

(a)                                       (b) 

Fig.4  Two hexagonal search patterns. (a) Large hexago-
nal search pattern; (b) Small hexagonal search pattern 
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−1), or (1, 0), the search proceeds to Step 3. 
If an EP is available, the shape of AMCSP is       

adjusted and this step is repeated; otherwise, the 
search stops (this is called half-way-stop as shown in 
Fig.5a). 

Step 3: Half-hexagonal searching 
If CMP locates at (x, 0), three points (x±2, 0) 

(“±” is the same with the sign of x. If x>0, “±” is “+”; 
otherwise, “±” is “−”), (x, 2) and (x, −2) are evaluated 
(Step 3 in Fig.5c). 

If CMP locates at (0, y), three points (2, y), (−2, y) 
and (0, y±2) are evaluated. 

If CMP locates at (x, y), three points (x±2, y), 
(x±2, y±2), (x, y±2) are evaluated (Step 3 in Fig.5b). 

If CMP still locates at the same place, the search 
goes to Step 5 (this is called half-way-skip as shown 
in Fig.5b). 

Step 4: Large hexagonal searching 
An LHSP is formed by positioning the CMP 

found in the previous step as the LHSP center. If CMP 
takes the same place, the search proceeds to Step 5; 
otherwise, this step is repeated. 

Step 5: Ending 
With CMP found in the previous step as the 

center, an SHSP is formed. If CMP still locates at the 
center, the search stops; otherwise, this step is re-
peated. 

Three typical search paths by using AMCHS are 
shown in Fig.5. 
 
Proposed AMCHS algorithm 

The NBLMS algorithm is initialized by AMCHS 
to adapt the control parameter CL. For every K frames 
of the video sequence, the same CL is used for motion 
estimation. CL is initialized to 1.05 for the first 2K 
frames and then updated for the next K frames by 
Eq.(5). The complete AMCHS algorithm is summa-
rized as follows: 

 
Precondition: Input video sequences of N frames. Set the 

“frame length” to K. 
Initialization:  

CL
[1]=CL

[2]=…=CL
[2K]=1.05. 

Body: 
for m=1, 1+K, …, 1+[(N−1)/K]×K 
(1) K-frame motion estimations: 

S=V=0; 
for i=0, 1, …, min(K−1, N−m−1) 

Calculate motion vectors for frame m+i using the 
algorithm described in Section 4 and let y[m+i] be the 
BDM. 

 

S+=y[m+i];  V+=(y[m+i])2. 
 

(2) Performance measurement: 
 

1
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(3) Adaptation of CL: 
 

CL
[m+K]=CL

[m+K+1]=…=CL
[m+K+min(K−1, N−m−1)] 

=CL
[m]+e[m]S/(KV). 

 

Post conditions: Motion vectors. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
SIMULATION RESULTS 
 

Our proposed AMCHS is simulated using the 
luminance of 20 popular video sequences, which are 
in QCIF/CIF/SIF/CCIR601 formats: Akiyo (250 
frames), Foreman (90 frames), Silent (250 frames), 
Hall (250 frames), News (90 frames), Coastguard 
(250 frames), Mother-daughter (250 frames), Football 

Fig.5  Three typical examples of the search path. Can-
didate points evaluated by using AMCSP (CL=1.1) are
labelled with their BDMs and the rest are labelled with
the step numbers. (a) MV: (0, 0); (b) MV: (−2, 2); (c)
MV: (−5, −3) 
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(97 frames), Mobile (95 frames) and Suzie (75 
frames). Each of them has two different formats. 
Block size of 16×16, search window size of 15×15 
and the sum of absolute difference (SAD) as the block 
distortion measure are used in all the simulations. 
Empirically the value of K=4 is chosen for the ex-
periments. Because motion vector prediction is 
widely used in popular video compression standards, 
such as MPEG-4, H.264, median motion vector pre-
diction technique (Tourapis et al., 2001) is also used 
in our experiments. With the median of the motion 
vectors of the left, top and top-right blocks of the 
original search position, we can evaluate fewer search 
points to get more accurate motion vectors for the 
current block. 

The proposed AMCHS is compared against six 
traditional BMAs: FS, NTSS, DS, HEXBS, CDS, and 
CDHS. Table 1 shows the performance comparison 
on sequences “Coastguard” (QCIF). It is clear that 
AMCHS outperforms other fast BMAs in terms of 
speed, BDM, distance from and probability of the true 
motion vector. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 shows average number of search points 
per block used by different BMAs with different se-
quences while Table 3 shows the average SAD per 
pixel according to Table 2. It is clear that our AMCHS 
gets the fastest speed among all the tested BMAs 
while its distortion performance is comparable with 
that of DS. Note that the AMCHS provides smaller 
BDMs than CDHS for nearly all the tested sequences, 
than CDS and HEXBS for most of the tested se-
quences, than DS for nearly half of the tested se-
quences and even smaller than NTSS for several se-
quences. Fig.6 plots the average number of search 

points used and the average SAD per pixel frame by 
frame using “Foreman” sequence. We can see that the 
AMCHS requires the fewest search points while it can 
maintain similar or better prediction quality as com-
pared with other BMAs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSION 
 

In this paper, we proposed a novel adjustable 
multiple cross-hexagonal search algorithm. It employs 
an adjustable multiple cross search pattern, which can 
be used to find small motion vectors accurately. Two 
other hexagonal search patterns can be used to find 
large motion vectors efficiently. In the search process, 
half-way-stop and half-way-skip techniques are used 
to speed up the search. Simulation results showed that 
our proposed AMCHS is more robust, effective and 
efficient than other BMAs. 

Table 1  Performance comparison of different BMAs 
on sequence “Coastguard” (QCIF)  
BMAs Ns Speedup BDM Dis Prob
FS 225 1.000 3.601 0.0000 100.000
NTSS 18.35 12.262 3.605 0.0033 99.878
DS 13.97 16.106 3.623 0.0244 99.375
HEXBS 13.02 17.281 3.940 0.3089 92.832
CDS 10.13 22.211 3.604 0.0031 99.927
CDHS 7.80 28.846 3.606 0.0042 99.870
AMCHS 6.82 32.996 3.604 0.0023 99.956

 Ns: the number of search points per block; BDM: Average
SAD per pixel; Dis: the average distance from the true
MV; Prob: the probability of finding the true MV, which is
obtained by using FS 

Fig.6  Frame-wise performance comparison between
different BMAs with “Foreman” sequence (CIF) in
terms of (a) average number of search points per block
and (b) average SAD per pixel  
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Table 2  Average numbers of search points per block used by different algorithms for different sequences 
BMAs 

Sequences 
FS NTSS DS HEXBS CDS CDHS AMCHS 

Akiyoa 225/225 17.62/17.37 13.31/13.17 11.93/11.54 9.46/9.27 6.28/5.75 5.67/5.45
Coastguarda 225/225 18.35/18.15 13.97/13.97 13.02/12.36 10.13/10.51 7.80/7.58 6.82/7.30
Foremana 225/225 19.12/19.47 14.61/14.81 12.75/13.03 10.79/11.55 8.49/9.07 7.48/8.27
Hall a 225/225 17.78/18.49 13.56/13.87 11.83/10.05 09.75/10.34 6.63/7.22 6.35/8.26
Mother-daughtera 225/225 18.15/19.48 13.81/14.46 12.32/12.69 10.00/11.01 7.03/8.22 6.72/8.52
Newsa 225/225 17.78/17.69 13.31/13.45 11.78/11.79 9.54/9.65 6.44/6.34 5.80/6.00
Silenta 225/225 18.25/18.41 14.05/14.17 12.50/12.42 10.33/10.61 7.33/7.32 6.76/7.08
Footballb 225/225 21.34/21.74 16.50/17.39 14.35/14.33 14.15/15.38 11.68/11.84 10.76/11.33
Mobileb 225/225 17.90/18.28 13.44/14.02 11.86/11.94 09.82/10.53 6.83/7.08 6.43/6.86
Suzieb 225/225 19.57/20.94 14.92/16.35 13.29/13.80 11.86/13.62  9.55/10.71  9.39/10.98
a QCIF (176×144)/CIF (352×288); b SIF (352×240)/CCIR601 (720×486) 

Table 3  Average SAD per pixel with respect to different algorithms for different sequences  

BMAs 
Sequences 

FS NTSS DS HEXBS CDS CDHS AMCHS
Akiyoa 10.469/0.585 10.470/0.586 0.479/0.590 10.478/0.593 0.470/0.587 10.470/0.587 10.470/0.587
Coastguarda 13.601/4.736 13.605/4.745 3.623/4.745 13.940/4.809 3.604/4.745 13.606/4.750 13.604/4.745
Foremana 13.134/2.819 13.163/2.853 3.232/2.867 13.466/2.991 3.230/2.885 13.231/2.886 13.220/2.874
Halla 11.732/2.513 11.734/2.519 1.752/2.525 11.743/2.535 1.734/2.521 11.734/2.524 11.733/2.521
Mother-daughtera 11.416/1.521 11.419/1.530 1.463/1.546 11.507/1.555 1.422/1.537 11.423/1.539 11.419/1.533
Newsa 11.048/1.104 11.049/1.109 1.057/1.110 11.057/1.111 1.049/1.110 11.049/1.112 11.049/1.111
Silenta 11.695/1.861 11.714/1.893 1.712/1.903 11.721/1.920 1.721/1.912 11.728/1.926 11.715/1.903
Footballb 10.109/8.297 10.439/8.878 10.563/8.901 10.807/8.987 10.638/8.975 10.762/9.408 10.695/9.181
Mobileb 19.783/6.468 19.789/6.562 9.790/6.522 10.274/6.558 9.797/6.534 19.798/6.631 19.794/6.556
Suzieb 12.598/2.641 12.628/2.736 2.641/2.681 12.690/2.704 2.666/2.732 12.673/2.824 12.655/2.777

 a QCIF (176×144)/CIF (352×288); b SIF (352×240)/CCIR601 (720×486) 


