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Abstract:    Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference 
frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fields such as photogrammetry. 
A solution to pose and motion estimation problem that uses two-dimensional (2D) intensity images from a single camera is de-
sirable for real-time applications. The difficulty in performing this measurement is that the process of projecting 3D object features 
to 2D images is a nonlinear transformation. In this paper, the 3D transformation is modeled as a nonlinear stochastic system with 
the state estimation providing six degrees-of-freedom motion and position values, using line features in image plane as measuring 
inputs and dual quaternion to represent both rotation and translation in a unified notation. A filtering method called the Gaussian 
particle filter (GPF) based on the particle filtering concept is presented for 3D pose and motion estimation of a moving target from 
monocular image sequences. The method has been implemented with simulated data, and simulation results are provided along 
with comparisons to the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) to show the relative advantages of 
the GPF. Simulation results showed that GPF is a superior alternative to EKF and UKF. 
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INTRODUCTION 
 

The pose and motion estimation or determina-
tion problem has been a subject of considerable re-
search for many years in computer vision, photo-
grammetry, and robotics with many solutions having 
been proposed (Shakernia et al., 1999; Blais and 
Beraldin, 2001; Takahashi and Ghosh, 2001; Porta 
and Kröse, 2003; Sarcinetti-Filho et al., 2003; Kim et 
al., 2005; Miro et al., 2005; Tomono, 2005; Shade-
man and Janabi-Sharifi, 2005). The methods available 
are generally deterministic and use single-vision 
cameras (Kim et al., 2005), stereo-vision cameras 
(Tomono, 2005), or more direct 3D measuring tech-
niques, such as range images from laser (Diosi et al., 
2005), ultrasonic (Hazas and Ward, 2002; Dijk et al., 

2003; Lin et al., 2003), infrared sensors (Aytac and 
Barshan, 2002) and structured lighting devices (Pages 
et al., 2005). 

Recently, much work has been done for deter-
mining the 3D pose of a moving target from a mo-
nocular sequence of images. It is advantageous be-
cause a standard video camera is low in cost, and 
setup and calibration are simple, physical space re-
quirements are small, reliability is high, and low-cost 
hardware is available for digitizing and processing the 
images (Kim et al., 2005). Most measurement tech-
niques for image-based pose and motion estimation 
can be classified into two major categories. These 
categories are point-based (Ansar and Daniilidis, 
2003; Deng et al., 2005; Zhang et al., 2006) and 
model-based methods (Youngrock et al., 2003) using 
higher-order geometric primitives. Each type in-
volves acquiring an image, and then processing that 
image to arrive at a value for the pose and motion. 
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However, the main body of research of image-based 
pose and motion estimation has been devoted to point 
features based algorithms. An alternative would be a 
line features based algorithm such as those provided 
by (Chang and Tsai, 1999; Andreff et al., 2002; Re-
hbinder and Ghosh, 2003; Aggarwal and Karl, 2006). 
Line features are present in many scenes and objects 
to a greater extent than point features, moreover, they 
may be more visible, as well, under a wider range of 
lighting and environmental conditions than points, 
and they are more robust than point features (Re-
hbinder and Ghosh, 2003). 

Quaternion is limited in the sense that only ro-
tation is represented in a full 3D transformation, and 
translation must be dealt with separately. To describe 
the relative translation and rotation between two co-
ordinates, the usual way is by means of homogeneous 
transformation matrix, however, the dual number 
concept may be applied to quaternion as well as 
vectors and matrices. Chen (1991) introduced the 
screw theory in the hand-eye calibration, which is the 
first simultaneous consideration of rotation and 
translation in a geometric way; later, Daniilidis (1999) 
used dual quaternion to represent both 3D rotation 
and 3D translation in a unified notation.  

For most nonlinear models, closed-form analytic 
expression for the posterior distributions do not exist 
in general. The extended Kalman filter (EKF) is a 
typical nonlinear estimation method and has been 
successfully implemented in some problems (Burl, 
1993), but in others, it diverges or provides poor ap-
proximations. This is especially emphasized when the 
model is highly nonlinear. Efforts to improve the EKF 
have led to the new filters recently, like the unscented 
Kalman filter (UKF) by Julier and Uhlmann (2004), 
which uses deterministic sets of points in the space of 
state variable to obtain more accurate approximations 
to the mean and covariance than the EKF. However, 
divergence can still occur in some nonlinear problems 
for UKF. In order to overcome these flaws, Kotecha 
and Djuric (2003) proposed a new nonlinear estima-
tion method called the Gaussian particle filter (GPF), 
which is used for tracking filtering and predictive 
distributions encountered in dynamic state-space 
models. The models are characterized with additive 
Gaussian noises, but the functions that appear in the 
process and observation equations are nonlinear 
functions. The underlying assumption is that the pre-

dictive and filtering distributions can be approxi-
mated as Gaussians. Unlike the EKF, which also as-
sumes that these distributions are Gaussians and em-
ploys linearization of the functions in the process and 
observation equations, the GPF updates the Gaussian 
approximations by using particles that are propagated 
through the process and observation equations with-
out approximations. 

Therefore, in this paper, we explore the potential 
benefits of the GPF over the more traditional EKF and 
UKF for pose and motion estimation (Wu et al., 2006). 
The remainder of this paper is organized as follows. 
Section 2 gives line transformations with unit dual 
quaternion. The model of pose and motion estimation 
is described in Section 3. Section 4 introduces the 
EKF, UKF and GPF formulations used in our study, 
and Section 5 describes our experimental methodol-
ogy and presents the experimental results. Section 6 
concludes the paper. 
 
 
LINE TRANSFORMATIONS WITH UNIT DUAL 
QUATERNION 
 

We will show how a line transformation can be 
written with the dual-quaternion product in this sec-
tion. 

A line in space with direction l through a point P 
can be represented with the 6-tuple (l, m), where m is 
the unit normal vector and m=P×l. The constraints 
l·m=0 and |l|=1 guarantee that the degree of freedom 
of an arbitrary line in space is 4. 

Applying a rotation R and a translation t to a 
given line (lb, mb), we can obtain the transformed line 
(la, ma): 
 

,
( )

( ) .

a b

a a a b b

b b b b b

=
 = × = + ×
 = × + × = + ×

l Rl
m P l RP t Rl

R P l t Rl Rm t Rl
  (1) 

 
We change from vector to quaternion notation, 

which means that l is represented by a quaternion with 
zero scalar part l=(0, l). The terms containing rotation 
can be easily written with quaternion. The cross- 
product is tackled with the identity (in this paper, q* is 
the conjugate of quaternion q) (Daniilidis, 1999): 

 
*(0, ) ( ) / 2,qt tq× = +t q                     (2) 
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where t is the translation quaternion (0, t) and q is the 
rotation quaternion (0, q). Using the identity Eq.(2), 
we can obtain 
 

*

* * * *

,

( ) / 2.
a b

a b b b

l ql q

m qm q ql q t tql q

 =


= + +
          (3) 

 
We define a new quaternion / 2q tq=  and a dual 

quaternion ˆ .q q q= +∈  It can be easily shown that 
Eq.(3) is equivalent to 
 

* *( )( )( ).a a b bl m q q l m q q+∈ = +∈ +∈ +∈       (4) 
 
Denoting also the lines by dual quaternion âl  and ˆ ,bl  
we obtain 
 

*ˆ ˆˆ ˆ .a bl ql q=                               (5) 
 
This formula resembles the rotation of points with 
quaternion. Lines can thus be transformed using a 
single operation in a non-abelian ring of dual quater-
nion. The norm is 
 

2 * * * *

* * * *

ˆ ˆ ˆ| | ( )
( ) / 2 1,

q qq qq qq qq
qq qq t tqq

= = +∈ +

= +∈ + =
           (6) 

 
hence q̂  is a unit quaternion. From the definition of 
quaternion q  and dual quaternion ˆ,q  we can obtain 
 

ˆ 1 .
2 2
t tq q q q = +∈ = +∈ 

 
                  (7) 

 
We know from Eq.(7) that the unit dual quater-

nion q̂  can be written as the concatenation of a pure 
translation unit dual quaternion and a pure rotational 
quaternion with dual part being equal to zero. 
 
 
SYSTEM MODEL OF POSE AND MOTION ES-
TIMATION 
 

Consider the following general nonlinear model 
of a dynamic system whose states are to be estimated: 
 

1 ( , ), ( , ),k k k k k kf h= =+x x v y x w            (8) 

where vk and wk are Gaussian distribution independent 
of current and past states. 
 
State transition equation 

The state assignment estimates the transforma-
tion between the camera and the object reference 
frames and the first derivatives of this transformation. 
The assignment is based on the dual quaternion rep-
resentation of the 3D transformation. Similar to the 
approach given by Broida et al.(1990), the state 
variable assignment with a known object geometry is 
 

0 1 2 3

T

[

  ] ,
k x y z

x y z x y z

t t t q q q q

v v v ω ω ω

=x

           (9) 
 
where thirteen state variables are presented, ti and vi 

(i=x,y,z) are the linear translation and linear velocity, 
respectively; qj (j=0,1,2,3) is the rotational quaternion, 
and ωi is the rotational velocity in each axis. Transla-
tion, rather than the dual part of the dual quaternion, is 
estimated in the state vector since the dual part can be 
readily calculated from the translation and rotational 
real quaternion as given by Eq.(7). The first derivative 
is 

ˆ .
2 2
t tq q q q = +∈ + 

 
                   (10) 

 
Chou (1992) gave the relation between quater-

nion angular velocity and the spatial angular velocity 
 

T *[0 ] 2 .x y z qqω ω ω= =Ω            (11) 
 
Ω  is a vector quaternion where the vector portion is 
the angular velocity about the axis. Solving for q  
 

/ 2.q q= Ω                             (12) 
 

Since the quaternion has four parameters to 
represent rotation, additional degree of freedom is 
present. As a result, normalization of the quaternion 
to unit magnitude is performed after each iteration. 

The state transition function f(xk, vk) extrapolates 
from the state at time interval k  to the next state at 
time interval k+1. The linear and angular velocities 
are assumed constant so that ωi(k+1)=ωi(k) and 
vi(k+1)=vi(k). The quaternion propagation is de-
scribed by Eq.(12), and thus the solution is when all 
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ωi are constant, after simplification 
 

1
2( ) cos(| | / 2) sin(| | / 2) ( )

| |
( ),         is the sampling time,        (13)

k k

t k

q t I q t

Q q t

ω τ ω τ
ω

τ

+

 
= + 
 

=

Ω

 
the complete state transition comes to be 
 

1

T

[ ( )

   ] .
k x x y y z z t k

x y z x y z

t v t v t v Q q t

v v v

τ τ τ

ω ω ω
+ = + + +x

   (14) 

 
Measurement equation 

A pinhole camera model as shown in Fig.1 is 
used, where the lens center is the camera reference 
origin. The first step is to transform the object coor-
dinates to the camera reference. Next, the x and y 
coordinates of the object projected onto the image 
plane are found. Given image coordinates p(x, y) and 
camera coordinates P(xc, yc, zc), these relations are 
 

c c c c/ , / ,x Fx z y Fy z= =                    (15) 
 
where F is the focal length. 

 
 
 
 
 
 
 
 
 
 
 
 
The result of the perspective projection from the 

3D lines is a set of dual vector quaternion coplanar 
lines located in the image plane. A format is needed to 
compare these transformed lines with line features 
measured from the acquired images. The format used 
for representing these lines is an (xlp, ylp) point called 
line point, which is defined as the intersection of the 
line feature with a line passing through the image 
origin that is perpendicular to the line feature. The 
definition of the line point on the image plane is il-
lustrated in Fig.2. 
 

 
 
 
 
 
 
 
 
 
 
 

 
The projected line lies in a plane defined by the 

3D line and the projection center. This plane is de-
scribed by 
 

c c c 0,x y zm x m y m z+ + =                   (16) 

 
which intersects the image plane at zc=F. The result is 
an equation of the projected line in the zc=F plane: 
 

0,x i y i zm x m y m F+ + =                    (17) 

 
where xi and yi are the image plane coordinates. The 
direction vector of the image line is 
 

T

2 2 2 2
0 .y x

i

x y x y

m m

m m m m

 
 = −
 + + 

l       (18) 

 
The line point is calculated from the dual vector im-
age line as 
 

, .lp iy iz lp ix izx l m y l m= = −                  (19) 
 
In terms of 3D dual vector components,  
 

2 2 2 2, .y zx z
lp lp

x y x y

m mm m
x F y F

m m m m
= =

+ +
        (20) 

 
Measurement equation h(xk, wk) is comprised of 

the line point equations obtained from each line given 
in Eq.(20). For the parameter m in measurement 
Eq.(20), when the initial normal vector mm is given, 
the transformed normal vector m can be computed 
from equation quaternion multiplication. 
 

Fig.2  Definition of the line point in 2D image plane 
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Fig.1  The pinhole camera model 
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NONLINEAR FILTER METHODS 
 

We present a brief description of the EKF, UKF 
and GPF based on (Julier and Uhlmann, 2004) and 
(Kotecha and Djuric, 2003) for better understanding 
of the paper in this section. 
 
Extended Kalman filter 

The EKF is a minimum mean-square-error 
(MMSE) estimator based on the Taylor series expan-
sion of nonlinear function. Using only the linear ex-
pansion terms, it is easy to derive the following up-
date equations for the mean and covariance of the 
Gaussian approximation to the posterior distribution 
of the states: 

1. Initialize with 
 

T
0 0 0 0 0 0 0[ ], [( )( ) ].E E= = − −x x P x x x x  

 
2. For k=1, 2, …, M 
(1) Time update 

 

 
1( 1)

T T
1( 1)

ˆ( ,0),

.
kk k

k k k k k kk k

f

F
−−

−−




= +

x x

P F P G Q G

＝
                (21) 

 
(2) Measurement update equations 

 
1

T T T
( 1) ( 1)

( 1) ( 1)

( 1) ( 1)

,

ˆ ( ( ,0)),

,

k k k k k k kk k k k

k k kk k k k

k k kk k k k

g

−

− −

− −

− −

  = + 
 = + −


= −

K P H U R U H P H

x x K y x

P P K H P

(22) 

 
where Qk is the process noise covariance, Rk is the 
measurement noise covariance, and Kk is the Kalman 
gain. Fk and Gk are the Jacobians of the process model 
and Hk and Uk are the Jacobians of the observed 
model. 
 
Unscented Kalman filter 

The complete UKF algorithm that updates the 
mean and covariance of the Gaussian approximation 
to the posterior distribution of the states is given as 
follows [More details can be found in (Julier and 
Uhlmann, 2004)]: 

1. Initialize with  
 

T
0 0 0 0 0 0 0[ ],   [( )( ) ].E E= =x x P x x x x- -  

2. For k=1, 2, …, M 
(1) Calculate the sigma points and the weights 

 

( )
( )

0, 1

, 1

, 1

( )
0

( ) 2
0

( ) ( )

,

( ) ,  1, , ,

( ) ,  1, ,2 ,

/( ),

/( ) (1 ),

1/[2( )],  1, , 2 ,

k

i k k i

i k k i

m

c

m c
i i

n i n

n i n n

W n

W n

W W n i n

χ

χ λ

χ λ

λ λ

λ λ α β

λ

−

−

−

=


= + + =

 = − + = +

 = +

 = + + − +


= = + =

x x

x x x

x

x

x x

x

x P

x P (23) 

 
where nx is the dimension of the state vector, α de-
termines the spread of the sigma points around x  and 
is usually set to a small positive value. κ is a secon-
dary scaling parameter which is usually set to 0, and β 
is used to incorporate prior knowledge of the distri-
bution of x (for Gaussian distributions, β=2 is opti-

mal). ( )( ) k i
n λ+x P  is the ith row of the matrix 

square root. λ is defined by λ=α2(nx+κ)−nx. 
(2) Time update 

 
2

( )
,( 1), ( 1) ( 1) , ( 1)

0

2
( ) T

( 1) , ( 1) ( 1) , ( 1) ( 1)
0

2
( )

, 1, ( 1) , ( 1) ( 1) , ( 1)
0

( ),    ,

[ ][ ] ,

( , ),   .

a

n
m

i k ii k k k k i k k
i

n
c

i kk k i k k k k i k k k k
i

n
n m
i k ii k k i k k k k i k k

i

f W

W

h W

χ χ χ

χ χ

γ χ χ γ

−− − −
=

− − − − −
=

−− − − −
=


= =


 = − − +



= =


∑

∑

∑

x

x

x x

x

x

P x x Q

y

   (24) 
 

(3) Measurement update equations 
 

2
( ) T

, ( 1) ( 1) , ( 1) ( 1)
0

2
( ) T

, ( 1) ( 1) , ( 1) ( 1)
0

1
( 1) ( 1)

T
( 1)

[ ][ ] ,

[ ][ ] ,

,    ( ),

,

k k

k k

k k k k

k k

n
c

i ki k k k k i k k k k
i

n
c

i i k k k k i k k k k
i

k k k kk k k k

k k kk k

W

W

− − − −
=

− − − −
=

−
− −

−


= − − +



 = − −


= = + −


= −

∑

∑

x

x

y y

x y

x y y y

y y

P y y R

P x y

K P P x x K y y

P P K P K

γ γ

χ γ  

(25) 
 

where Qk is the process noise covariance, Rk is the 
measurement noise covariance, and Kk is the Kalman 
gain. 
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Gaussian particle filter 
From Corollary 1 of (Kotecha and Djuric, 2003), 

we may deduce that GPF provides better approxima-
tions to the integrations involved in the update proc-
esses than EKF and UKF in the presence of severe 
nonlinearities. The complete GPF algorithm that up-
dates the mean and covariance of the Gaussian ap-
proximation to the posterior distribution of the states 
is given as follows [More details can be found in 
(Kotecha and Djuric, 2003)]: 

1. Initialize with 
 

T
0 0 0 0 0 0 0[ ], [( )( ) ].E E= = − −x x P x x x x  

 
2. GPF measurement update algorithm 
(1) Draw samples from the important function 

q(xk|y1:k) and denote them as ( )
1{ }j N

k j=x  (N is the 

number of sample particles). 
(2) Obtain the weights by 

 
( ) ( )
| |( 1) |( 1)( )

( )
| 1:

ˆ( | ) ( ; , )
.

( ; | )

i i
k k k k k k k ki

k i
k k k k

p N
w

q
− −=

xxy x x x P
x x y

      (26) 

 
(3) Normalize the weights as 

 
( ) ( ) ( )

1
.Nj j j

k k kj
w w w

=
= ∑                      (27) 

 
(4) Estimate the mean and covariance by 

 

( ) ( )
| |

1

( ) ( ) ( ) T
| | | | |

1

ˆ ,

ˆ ˆ( )( ) .

N
i i

k k k k k
i

N
i i i

k k k k k k k k k k k
i

w

w

=

=


=


 = − −

∑

∑xx

x x

P x x x x
     (28) 

 
3. GPF time update algorithm 
(1) Retain weighted samples of p(xk|y0:k) ob-

tained in the measurement update and denote them as 
 ( ) ( )

1{ , } .j j N
k k jw =x  

(2) For j=1,…,N, sample from ( )
1( | )j

k k kp + =x x x  

to obtain ( )
1 1{ } .j N

k j+ =x  

 
 
 
 
 

(3) Compute the mean and covariance as 
 

( ) ( )
( 1)| ( 1)|

1

( ) ( ) ( ) T T
( 1)| ( 1)| ( 1)| ( 1)| ( 1)|

1

ˆ ,

ˆ ˆ( ) .

N
i i

k k k k k
i
N

i i i
k k k k k k k k k k k

i

w

w

+ +
=

+ + + + +
=


=


 = −

∑

∑xx

x x

P x x x x
(29) 

 
 
EXPERIMENTS 
 

To demonstrate the pose and motion estimation 
performance of EKF, UKF and GPF, a target object 
with four coplanar points in a rectangular pattern is 
simulated, and the dimensions and the shape of the 
four points target is shown in Fig.3. The noisy image 
plane feature locations are used as inputs along with a 
priori knowledge, and a pinhole camera model with a 
known effective focal length is used in the simulation. 
 
 
 
 
 
 
 
 
 
 

The assumed initial state and the true initial state 
are shown in Table 1 (the assumed initial state is far 
from the true initial state). The initial error covariance 
matrix T

0 0 0 0 0[( )( ) ]E= − −P x x x x  and the diagonal 
elements of process noise matrix Qk are 10−5, the 
off-diagonal elements of Qk are zero. The input noise 
is Gaussian with a standard deviation of 0.02 mm. 
Based on this noise level, the measurement error 
covariance matrix has diagonal elements of 0.0004 
mm2 for each measured variable. 

We compare the estimation performance of the 
EKF, UKF and GPF based on the following metrics: 

 

T

1

1 ˆ ˆ( )( ) .
n

k k k k
k

MSE
n =

= − −∑x x x x x        (30) 

 
 
 
 
 

Fig.3  Four-point coplanar target used in the simu-
lation experiment 

60 mm

100 mm 

Translation (mm) Quaternion Linear velocity (mm/s) Rotational velocity (rad/s)
Initial state 

tx ty tz  q0 q1 q2 q3 vx vy vz ωx ωy ωz 
True  10 10 1000 1 0 0 0 −5 2 −5 −0.03 0.05 −0.20

Assumed  0 0 500 0.9 0.1 0.1 0.1 0.01 0.01 0.01  0.01 0.01 0.01 
 

Table 1  True and assumed initial states
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To enable a fair result of the estimation proposed 
in this paper, the estimation is averaged across a 
Monte Carlo simulation consisting of 50 runs. Each 
run is carried out with a different noise sample, and 
the simulation is run for 30 s with a measurement 
interval of 0.1 s. The pose and motion estimation 
results with N=200 particles are shown in Fig.4. Fig.5 
shows the MSE for 50 random realizations with 
N=200 particles. The average MSE is plotted in Fig.6. 
We can see from Fig.6 that GPF performs better than 
EKF and UKF except that the performance of GPF is 
slightly worse than UKF on q0 and q3. A comparison 
of computation time is also shown in Fig.7 for simu-
lation implemented on a 1.5 GHz Intel Pentium 
processor using MATLAB. Note that as expected, the 
computation time for GPF is much higher than that 
for EKF and UKF. However, much reduction in 
computation time can be expected for the GPF when 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

it is implemented in parallel computer (Kotecha and 
Djuric, 2003). 
 
 
CONCLUSION 
 

An imaging technique with a single camera 
along with a reference object to calculate estimations 
for relative six degrees-of-freedom position and ori-
entation as well as the associated velocity estimation 
is proposed in this paper. The system model is based 
on line features and a dual quaternion parameteriza-
tion for the 3D transformation. The indirect meas-
urement solutions of pose and motion from monocu-
lar vision are presented based on EKF, UKF and GPF 
respectively with simulation data. From the simula-
tion results, we can see that GPF has improved per-
formance over that of EKF and UKF for monocular 
vision-based pose and motion estimation. 
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