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Abstract:    Applying homogeneous coordinates, we extend a newly appeared algorithm of best constrained multi-degree reduc-
tion for polynomial Bézier curves to the algorithms of constrained multi-degree reduction for rational Bézier curves. The idea is 
introducing two criteria, variance criterion and ratio criterion, for reparameterization of rational Bézier curves, which are used to 
make uniform the weights of the rational Bézier curves as accordant as possible, and then do multi-degree reduction for each 
component in homogeneous coordinates. Compared with the two traditional algorithms of “cancelling the best linear common 
divisor” and “shifted Chebyshev polynomial”, the two new algorithms presented here using reparameterization have advantages of 
simplicity and fast computing, being able to preserve high degrees continuity at the end points of the curves, do multi-degree 
reduction at one time, and have good approximating effect. 
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INTRODUCTION 
 

For computer aided geometric design, the high-
est degree of parametric curves or surfaces that dif-
ferent design systems can code with may be different, 
and for the convenience of data transmission and data 
exchange between those systems, approximate degree 
reduction for the curves and surfaces are needed. 
What is more, degree reduction can decrease the in-
formation storage. So, study of degree reduction al-
gorithms has many practical uses. 

Research on degree reduction of polynomial 
curves in L2 or L∞ norm has achieved much progress 
(Hu et al., 1998; Zhang and Wang, 2005; Lu and 
Wang, 2006a; 2006b), whereas so far for rational 

curves, there exist only two algorithms, i.e., cancel-
ling the best linear common divisor (Sederberg and 
Chang, 1993) and shifted Chebyshev polynomial 
(Chen, 1994) as main production. The former used 
Chebyshev polynomial, and the latter can preserve the 
end points of the reduced curves unchanged. These 
two algorithms are both remarkable in theory, but 
cannot do multi-degree reduction at one time; also 
their errors are related to the magnitude of the de-
nominator of the original curves. Chen and Wang 
(2000) gave an approximate error evaluation for the 
algorithms in (Chen, 1994; Sederberg and Chang, 
1993). However, as the evaluation requires approxi-
mations of inequalities, the final result of the evalua-
tion deviated greatly from the precise error. Park and 
Lee (2005) induced degree reduction algorithm for 
polynomial curves to one for rational case, in which 
there is also no multi-degree reduction at one time. 
Based on the analyses above, we know that good 
degree reduction algorithms for rational Bézier 
curves are insufficient whereas their practical uses 
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are quite large. Therefore, to diminish the gap, re-
search on new and effective degree reduction algo-
rithms, especially on optimal constrained multi-  
degree reduction algorithms for rational Bézier 
curves, are urgently needed. 

Thus, observing that Zhang and Wang (2005) is 
the latest work that has perfect result on constrained 
multi-degree reduction for polynomial Bézier curves, 
we extend it to one for rational Bézier curves using 
homogeneous coordinates. The basic idea is intro-
ducing variance criterion and ratio criterion to 
reparameterize original rational curve such that its 
weights can be made uniform to the utmost, and then 
do constrained multi-degree reduction for each 
component in homogeneous coordinates. The method 
can not only perform a constrained multi-degree re-
duction for the original curves, but also minimize the 
error. Many numerical experiments showed that 
compared with “cancelling the best linear common 
divisor” (Sederberg and Chang, 1993) and “shifted 
Chebyshev polynomial” (Chen, 1994), the new algo-
rithms have advantages to compute simply and rap-
idly, to preserve high degree continuity at the end 
points of the curves, to do multi-degree reduction for 
the original curves at one time, and to approximate 
reduced curves with high precision. 
 
 
CONSTRAINED MULTI-DEGREE REDUCTION 
FOR RATIONAL BÉZIER CURVES USING 
HOMOGENEOUS COORDINATES 
 

For convenience, without loss of generality, we 
only discuss the degree reduction of planar rational 
curves. 

In affine coordinates, a planar rational Bézier 
curve of degree n can be presented as 
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where Bi
n(t) are Bernstein bases, Ri=(xi,yi) are control 

points and ωi are weights. 
The same curve can be presented in homoge-

neous coordinates as 
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where ( , , ) ( , , )i i i i i i i i i= X Y = x yω ω ω ωR�  are control 
points. 
Theorem 1    An n-degree planar rational Bézier 
curve (2) can be multi-degree reduced to an m-degree 
(m<n) one, which preserves (v−1)- and (u−1)-degree 
continuity (v−1≥0, u−1≥0 and u+v≤m+2) at the end 
points and can be presented in homogeneous coordi-
nates as follows: 
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where the homogeneous coordinates of the control 
points of the degree reduced curve can be presented 
as: 
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Proof    According to the degree reduced theorem in 
(Zhang and Wang, 2005), it is easy to know that the 
curve ( )tR ’s three homogeneous coordinates ( ( ),X t  

( ), ( ))Y t tω  and the original curve ( )tR� ’s counterpart 
(X(t), Y(t), ω(t)) have the same derivatives up to de-
gree v−1 (≥0) and u−1 (≥0) at the end points of [0, 1], 
respectively; also the former is the best (n−m)-degree 
reduction polynomial of the latter in L2-norm. Then 
applying the law of four arithmetic operations of 
differential, Theorem 1 is proved. 

According to (Zhang and Wang, 2005), the three 
homogeneous coordinates of the degree reduced 
curve ( )R t  are the best constrained multi-degree 
reduction for those of the original curve ( )R t�  re-
spectively, and the degree reduced error has a direct 
presentation which can estimate whether it is smaller 
than the tolerance ε*. 
Algorithm 1    Applying the matrix formulas in 
Theorem 1, given an n-degree rational Bézier curve 
R(t), we can achieve an (n−m)-degree (0<m<n) re-
duced curve ( )R t  which preserves (v−1)- and 
(u−1)-degree continuity (v−1≥0, u−1≥0) at the end 
points. 
 
 
CONSTRAINED MULTI-DEGREE REDUCTION 
FOR RATIONAL BÉZIER CURVES USING 
REPARAMETERIZATION 
 

It is well known that rational Bézier curves can 
be formally treated as polynomial Bézier curves by 
using homogeneous coordinates, but these two are 
different in nature unless all weights of the rational 
Bézier curves are equal. That means Algorithm 1 

cannot obtain the minimal degree reduction error 
generally. However we can make uniform the weights 
of the rational Bézier curves using reparameterization 
to diminish the degree reduction error. So, we should 
reparameterize the rational Bézier curves before ap-
plying Algorithm 1, to make uniform the weights as 
accordant as possible. Based on the discussion above, 
we will give a new algorithm using the variance cri-
terion and then try to introduce another criterion 
called “ratio criterion” (Zheng, 2005) for reparame-
terization to implement the second algorithm. 
 
Reparameterization by variance criterion 

By introducing the parametric transformation 
[1 ( 1) ]t ct c t= + −ˆ , the control points and shape of 

the rational curve (1) remain unchanged and the 
weights are changed to ˆ ,n i

i icω ω−=  where c is the 
reparameterization factor, a positive real number. To 
determine c, we will select a criterion for measuring 
the uniformity level of the weights. Certainly, a 
natural and direct idea is to select the variance of all 
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 It is obvious that g and h have linear correlation 
and that the smaller g becomes, the smaller h also 
becomes. Thus we can choose h instead of g as the 
criterion for measuring the accordance degree of the 
weights. 

Provided the measuring criterion, we will pro-
ceed to determine the factor c so that the value of h 
can be taken as minimal when the above mentioned 
parametric transformation to the rational curve (1) has 
been implemented. As new weights become ˆiω = 
cn−1ωi after the parametric transformation, the new 
value of h can be written as 
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Obviously, what we need to do is to find all zero 
points of the expression 
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and to select a positive one from them such that Eq.(3) 
has the minimal value on it, and that is the factor c we 
want. Mathematical software such as Matlab can do 
these procedures. And the existence of the positive 
real number c can be assured by the following theo-
rem. 
Theorem 2    The expression h(c) written as Eq.(3) 
reaches the minimal value in (0,+∞). 
Proof    For an arbitrary negative number c, we have 
h(c)>h(−c). That means, by replacing c with a posi-
tive number −c, the value of h decreases. So it is 
impossible for h(c) to reach the minimum in (−∞, 0). 
A few computations give h(0)=1, h(1)<1, 
lim ( ) 1.c h c→+∞ =  Since h(c) is continuous, according 
to mathematical analysis, it reaches its minimum in 
(0,+∞). 

Combining the idea of variance criterion for 
reparameterization with Theorem 2 and Algorithm 1, 
we have 
Algorithm 2    First perform reparameterization by 
variance criterion for the rational Bézier curve (2), 
and secondly do constrained multi-degree reduction 
to the curve in homogeneous coordinates. Then each 
component in homogeneous coordinates of the con-
trol points of the degree reduced curve can be given 
by 
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where ( 1,2, , )n i

i ic i nω ω−= =ˆ "  and c is obtained by 
selecting the positive number from all zero points of 
Eq.(4) using mathematical software, on which Eq.(3) 
takes its minimal value. 

Reparameterization by ratio criterion 
Different from the variance criterion, Zheng 

(2005) proposed another criterion called “ratio crite-
rion” for reparameterization to make uniform the 
weights of the rational Bézier curves. The ratio crite-
rion is given as 
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The minimal point and the minimum of the expres-
sion above is 
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respectively [we found an error in (Zheng, 2005), that 
the expression of H0 is wrong, and Eq.(6) here is the 
correct one], where the integrals j0 and k0 satisfy 
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The idea of ratio criterion begins with deter-

mining the factor γ by Eqs.(6) and (7), and then does a 
parametric transformation ˆ /[ (1 )]t t t tγ= + −  or 

ˆ ˆ ˆ/[ (1 )]t t t tγ γ= + −  so that the weights become 

ˆ .i
i iω γ ω=  It requires a series of transformations step 

by step and finally gives rise to an LP problem, which 
has a direct solution. Compared with it, the idea of 
variance criterion is more straightforward, which 
adopts the concept of variance from statistics; fur-
thermore, the procedure is very simple, only requiring 
finding all roots of an equation of the (3n−2)th de-
gree. 

Combining the idea of ratio criterion for 
reparameterization with Algorithm 1, we then obtain 
Algorithm 3    First reparameterize the rational Bé-
zier curve (2) by ratio criterion, and then do con-
strained multi-degree reduction of the curve in ho-
mogeneous coordinates. Thus, each component in 
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homogeneous coordinates of the control points of the 
degree reduced curve can be given by Eq.(5), where 
ˆ i

i iω γ ω= (i=1, 2, …, n), and γ is determined by Eqs.(6) 
and (7). 
 
 
COMPARISONS BETWEEN FOUR DEGREE 
REDUCTION ALGORITHMS FOR RATIONAL 
BÉZIER CURVES 
 

In this section, we will show some practical 
examples for Algorithms 2 and 3, and compare them 
with “cancelling the best linear common divisor” 
(Sederberg and Chang, 1993) and “shifted Chebyshev 
polynomial” (Chen, 1994). 

Because the four degree reduction algorithms all 
have quite good approximating effect, to show their 
differences clearly, the control polygons of rational 
Bézier curves in the following examples are omitted; 
and for convenience of writing, all rational Bézier 
curves are presented in sequence of point array (xi, yi, 
ωi), where (xi, yi) are affine coordinates of the control 
points and ωi are weights of the control points. 

The comparisons between the four algorithms 
mentioned above are divided into two parts: the first 
part is the comparison between the algorithm of 
variance criterion and ratio criterion; the second is 
comparing the algorithm of variance criterion with 
“cancelling the best linear common divisor” and 
“shifted Chebyshev polynomial”.  

 
Comparison between algorithms of variance cri-
terion and ratio criterion 
Example 1    Given the point array of a 4-degree 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

rational Bézier curve: (0, 0, 1), (2, 2, 4), (3, 0, 2), (4, 
−2, 1), (4, 0, 1). Apply the two criterion algorithms to 
obtain 1-dgree reduced curves, which preserve (0, 0) 
degrees continuity at the end points. The result is 
shown in Fig.1a. 

The procedures of Algorithm 2 as given below 
firstly achieves c=0.6604 from Eqs.(3) and (4), then 
we have: 
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Finally, we get the point array of the degree re-

duced curve: (0, 0, 0.1902), (2.1690, 1.9744, 1.4138), 
(4.4715, −4.1829, 0.4882), (4.0000, 0, 1.0000). 
Example 2    Given the point array of a 5-degree 
rational Bézier curve: (0, 0, 1), (2, 10, 2), (6, 12, 4), 
(10, 8, 7), (7, 1, 2), (6, 2, 3). Apply the two criterion 
algorithms to obtain 1-dgree reduced curves, which 
preserve (0, 1) degrees continuity at the end points. 
The result is shown in Fig.1b. 
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Fig.1  Comparison between two criterion algorithms. Solid line without marks: the original curve; marked
by squares: ratio criterion; by circles: variance criterion. (a) Degree 4 to degree 3; (b) Degree 5 to degree 4
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From these two examples, we can see that the 
degree reduced curves given by the two criterion 
algorithms have good approximating effects. And the 
variance criterion algorithm is the better one. 
 
Comparison between variance criterion algorithm 
and two traditional degree reduction algorithms 

It is obvious that the degree reduced curves 
given by “cancelling the best linear common divisor” 
cannot satisfy the end points continuity conditions; 
even by “shifted Chebyshev polynomial”, the degree 
reduced curves can merely preserve the end points 
with (0, 0) degrees continuity. Whereas the variance 
criterion algorithm does not have such restriction and 
the degree reduced curves can preserve high degrees 
continuity at the end points. 

Secondly, neither “cancelling the best linear 
common divisor” nor “shifted Chebyshev polyno-
mial” can do multi-degree reduction at one time, 
which are time-consuming and usually lead to exor-
bitant accumulated errors; whereas that is one of the 
advantages of the variance criterion algorithm. 

Moreover, Algorithm 2 shows that the degree 
reduction based on variance criterion is virtually to 
multiply a column vector generated by the control 
points of the reparameterized rational curve by a ma-
trix. Here the matrix is independent of the original 
curve and hence can be calculated beforehand for 
invoking at any time. This guarantees the speed and 
simplicity of the degree reduction. 

As a result, the variance criterion algorithm is 
superior in function to the two traditional algorithms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the following examples, we want to compare 
the degree reduction error of these three algorithms. 
Because of the limited function, the demand for end 
points continuity in the following examples is 
avoided for the algorithm of “cancelling the best lin-
ear common divisor”. On the other hand, if multi- 
degree reduction is demanded for the variance crite-
rion algorithm, for the other two, it is degree reduced 
stepwise. The results of numerical experiments 
showed that the variance criterion algorithm is supe-
rior to the two traditional algorithms in approximation 
precision. 
Example 3    Given the point array of a 4-degree 
rational Bézier curve: (0, 0, 1), (2, 2, 4), (3, 0, 2), (4, 
−2, 1), (4, 0, 1) [the data is taken from (Sederberg and 
Chang, 1993)]. Apply the three algorithms to obtain 
2-degree reduced curves, which preserve (0, 0) de-
grees continuity at the end points. The result is shown 
in Fig.2a. 
Example 4    Given the point array of a 5-degree 
rational Bézier curve: (0, 0, 1), (3, 11, 3), (4, 6, 17), (4, 
3, 12), (5, 7, 15), (5, 5, 20). Apply the three degree 
reduced algorithms to obtain 1-degree reduced curves, 
which preserve (0, 0) degrees continuity at the end 
points. The result is shown in Fig.2b. 
Example 5    Given the point array of a 5-degree 
rational Bézier curve: (0, 0, 1), (2, 10, 3), (4, 6, 9), (6, 
6, 12), (7, 10, 20), (8, 1, 30). Apply the three degree 
reduced algorithms to obtain 2-degree reduced curves, 
which preserve (0, 0) degrees continuity at the end 
points. The result is shown in Fig.2c. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  Comparison between three degree reduced algorithms. Solid line without marks: the original curve; marked
by circles: variance criterion; by asterisks: cancelling the best linear common divisor; by triangles: shifted Cheby-
shev polynomial. (a) Degree 4 to degree 2; (b) Degree 5 to degree 4; (c) Degree 5 to degree 3 
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