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Abstract:    SLAM is one of the most important components in robot navigation. A SLAM algorithm based on image sequences 
captured by a single digital camera is proposed in this paper. By this algorithm, SIFT feature points are selected and matched 
between image pairs sequentially. After three images have been captured, the environment’s 3D map and the camera’s positions 
are initialized based on matched feature points and intrinsic parameters of the camera. A robust method is applied to estimate the 
position and orientation of the camera in the forthcoming images. Finally, a robust adaptive bundle adjustment algorithm is 
adopted to optimize the environment’s 3D map and the camera’s positions simultaneously. Results of quantitative and qualitative 
experiments show that our algorithm can reconstruct the environment and localize the camera accurately and efficiently. 
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INTRODUCTION 
 

Robot navigation is one of the most important 
research fields in the robotics community for decades. 
In order to do the path planning and detect the obsta-
cles, building the map of the environment around the 
robot and simultaneously localizing it is an essential 
part. For this reason, SLAM is one of the most im-
portant components in robot navigation system. 
SLAM was originally proposed by Smith et al.(1987), 
since then, various algorithms have been proposed. 

The SLAM algorithms can be approximately 
divided into two classes according to the different 
sensors applied to detect the range information. One 
kind of algorithm uses active sensors such as LADAR 
(Guivant et al., 2000; Hahnel et al., 2003) or sonar 
(Choi et al., 2005). The map and localization results 
are obtained consistently based on a Bayesian esti-

mation scheme. Many of the algorithms use EKF 
(Weingarten and Siegwart, 2005) or particle filters 
(Montermerlo et al., 2002). Since the accuracy of the 
range information acquired by LADAR is quite high, 
this kind of algorithms usually can provide satisfac-
tory results and is quite mature by now. Unfortunately, 
LADAR is quite large, heavy, power consuming and 
expensive. So it is not suitable for the planet rover 
such as lunar rover and Mars rover as the payload and 
power supply are very restrictive. On the other hand, 
although sonar is much cheaper, its angular accuracy 
is poor and it cannot be used on the moon since there 
is no air on it. So sonar is mainly used in indoor 
environments. 

With the development of computational power 
and image quality, vision based SLAM gradually 
emerges. Camera is much smaller, lighter and con-
sumes less power than LADAR. Furthermore, it is an 
all-solid-state approach that might be more easily 
space qualifiable. So it is suitable for the planet rover. 
Many vision based SLAM use the stereo vision (Se et 
al., 2002; Garcia and Solanas, 2004; Kwolek, 2007). 
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In recent years, some researchers have proposed al-
gorithms based on the monocular vision, which does 
not need the system for cameras synchronization or 
mechanical equipment for keeping the relative posi-
tions between two cameras. So monocular vision 
based SLAM is simpler, cheaper, consumes less 
power and is suitable as a backup system. Davison 
(2003) proposed a real-time SLAM algorithm for 
limited indoor environments. It could only track 
around 100 feature points, which is not enough for 
outdoor applications. Chekhlov et al.(2007) improved 
the robustness in feature matching, but they still only 
demonstrated the indoor results. Nister et al.(2004) 
proposed two separate visual odometry algorithms 
based on both stereo vision and monocular vision, but 
they only provided the experimental results with ste-
reo vision system. Campbell et al.(2005) realized the 
visual odometry with a consumer grade camera by 
concentrating on the localization of the rover. They 
did not discuss the method to construct the map of the 
environment. Tomono (2005) proposed an automatic 
baseline selection method based on the analysis of the 
rank of the coefficient matrix. The author only pro-
vided some qualitative results in short distances and 
the computational cost analysis was not made. 

In order to overcome the defects of the above-
mentioned algorithms, we propose a simultaneous 
environment reconstruction and localization algo-
rithm based on monocular vision. Our method is 
realized in a sequential mode, which is to say, we do 
not need to capture the whole image sequence be-
forehand. This is especially suitable for robot navi-
gation since we can process the image sequence 
while the images are being captured. This is different 
from most of the SFM (structure from motion) 
methods which are realized in a batch mode. Firstly, 
we improve the matching accuracy with the help of 
the SIFT feature points in image sequences. We use a 
robust pose and location estimation method when a 
new image is captured. While doing bundle adjust-
ment, we make use of the residue information from 
the latest optimization results and propose an adap-
tive bundle adjustment algorithm. It can provide 
accurate results and eliminate the outliers with rela-
tively low computational cost. Finally, digital eleva-
tion map (DEM), which is more suitable for robot 
navigation, is generated from 3D point clouds. 
Overview of the algorithm is shown in Fig.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ALGORITHM DETAILS 
 
Camera intrinsic parameters calibration 

In ideal condition, the camera satisfies linear 
model and the intrinsic parameters can be expressed 
by matrix K: 
 

0

00 ,
0 0 1

x

y

f u
f v
γ⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

K  

 
where fx and fy are focal lengths of the camera in the 
unit of the pixel’s size in horizontal and vertical di-
rections, respectively. (u0, v0) is the optical center of 
the image plane. γ is the skew factor of the pixel. 
Usually there are some distortions in the image. The 
relationship between the actual position of image 
point and the position according to the linear camera 
model can be described by the following equation: 
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in which xd=[xd(1) xd(2)]T is the actual normalized 
coordinate of image point,  xn=[x y]T is the normalized 
coordinate according to the linear camera model, 
r2=x2+y2. In this paper, we use the method proposed 
by Zhang (2000) to calculate the intrinsic parameters 
matrix K and nonlinear distortion coefficients kc1 and 
kc2. 
 
Feature matching 

In order to improve the quality of image match-
ing and speed up the matching procedure, we first 
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Fig.1  Overview of our algorithm 
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choose some feature points which are easy to match in 
the image. Then we search for the corresponding 
points in the next image. We apply the SIFT (Lowe, 
2004) for this purpose. SIFT is a successful feature 
matching method which is robust to image scale and 
illumination changes. It can also handle affine 
transformations between images to some extent. With 
the SIFT feature tracker, we can realize the image 
matching algorithm in dramatically different viewing 
directions robustly. Fig.2 shows the matched feature 
points which are labelled in dots. From the figure we 
can conclude that most of the matched feature points 
are correct. 
 
 
 
 
 
 
 
 
 
 
Environment and camera pose/location initializa-
tion 

After we have obtained three images, we can 
initialize the environment map and camera poses/ 
locations. We set the reference coordinates at the 
camera coordinates of the first image. We use all the 
feature points that can be seen in all the three images. 
Assume Feati (i=1,2,3) are the sets of homogeneous 
coordinates of the feature points in the three images. 
For every xc∈Feati (i=1,2,3), we calculate: 
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where distort−1() is the inverse function of Eq.(1). For 
the corresponding feature points xn and xn′ from the 
first and the third images, we have the epipolar con-
straint (Ma and Zhang, 2003): 
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where E is the essential matrix. In this paper, the 
eight-point algorithm (Hartley, 1997) is applied to 
calculate E. We also use the RANSAC (Fischler and 
Bolles, 1981) to estimate E robustly.  

The relationship between the essential matrix 
and the motion parameters can be expressed by 
 

u[ ] ,×=E t R  
 
where tu is the translation vector between the first and 
the third images and [tu]× denotes its corresponding 
skew symmetric matrix. R is the rotation matrix be-
tween the first and third images. 

We apply SVD to the essential matrix: 
 

 SVD(E)~U·diag(1, 1, 0)·VT  (detU>0, detV>0). 
 

We assume 
0 1 0
1 0 0 ,

0 0 1

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

D Ra=UDVT, Rb= 

UDTVT, tu=[u13 u23 u33]T. There are four possible so-
lutions for the pose and location of the third image: Ra 
and tu, Ra and −tu, Rb and tu, Rb and −tu. In order to get 
the true solution, we select a pair of corresponding 
feature points randomly and triangulate them with 
pose and location parameters (Ma and Zhang, 2003). 
If this point is in front of both cameras, the pose and 
location parameters are exactly what we want. Since 
we can only determine the structure of the environ-
ment up to a scale with monocular vision, we nor-
malize the translation vector tu so that ||tu||=1. 

When we have obtained the rotation matrix and 
translation vector, the projection matrix of the camera 
can be expressed as: P=K[R|t]. The 3D structure of 
the corresponding feature points in the first and third 
images can be triangulated with the projection ma-
trices (Ma and Zhang, 2003). After that, we can obtain 
the pose and location parameters of the second image 
(refer to the following subsection). Finally, we opti-
mize the pose and location parameters and 3D struc-
ture of the feature points with traditional bundle ad-
justment (Triggs et al., 2000). 
 
New image pose/location estimation and envi-
ronment reconstruction 

When a new image has been captured, the pose 
and location parameters should be estimated. Assume 
we have processed N images and the new image is 
IN+1, FSi is the set of homogeneous coordinates of the 
matched feature points in the ith image. SP is the set 
of 3D structures in the environment map and camera 

Fig.2  Example of SIFT matching results between two
consecutive images. Features are labelled in dots 
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pose/location database. proji(X) (X∈SP) is the pro-
jection from the 3D point X to Ii. Its theoretical posi-
tion can be calculated according to the projection 
matrix Pi=K[Ri|ti] of Ii and its actual position can be 
acquired by the feature matching procedure. 

First, we calculate CSP={X|X∈SP∧projN+1(X)∈ 
FSN+1}. After a set CSP has been calculated, we pro-
ject all the members in CSP to IN+1 and calculate the 
errors with respect to their corresponding detected 
feature positions in IN+1: 
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where NC=|CSP|. We can get the pose and location 
parameters of IN+1 by the minimization of Eq.(2). 
Because SIFT will unavoidably produce false 
matches, instead of applying the widely used L2 norm 
r(x)=||x||2 which is vulnerable to outliers, we choose 
the robust Huber function: 
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For small residuals, Huber function acts as tra-

ditional squared error, while for large residuals, it 
performs like L1 norm. In all of our experiments, we 
choose δ=2. Eq.(2) is optimized by the Levenberg- 
Marquardt algorithm with pose and location pa-
rameters RN and t 

N of the previous image as initiali-
zation. Generally speaking, Huber function can pro-
duce more robust results at the cost of slightly smaller 
convergence rate compared with the traditional L2 
norm. Fortunately, the number of variables needed to 
be optimized in Eq.(2) is small (pose and location 
parameters can be described by six parameters) so 
that the additional computational cost can be ignored 
compared with other parts of the algorithm. 

Until now we have obtained the pose and loca-
tion parameters of IN+1. As there are some newly 
matched feature points in every image, the 3D struc-
tures of the newly added feature points in IN−1 have 
not been calculated. After we obtain the pose and 
location parameters of IN+1, we triangulate the 3D 
structures of the feature points which are newly added 
in I N−1 and can still be seen in IN+1. 

Robust adaptive bundle adjustment 
The abovementioned environment reconstruc-

tion and camera pose/location estimation algorithms 
are done separately. The errors generated in any step 
will spread further and affect the estimation results. In 
order to diminish the error diffusion, we apply bundle 
adjustment after the new image is captured and the 
scene structure and camera pose/location are esti-
mated. The cost function is: 
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where M=|X|, C={Ri, ti|1≤i≤N} is the set of camera 
poses and locations for optimization, X is the set of 
environment structures for optimization, xij is the 
detected image coordinate of the jth 3D point in the 
ith image, and r(x) is the error function. Traditional 
bundle adjustment (Triggs et al., 2000) takes into 
account the independence between camera poses/ 
locations and scene structure. The computational cost 
is greatly reduced compared with the Levenberg- 
Marquardt algorithm but when the size of the scene 
structure and camera poses/locations becomes large, 
the computational cost is still high. Traditional bundle 
adjustment solves the following equation in each 
iteration (Hartley and Zisserman, 2003): 
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The left side is the Hessian matrix H=JTJ, whose 
diagonal is multiplied by 1+λ. δa and δb are incre-
ments in each iteration for camera pose/location pa-
rameters and scene structure, respectively. εA and εB 
are residuals. We first solve δa by Eq.(4): 
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From δa we can get δb by 
 

* 1 T( ) ( ).b B a
−= −δ V ε W δ  

 
Most of the computational cost is spent in cal-

culating the Hessian matrix and solving Eq.(4). For 
simplicity, we assume there are n feature points in 
every image on average. The number of cameras for 
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pose and location optimization is NO. We take into 
account the 2D projections in NT images. The time 
complexity for computing the Hessian matrix is 
O(nNT). For matrix product W(V*)−1WT, we first con-
sider the number of not-null blocks of W(V*)−1 which 
is the same as that of W. In the product W(V*)−1WT, 
each not-null 6×3 block of W(V*)−1 is used once in the 
calculation of each block column of W(V*)−1WT. Thus 
the computational complexity of the product 
W(V*)−1WT is O(nNO

2). The computational complex-
ity for solving Eq.(4) is O(nNO

3). So the total 
computational complexity is approximately O(nNT)+ 
O(nNO

2)+O(nNO
3). In traditional bundle adjustment, 

NO=NT=N. As the number of images N increases, the 
computational complexity increases rapidly. In order 
to improve the efficiency of the whole algorithm, we 
have to tune NO and NT so as to find a balance 
between performance and speed. Furthermore we 
should make the algorithm immune to outliers. In the 
above subsection, we have mentioned that the Huber 
function is more robust than L2 norm and is a 
candidate for this purpose. But in this subsection, 
considering the implementation simplicity and 
kicking outliers explicitly out of the bundle ad-
justment optimization procedure, we still choose the 
L2 error function. The procedure of robust adaptive 
bundle adjustment is as follows: 

Step 1: When N≤20, we choose NO=NT=N which 
is the same as the traditional bundle adjustment. 
When N=21, we choose NO=3 and NT=NO+5. When 
N>21, we choose NO and NT according to the residu-
als of the last two images: 
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Step 2: Do the bundle adjustment so that 
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Calculate the inlier set: 
 

Xinlier={Xj|Xj∈Xopt∧r(xij−proji(Xj))< 
          δ∧proji(Xj)∈FSi∧N−NT<i≤N}. 

 
We choose δ=2 which is fixed in all our experiments. 
If Xinlier≠Xopt, do bundle adjustment again: 
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Otherwise, we simply set 
 

n
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Step 3: Calculate and store the average residuals: 
 

n n
opt opt( , ).Nres f C X=  

 
When N≤20, the number of images and 3D 

points in the environment map is not large. The 
computational cost of the traditional bundle adjust-
ment is not high and it can provide accurate initiali-
zation. When the number of images increases, we 
should constrain NO and NT. But if the residue of the 
last image increases, it is not enough to diminish 
errors with only NO images, we should add more 
images for optimization. On the contrary, we can still 
get reasonable result with fewer images for optimi-
zation. We constrain NO between 3 and 9 for the bal-
ance between performance and speed. NO should not 
be too small, otherwise the errors will be accumulated 
rapidly. NO should also not be too large, which will 
cause extremely high computational cost. In order to 
keep the consistency between the optimization results 
and the previous reconstruction and pose/location 
estimation results, NT must satisfy NT≥NO+2, so we 
also choose NT=NO+5 considering the balance be-
tween performance and speed. For 3D points involved 
in optimization, we choose those which can be de-
tected in at least one of the NO images. 

In order to find the outliers in the environment 
structure set, we propose a two-step bundle adjust-
ment scheme. In the first step, all the 3D points in the 
environment structure set are used for bundle ad-
justment. The residuals of outliers after bundle ad-
justment must still be large. So we check the repro-
jection error of every 3D point after optimization. If 
there is any point whose reprojection error is larger 
than a predefined threshold, it is deemed as an outlier. 
If outliers are found in this step, bundle adjustment 
has to be performed again free of these outliers so that 
the optimization results will be more accurate. 
Though bundle adjustment has to be used twice for 
some images in the sequence which increases the 
computation time at first glance, fortunately, since the 
initialization of the second bundle adjustment is better 
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than the first one, fewer iterations are needed in the 
second bundle adjustment. Furthermore, with our 
proposed adaptive bundle adjustment procedure, the 
computation time of bundle adjustment is much 
shorter than that of the SIFT feature tracker so that the 
increased computation time is tolerable. 
 
DEM generation 

The above calculated 3D points cloud is not very 
suitable for robot navigation. They are further proc-
essed to create DEM for obstacle detection and path 
planning. A DEM uses a fixed 2D grid with variable 
height z to represent the 3D world. In this paper, a 
uniform grid is used. For every 3D point 
X=(x, y, z)T∈SP, we first transform it into a world 
coordinate system. In the world coordinate system, 
XY plane is parallel to the ground, Y axis is pointing 
forward and Z axis is pointing upward. Then we as-
sign it to the corresponding grid cell of the DEM 
according to x and y coordinates of the 3D point. 
Since the 3D structure set is nearly free of outliers, we 
simply assign the height of the grid cell in DEM as the 
point with the largest z coordinate in this cell.  
 
 
EXPERIMENTAL RESULTS 
 
Algorithm effectiveness verification 

In order to verify the effectiveness of the main 
part of our algorithm and show the indoor experi-
mental result, we choose the Dinosaur sequence 
which can be downloaded from the website (Visual 
Geometry Group, http://www.robots.ox.ac.uk/~vgg/ 
data.html). This sequence includes 36 images. The 
resolution is 720×576. The camera is set in front of a 
turntable. The Dinosaur model is put at the center of 
the turntable. The camera takes one image after the 
turntable rotates 10°. The locus of the camera is just 
on a circle around the Dinosaur model. Figs.3a and 3b 
show the 1st and 18th frames of the sequence, re-
spectively. Because the 2D feature points in each 
frame are provided and the camera intrinsic parame-
ters matrix can be calculated from the projection ma-
trix which is also provided in this website by QR 
factorization, we apply these feature points data di-
rectly to the algorithm. Figs.3c and 3d are bird’s eye 
view and side view of the scene reconstruction results, 
respectively. The white cones stand for the poses and 

locations of the camera in each image. From the fig-
ure we can conclude that the locus of the camera is 
nearly on the circle, and the reconstruction result is 
faithful. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In order to provide quantitative analysis results, 
we need the actual locations of the camera. Monocu-
lar vision based SLAM can only reconstruct the 
structure of the environment and estimate the loca-
tions of the camera up to a scale. We fit a circle over 
the estimated locations of the camera by the least 
square method. The true positions of the camera are 
spread on the circle evenly. We analyze the errors of 
positions and poses of the camera separately, and the 
results are shown in Figs.4a and 4b, respectively. 
Since the absolute error for the position is meaning-
less, the relative error (the absolute error divided by 
the distance traveled by the camera) is analyzed. 

From Fig.4, it can be seen that the performances 
of the two algorithms are comparable. The maximum 
localization error of our method is less than 0.9% with 
the maximum angular error of our method being less 
than 1.6°. The computation time of our algorithm is 
55.3 s, and the traditional method takes 147.4 s. So we 
find a balance between quality and speed. 
 
Short distance experimental results 

In this subsection we capture images in a planet 
like terrain test lab with Bumblebee2 digital camera. 
The FOV of the camera is about 70°, and the resolu-

Fig.3  Dinosaur sequence: (a) The 1st frame; (b) The
18th frame. Reconstruction results: (c) Bird’s eye view;
(d) Side view 

(a)                                         (b) 

(c)                                         (d) 
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tion is 640×480. The camera is equipped on a proto-
type planet rover with IMU. The pose of the camera 
relative to the world coordinate can be measured 
beforehand. The result is generated by the whole 
algorithm proposed in this paper automatically 
without any human intervention. The whole sequence 
contains 22 images. Figs.5a and 5b show two of them. 
Figs.5c~5e are scene reconstruction results from dif-
ferent views. Fig.5f is the DEM of the scene. The grid 
size of the DEM is 0.1 m×0.1 m. From DEM, five 
rocks can be detected easily. Since the distance trav-
eled is about 2.1 m, IMU can provide reliable esti-
mations in this short distance. We compare localiza-
tion errors of our method with IMU results. The scale 
in our method is determined according to the distance 
traveled between the first two images. It is provided 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

by IMU. The starting point of our result is aligned 
with that of IMU. Fig.5g is the plot of the localization 
errors in every image. From the plot we can find that 
the localization error is less than 0.1 m at the end of 
the sequence, which is quite small compared with the 
traveling distance. 
 
Outdoor experimental results 

We use the consumer grade digital camera 
Canon A630 which is equipped on a tripod. We cap-
ture three image sequences. The FOV of the camera is 
about 53°, and the resolution is 640×480. The pose of 
the camera relative to the world coordinate can be 
measured beforehand by inclinometer. All the results 
are generated by the whole algorithm proposed in this 
paper automatically without any human intervention. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5  Short distance experimental results. (a) The 2nd image of the image sequence; (b) The 20th image of the
image sequence; (c)~(e) 3D scene reconstruction results in three different views; (f) DEM of the scene; (g) Lo-
calization errors of every image compared with IMU results 

(a)                                         (b)                                          (c)                                         (d) 

(e)                                              (f)                                                          (g) 
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In all the sequences, the optical axis of the camera is 
nearly along with the direction of the motion. The 
camera is a little bit pointing down. The scale in our 
method is determined according to the whole dis-
tances traveled in each sequence. 

Fig.6a shows the overview of the whole envi-
ronment in the first sequence. A person walked along 
the direction shown by black arrow and went back to 
the starting point. Figs.6b and 6c are sample images in 
the sequence. Figs.6d~6f are three different views of 
the scene reconstruction results. Fig.6g is the DEM of 
the scene. The grid size of the DEM is 0.3 m×0.3 m. 
The approximate traveled distance of this sequence is 
32 m, which is measured by tapeline. The success of 
this sequence validates the correctness of our algo-
rithm. 

Since we cannot get the actual structure of the 
environment and the positions/poses of every image, 
we introduce the loop closure error for quantitative 
analysis. We assume that there are totally N images. 
posi (i=1, 2, …,N) is the position of the camera in the 
ith image. The loop closure error is defined as: 
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The smaller the loop closure error is, the better 
the starting point meets the end point. The quantita-
tive results are shown in Table 1. 

Fig.7 shows the result of the second image se-
quence. This sequence is much longer than the first 
one and was taken in hilly terrain. This sequence 
includes lawn and bypath with different elevations. It 
also contains several sharp turns which are quite 
challenging. Fig.7a shows the overview of the whole 
environment. Figs.7b and 7c are sample images in the 
sequence. Figs.7d~7f are three different views of the 
scene reconstruction results. From these figures we 
can clearly find that we are going up and down the 
hills and turning sharply. Fig.7g is a snapshot from 
Google EarthTM. The bright line with dark dots is our 
approximate path to capture this sequence. The ruler 
tool of Google EarthTM is used and it shows that the 
distance of our trajectory is about 195 m. Fig.7h is the 
DEM of the scene. The grid size of the DEM is 
0.5 m×0.5 m. The DEM also clearly proves the hilly 
terrain. The success of this sequence shows that our 
algorithm is suitable for different kinds of terrains 
with variety of motions. The quantitative results are 
shown in Table 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sequence index Loop closure error (%) Traveled distance (m) Total image number Number of 3D points in 
scene structure 

1 0.98 032 0196 041 252 
2 2.62 195 0564 063 493 
3 3.34 360 1105 133 506 

Table 1  Quantitative analysis of the three image sequences 

Fig.6  Experimental results of the 1st sequence. (a) Overview of the environment; (b)~(c) Two sample images 
in the sequence; (d)~(f) 3D scene reconstruction results in three different views; (g) DEM of the scene 
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Fig.8 shows the result of the third image se-
quence. This sequence is even longer and was taken in 
a narrowly paved path. Figs.8a and 8b are sample 
images in the sequence. Figs.8c~8e are three different 
views of the scene reconstruction results. Fig.8f is a 
snapshot from Google EarthTM. The bright line with 
dark dots is our approximate path to capture this se-
quence. The distance of our trajectory is about 360 m. 
Fig.8g is the DEM of the scene. The grid size of the 
DEM is 0.5 m×0.5 m. The success of this sequence 
shows the robustness of our algorithm. The quantita-
tive results are shown in Table 1. 

From Table 1 we can find that the loop closure 
error is quite small and comparable to the method 
proposed by Nister et al.(2004) with stereo vision 
system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Analysis on computational cost 
The main framework of our algorithm is ac-

complished in Matlab, while the robust adaptive 
bundle adjustment is written in C for high efficiency. 
The platform for testing the algorithm is P4 2.8 GHz 
with 1 GB RAM running Windows XP. We first cap-
tured image sequences by digital camera, and then 
downloaded data to the computer and tested the al-
gorithm off-line. The image sequence is read sequen-
tially to simulate the image capturing procedure. SIFT 
feature tracking takes more than 75% of the time. For 
example, in Sequence 2, the total computation time is 
6492 s. SIFT takes about 4913 s. We only analyzed 
the time used for the second sequence without con-
sidering the time for SIFT feature matching. The 
result is shown in Fig.9. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.8  Experimental results of the 3rd sequence. (a)~(b) Two sample images in the sequence; (c)~(e) 3D scene
reconstruction results in three different views; (f) Snapshot from Google EarthTM. It shows that our path is
about 360 m; (g) DEM of the scene 
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Fig.7  Experimental results of the 2nd sequence. (a) Overview of the environment; (b)~(c) Two sample images 
in the sequence; (d)~(f) 3D scene reconstruction results in three different views; (g) Snapshot from Google 
EarthTM. It shows that our path is about 194.85 m; (h) DEM of the scene 
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From Fig.9 we can find that, when the number 

of images is below 20, the computation time grows 
rapidly. This proves that the computational cost is 
very high for traditional bundle adjustment if the 
sequence is long. On the other hand, when the 
number of images is greater than 20, the computation 
time of our proposed algorithm does not grow rapidly. 
At first they are around 2 s per image. Gradually, 
since 3D points become more and the outliers filter-
ing stage takes longer time, there are some frames 
near the 350th frame which take extremely long time. 
This is caused by a huge amount of 3D points in-
cluded in the optimization procedure. Generally 
speaking, the computation time of our algorithm does 
not grow so rapidly with the increasing of the image 
frames. The computation is greatly accelerated. We 
find the balance between quality and speed. 
 
 
CONCLUSION 
 

This paper proposes a simultaneous environ-
ment reconstruction and localization algorithm based 
on monocular vision and image sequence. We pro-
pose a robust camera pose and location estimation 
method. We use robust adaptive bundle adjustment 
so that the computation is accelerated and the recon-
struction and localization quality is still good. Indoor 
and outdoor experimental results show that our al-
gorithm can provide accurate 3D environment map 
and positions/poses of the camera. It is suitable for 
low speed planet rover which cannot use LADAR 
such as lunar rover and Mars rover. In the future, we 
prepare to use the SURF feature tracker (Bay et al., 
2006) instead of SIFT for higher speed. 
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