
Bei et al. / J Zhejiang Univ Sci A 2008 9(6):744-757 744

Bottom-up mining of XML query patterns to improve
XML querying*

Yi-jun BEI†, Gang CHEN, Jin-xiang DONG, Ke CHEN

(School of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China)

†E-mail: alphabyj@yahoo.com.cn
Received Oct. 16, 2007; revision accepted Jan. 28, 2008; published online May 9, 2008

Abstract: Querying XML data is a computationally expensive process due to the complex nature of both the XML data and the
XML queries. In this paper we propose an approach to expedite XML query processing by caching the results of frequent queries.
We discover frequent query patterns from user-issued queries using an efficient bottom-up mining approach called VBUXMiner.
VBUXMiner consists of two main steps. First, all queries are merged into a summary structure named “compressed global tree
guide” (CGTG). Second, a bottom-up traversal scheme based on the CGTG is employed to generate frequent query patterns. We
use the frequent query patterns in a cache mechanism to improve the XML query performance. Experimental results show that our
proposed mining approach outperforms the previous mining algorithms for XML queries, such as XQPMinerTID and FastXMiner,
and that by caching the results of frequent query patterns, XML query performance can be dramatically improved.

Key words: XML querying, XML mining, Caching, Data mining
doi:10.1631/jzus.A071551 Document code: A CLC number: TP311.13

INTRODUCTION

In recent years, XML data have become ubiq-
uitous with the rapid increment in both the number
and scale of applications such as XML database sys-
tems, business transactions, XML middleware sys-
tems, and so on. Efficient querying techniques of
XML data have become an important topic for the
database community. Building an index of XML data
(Al-Khalifa et al., 2002; Kim et al., 2006; Seo et al.,
2007) has been regarded as an effective way to ac-
celerate retrieval of XML data. However, an indexing
mechanism may have certain drawbacks: first, it is
often neither possible nor desirable to maintain an
entire index in the primary storage; secondly, an in-
dexing mechanism may still incur unnecessary
computation for repeated or similar queries. To ad-

dress these problems, caching techniques have been
considered to improve the performance of XML
query processing. When a query cache is deployed,
users can obtain the answer right away if the query
result has already been computed and cached. To date,
there have been several reports on the caching tech-
niques of XML queries (Chen et al., 2002; 2005;
Yang et al., 2003a; Hong and Kang, 2005).

To cache the results of useful queries, one of the
most effective approaches is to discover frequent
query patterns from the user queries, as the frequent
query patterns usually contain a wealth of information
about user queries. Basically, if we model each XML
query as a tree, just like some of the previous works
(Yang et al., 2003a; Paik and Kim, 2006; Gu et al.,
2007), the frequent query pattern mining problem is
converted to the problem of finding a set of subtrees
that occur frequently over a set of trees (or queries).

For the sake of efficiency in discovering frequent
query subtrees, we present an algorithm called
VBUXMiner which employs a bottom-up enumerat-
ing method and prunes unsatisfied patterns as early as

Journal of Zhejiang University SCIENCE A
ISSN 1673-565X (Print); ISSN 1862-1775 (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

* Project supported by the National Natural Science Foundation of
China (No. 60603044), the National Key Technologies Supporting
Program of China during the 11th Five-Year Plan Period (No.
2006BAH02A03), and the Program for Changjiang Scholars and
Innovative Research Team in University of China (No. IRT0652)

Bei et al. / J Zhejiang Univ Sci A 2008 9(6):744-757 745

possible. We introduce a novel data structure called
the “compressed global tree guide” (CGTG) to ac-
celerate candidate generation and infrequent subtree
pruning. We firstly remove all infrequent nodes from
the global tree guide before candidate enumeration,
and then generate candidates within each prefix
equivalence class. Unlike the previous algorithms
such as XQPMiner, XQPMinerTID and FastXMiner
(Yang et al., 2003a; 2003b), which employ a right-
most branch expansion enumeration approach to
generate candidates from top to bottom, we perform
an efficient bottom-up candidate generation process
instead. Moreover, when computing the support of
each subtree, previous methods have no guarantee of
the minimum number of scans on the data set,
whereas in our approach we no longer need to scan
the data set, as the support of the subtrees can be
easily computed from the CGTG. Like in the mining
algorithms XQPMiner, XQPMinerTID and FastX-
Miner, we do not consider XML queries that contain
sibling repetitions either. Experimental results on
public data sets show that our proposed mining algo-
rithm is more efficient compared to previous works.
The experiments also indicate that the caching
mechanism exploiting the mining results is effective in
improving the query response time, and it outperforms
the traditional LRU (least recently used) and MRU
(most recently used) caching policies significantly.

The rest of the paper is organized as follows. In
Section 2 we discuss previous works related to query
pattern mining approaches and XML caching. In
Section 3, we discuss some concepts used in our
mining approach. We propose the bottom-up XML
subtree mining algorithm VBUXMiner in Section 4.
In Section 5 we show how our mining approach is
applied to cache the results of XML queries. Section 6
presents the results of the experiments and Section 7
concludes the paper.

RELATED WORKS

In this section, we shall review some related

works, including papers on tree mining, XML query
mining, and caching techniques for XML queries.

Recently, tree-like structure mining has attracted
a lot of attention. Basically, there are two main steps
for generating frequent trees. First of all, a systematic

method should be conceived for generating
non-redundant candidate trees. Secondly, an efficient
method is needed to compute the support of each
candidate tree and determine whether a tree is fre-
quent. In any case, a straightforward generate-and-
test strategy is adopted. Various algorithms have been
provided to mine different forms of tree structures
such as rooted ordered tree, rooted unordered tree,
free tree, etc. Asai et al.(2002; 2003) present the
rooted ordered and rooted unordered tree mining
approaches. Zaki (2002; 2005) gives ordered and
unordered embedded tree mining algorithms. Chi et al.
(2003; 2004) bring forward approaches to rooted
unordered and free trees mining. Unlike previous
approaches, Chehreghani et al.(2007) do not employ
the apriori-based approach, but present a top-down
approach for mining all maximal, labeled, unordered,
and embedded subtrees from a tree-structured data-
base. However, these mining approaches mainly deal
with general trees. They do not take schema infor-
mation into consideration when dealing with special
trees like XML query pattern trees.

Many approaches have been proposed to dis-
cover information from XML documents or XML
queries (Yang et al., 2003a; 2003b; Paik and Kim,
2006; Nayak and Iryadi, 2006; Gu et al., 2007; Bei et
al., 2007; Kutty et al., 2007). The closest works to
ours, which find frequent rooted query patterns from a
set of XML queries, are the algorithms XQPMiner,
XQPMinerTID, FastXMiner presented in (Yang et al.,
2003a; 2003b). XQPMiner and XQPMinerTID ex-
ploit schema information to guide the enumeration of
candidates and employ a rightmost branch expansion
enumeration to generate candidates from top to bot-
tom. When computing the frequency of candidates,
XQPMiner scans the data set for each candidate,
while XQPMinerTID scans the data set only when
expansion happens on the leaf node. As a result,
XQPMinerTID outperforms XQPMiner due to fewer
data set scans. FastXMiner also generates candidate
trees with the help of schema information. However,
it is more efficient since it needs data set scans only
when the candidate tree is a single branch tree. The
support of a non-single branch tree can be computed
by joining the ID lists of its proper rooted subtrees.
Bei et al.(2007) develope the algorithm BUXMiner to
mine rooted XML query patterns using a bottom-up
approach. BUXMiner enumerates candidate trees

Bei et al. / J Zhejiang Univ Sci A 2008 9(6):744-757 746

from bottom to top based on a compact global tree
guide. All infrequent nodes are pruned to accelerate
tree enumeration. The support of a candidate tree is
computed without scanning the database as it is cal-
culated directly from the global tree guide.

Caching results of XML queries has been con-
sidered a useful strategy to improve performance of
XML query processing. XCache (Chen et al., 2002) is
a holistic XQuery-based semantic caching system.
Mining approaches for finding frequent queries are
also incorporated into caching (Yang et al., 2003a;
Chen et al., 2005). Yang et al.(2003a) employ
FastXMiner to discover frequent XML query patterns
and demonstrate how the frequent patterns can be
used to improve caching performance. Chen et al.
(2005) take into account temporal features of queries
for frequent queries discovery and design an appro-
priate cache replacement strategy by finding both
positive and negative association rules. Hong and
Kang (2005) integrate heterogeneous data sources on
the Web and cache results of queries through XML
views of data sources to accelerate query processing.

PRELIMINARY CONCEPTS

Frequent rooted query pattern tree
Definition 1 (Query pattern tree, QPT) An XML
query can be modeled as a query pattern tree
QPT=<R, N, E>, where R is the root node, N is the
node set, and E is the edge set. Each node n has a label
whose value is in {“*”, “//”}∪labelSet where the
labelSet is the label set of all elements and attributes.
For each edge e=(n1, n2), node n1 is the parent of n2.
Definition 2 (Query pattern subtree, QPS) Given
two query pattern trees T and S, S is considered to be a
query pattern subtree of T iff there exists a one-to-one
mapping φ: VS→VT satisfying the following condi-
tions: (1) φ preserves the labels, i.e., L(v)=L(φ(v))
∀v∈VS; (2) φ preserves the parent relation, i.e.,
(u,v)∈ES iff (φ(u), φ(v))∈ET.
Definition 3 (Rooted query pattern subtree, RQPS)
Given two query pattern trees T and S, we say that S is
a rooted query pattern subtree of T iff S is a query
pattern subtree of T and the trees S and T have the
same root label.
Definition 4 (Query database tree, QDT) An XML
query database, which is a collection of XML queries,

can be represented as QDT=<T, R, Q, Φ>, where T is
a tree whose root is R; Q is the set of query pattern
trees {q1, q2, …, qn}; R is the virtual root node of the
tree with a special label not belonging to labelSet; Φ:
V→Q is a query mapping function from all children
of the root R to the trees Q, where V represents the set
of all children of the root R. For a complete tree with
the root node being the ith node of vi∈V, we have
Φ(vi)=qi.
Definition 5 (Frequent rooted query pattern tree,
FRQPT) Let D denote all the query pattern trees of
the issued queries and dT be an indicator variable with
dT(S)=1 if the query pattern tree S is a rooted query
pattern subtree of T and dT(S)=0 if tree S is not. The
support of query pattern tree S in D can be defined as
σ(S)=∑T∈DdT(S)/∑T∈D, i.e., the percentage of the
number of trees in D that contain tree S. A rooted
query pattern tree is frequent if its support is more
than, or equal to, a user-specified minimum support,
defined as minsupp.

With the help of the QDT, we can transform the
problem of discovering FRQPTs from the original
query database into the problem of discovering
FRQPTs over the QDT. Let nT(S) denote the number
of occurrences of the rooted subtree S in a tree T.
Then the support of a rooted query pattern tree S can
be defined as σ(S)=nQDT(S)/|Q|. In this way, we can
deal with query pattern trees with different root nodes,
and discover frequent query pattern trees while only
considering the rooted query pattern subtrees. After
finding all the FRQPTs over the QDT, the frequent
query patterns are obtained by simply removing the
virtual root of each FRQPT. Fig.1 shows a query
database tree composed of five XML queries. Given
the minimum support 0.6, we can obtain six FRQPTs.

Compressed global tree guide

For each user issued QPT, we assign a unique ID,
denoted as QPT.ID, which will be used for the con-
struction of a global tree guide in the mining process.
Definition 6 (Global tree guide, GTG) We merge all
issued queries over the query database tree to create a
global tree guide, where the ID list of each node
represents the queries containing the path from the
root to the current node. Fig.2 shows a GTG con-
structed using 15 query pattern trees. The QPT list for
node “Java” indicates that there are six queries that
contain the path “R/order/items/book/title/Java”.

Bei et al. / J Zhejiang Univ Sci A 2008 9(6):744-757 747

To handle labels like wildcard “*” and descendant
path “//”, we combine the special label and the fol-
lowing label to produce a new label. For example, a
single path tree “R/items//_Java” in the GTG will be
considered a single path tree with nodes “R”, “items”
and “//_Java”.

For simplicity, we denote a subtree rooted at the
root node of the GTG as RT, and a single path starting
at the root node as SRT.
Definition 7 (Frequent node) The support of the
node in the GTG is defined as the ratio of the number
of QPTs that contain the path from the root to the
current node, namely the size of QPT list, to the
number of all QPTs. For example, the support of node
“Java” is 3/15=0.2. A node in the GTG is frequent if
its support is no less than the minimum support.
Lemma 1 The support of the node is no less than the
support of its descendant node.
Proof A descendant node can be reached only
through its ancestor in a QPT. If a QPT contains the
path from the root to the descendant node, then it must

contain the path from the root to the ancestor node.
Therefore, the support of the ancestor is no less than
that of the descendant.
Lemma 2 If a node is infrequent in the GTG, then
an RT including it will not be a frequent rooted tree.
Proof Since the support of an RT will be no more
than the support of a node in the RT, an RT will be
infrequent if an included node is infrequent.
Lemma 3 If a node is frequent in the GTG, an SRT
including it as the leaf node must be a frequent tree.
Proof As the support of an SRT equals the support
of the leaf node, an SRT will be frequent if the node is
frequent.

Assume the minimum support is 0.2. In Fig.2 the
node “Internet” is infrequent, and the RT “R/order/
items/book/title/Internet” is also infrequent. The node
“XML” is a frequent node, and thus the SRT
“R/order/items/book/title/XML” is also frequent.

If a node is infrequent, then all its descendant
nodes are infrequent as well, due to the lesser support
of the descendant nodes. As a result, we prune all the

order

year person items

book CD

2007 2006

 [1, 2, 3, 4, 5, 6, 7, 8, 9]

Java XML C++ Internet My Love Ballads

Jane John
[2, 8]

//_Java

title title[1, 2, 3, 5, 6] [4, 8, 10]

[1, 2, 3, 4, 5, 9] [1, 2, 6, 7]

 [1, 2, 3, 4, 5, 6, 8, 10]

 [1, 2, 3, 5, 7] [8]

 [15]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

[1, 5, 9] [1, 3, 5, 7, 9]

[1, 3, 5, 7, 9]

[1, 3, 5, 7, 9]

 [1, 2, 3, 4, 5, 6, 7, 8, 9]

R

person
items

book CD

Java C++ My Love Ballads

title title

 [11, 13, 14] [14] [11] [12, 13]

[11, 12, 13]

 [11, 12, 13, 14, 15]

[11, 13, 14]

[11, 12, 13][11, 13, 14]

Jane
 [10]

 [10]

 [1, 3, 5, 6]

 [1, 2, 3, 5, 6, 8]

Fig.2 Global tree guide constructed using 15 query pattern trees from the orders

R

A

B C E

A

A B C

B

C D

C

A D E

C B B

q1 q2 q3 q5

A

B C

B

q4

R

A
R

A

B

R

A

C

R
A

B C

A A

B

A

C

A

B C
D

C C

R

A

B C

C

A

B C

C

R

A

B

A

B

C

C

Fig.1 (a) Query database tree (QDT); (b) Frequent rooted query pattern tree (FRQPT)
(a) (b)

Bei et al. / J Zhejiang Univ Sci A 2008 9(6):744-757 748

infrequent nodes in the GTG before candidate enu-
meration, using a top-down traversal. We traverse the
GTG starting at the root level by level and prune
infrequent nodes along with all its descendants once
we find an infrequent node. For instance, in Fig.2, the
second child node of the root as well as its descen-
dants is pruned, since it is an infrequent node.

Furthermore, to save memory space, the node
and its child node are compressed into a single node
with the following satisfaction: (1) the parent node
has only one child; (2) the parent node and the child
node have the same ID list of QPTs. For example, in
Fig.2 we compress the node “book” and its child node
“title” into a single node “book/title”.
Definition 8 (Compressed global tree guide, CGTG)
Employing the infrequent node pruning scheme and
node compressing scheme, we reduce the GTG into a
CGTG. Fig.3 presents a CGTG transformed from the
GTG in Fig.2 with the minimum support 0.2.
Lemma 4 If a tree S in the CGTG is frequent, then
the tree constructed by adding the parent node of the
root of the tree S is also frequent.
Proof Suppose the node n is the parent of the root of
the frequent tree S. Then n must be the ancestor of all
the nodes in the tree S. Thus any query pattern tree
containing the nodes in tree S must also contain the
node n according to our construction of the CGTG.
Because the new tree only has one direct subtree, the
support of the new tree generated from its direct sub-
tree S by adding the new root n is equal to the support
of tree S. Thus the new tree is a frequent tree due to
the frequency of S.

QUERY PATTERN TREE MINING

In this section, we present a bottom-up mining

algorithm VBUXMiner for discovering frequent
rooted query pattern trees from user queries.

Overview of VBUXMiner

VBUXMiner performs a bottom-up process to
generate frequent rooted query pattern trees over the
CGTG. To generate frequent query pattern trees
rooted at node n in the CGTG, we will have to gen-
erate all frequent query pattern trees rooted firstly at
the children of n, and then merge these frequent trees.
Algorithm 1 shows the high level structure of
VBUXMiner. We first scan all query pattern trees to
construct a GTG and create a CGTG based on the
GTG by means of pruning and compression. And then
we use the root node of the CGTG as an input to re-
cursive generation of frequent rooted query patterns
from bottom to top over the CGTG. Finally, we re-
move the virtual node of the discovered frequent
pattern trees to obtain the final result.

Algorithm 1 VBUXMiner(D, minsupp)

Input: A set of query pattern trees; specified minimum
support

Output: A set of frequent query pattern trees FRTS
1 GTG=ConstructGTG(D);
2 CGTG=CompressGTG(GTG, minsupp);
3 root=root node of CGTG;
4 FRTS=GenerateFrequentRT(root, minsupp);
5 Remove virtual roots of each discovered tree in FRTS;
6 return FRTS

Fig.3 The global tree guide in Fig.2 is compressed employing the infrequent node pruning scheme and the node
compressing scheme

order

year person
items

book/title
CD/title

2007

 [1, 2, 3, 4, 5, 6, 7, 8, 9]

Java XML C++ My Love Ballads

Jane John
[1, 2, 3, 5, 6] [4, 8, 10]

[1, 2, 3, 4, 5, 9] [1, 2, 6, 7]

 [1, 2, 3, 4, 5, 6, 8, 10]

 [1, 2, 3, 5, 7]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

[1, 5, 9] [1, 3, 5, 7, 9]

[1, 3, 5, 7, 9]

 [1, 2, 3, 4, 5, 6, 7, 8, 9]

R

items

book/title/Java CD/title
[11, 12, 13]

 [11, 12,13, 14, 15]

[11, 13, 14]

 [1, 2, 3, 5, 6, 8]

 [1, 3, 5, 6]

Bei et al. / J Zhejiang Univ Sci A 2008 9(6):744-757 749

CGTG construction
Construction of the CGTG consists of two steps.

We first scan the issued queries and generate a GTG,
and then apply the node pruning and node compres-
sion to the previously generated GTG. When scanning
queries, a bread-first traversal is adopted on each
query. We traverse each query level by level from top
down. For each visited node, we check to see if a node
exists in the GTG with the same path as the currently
visited node. If one exists, we simply add the ID of the
query into the node in the GTG. Otherwise, we ap-
pend a new child to the node in the GTG which has
the same path to the parent node of the visited node,
and we add the query ID into the new node. To prune
infrequent nodes and compress nodes, we adopt a
depth-first traversal on the GTG. For each node in the
GTG, we check if it is frequent according to its ID list.
If it is not, then we will remove the current node as
well as all its descendant nodes. Otherwise we will
traverse down to check its child nodes. A node with-
out sibling that has the same ID list as its parent node
will be compressed by appending its label to its parent
node.

Frequent query pattern tree generation
Definition 9 (Query pattern tree encoding) A string
encoding scheme introduced by Luccio et al.(2001) is
adopted to represent query pattern trees, which is
more space-efficient and is simpler to manipulate
(Zaki, 2002). The string encoding of a query pattern
tree is obtained by traversing the tree in a depth-first
order. Following the order of traversal, we record in
the string the label for each node. Whenever a back-
tracking occurs from a child to its parent, a distin-
guished label (−1 is used here) is appended to the
string. For example, the tree CPT in Fig.4 can be
encoded as a string “items, book, title, Java, −1, XML,
−1, −1, −1, −1”.

Definition 10 (Prefix equivalence class) We say that
a number of query pattern trees are in the same prefix
equivalence class, if they share a common prefix tree
in the CGTG. Formally, let X, Y be two query pattern
trees, and let function p(X, k) return the prefix tree up
to the kth node. Then X, Y are in the prefix equiva-
lence class iff there exists a k such that p(X, k)=p(Y, k).
For example, trees QPT1, QPT2, QPT3 in Fig.4 have
the same prefix tree CPT. We say they are in a same
equivalence class with the prefix tree CPT. Using the
previous tree encoding scheme, we can obtain any
two members of an equivalence class having the same
prefix string which represents the prefix tree. If the
prefix tree is represented as a string “Labels, −1”, then
trees in the equivalence class must have the prefix
“Labels”. By employing tree encoding, we can easily
determine whether query pattern trees are in the same
equivalence class. As QPT1, QPT2, QPT3 have the
same prefix string encoding “items, book, title, Java,
−1, XML, −1, −1, −1”, they belong to the same
equivalence class.

Frequent query pattern trees rooted at a given
node are composed of three parts: (1) the root node
itself; (2) the root node appended by the frequent
query pattern trees rooted at its child nodes; (3) fre-
quent query pattern trees generated by merging the
frequent ones in part (2). In Algorithm 2 we show the
algorithm for generating all the three parts of the
frequent rooted trees at a given root node over the
CGTG.

First of all, we consider the tree with only the
root node as a frequent query pattern tree (Lines 1~2).
This is because we perform the searching process in a
CGTG which has pruned all infrequent nodes.

We generate all frequent rooted query pattern
trees at the children (Lines 8~14). According to
Lemma 4, the trees are frequent which are generated

Fig.4 Three query pattern trees having the common prefix tree are in the same equivalence class

items

book/title

CD/title

XMLJava

items

book/title

CD/title

XML My LoveJava
items, book, title,

Java, -1, XML, -1, -1,
-1, CD, title, -1, -1, -1

items, book, title, Java, -1,
XML, -1, -1, -1, CD, title,

MyLove, -1, -1, -1, -1

book/title

XMLJava

items

CPT QPT1 QPT2

items, book, title, Java,
 -1, XML, -1, -1, -1, -1

items

book/title CD/title

XML My LoveJava
items, book, title, Java, -1, XML,
-1, -1, -1, CD, title, MyLove, -1,

Ballads, -1, -1, -1, -1

QPT3

Ballads

Bei et al. / J Zhejiang Univ Sci A 2008 9(6):744-757 750

Algorithm 2 GenerateFrequentRT(root, minsupp)

by adding the parent node to the frequent query pat-
tern trees rooted at its child nodes. In this way, the
frequent query pattern trees of part (2) can be ob-
tained. Frequent query pattern trees rooted at each
child are regarded as being in the same equivalence
class because they share the same prefix tree which is
the child node itself. Then by adding the root node,
we obtain new equivalence classes, with each prefix
tree being a combined tree of the root and its child.

Finally, we employ an equivalence class joining
strategy on the frequent trees generated at part (2)
(Lines 15~26). We join frequent rooted trees from
different equivalence classes to construct new can-
didates and determine whether they are frequent.
Assume the root node has n children and there exist n
equivalence classes from EQ1 to EQn. We pick up a
frequent query pattern tree FRT from EQi and join to

it all trees from EQi+1 to EQn. Through the joining of
FRT and all trees in the equivalence class EQ, we
generate a new equivalence class whose common
prefix tree is a combined tree of FRT and prefix tree
of EQ. After the joining of all frequent trees from
FRTSi+1 to FRTSn, we generate (n−i) equivalence
classes. Then we regard the (n−i) equivalence classes
as a new group and perform a next equivalence class
joining process. This process is repeated until there
remains only one equivalence class.

For example, consider the node labeled “items”
in Fig.3. As it has two frequent child nodes, there
exist two equivalence classes for each child. If we
pick up a frequent tree from the equivalence class of
the first child, and join it with the second equivalence
class, then we will obtain a new equivalence class. In
Fig.5, we show frequent subtrees from two equiva-
lence classes of its children and illustrate the joining
process. The leftmost tree is a frequent tree picked up
from the first equivalence class, while the trees in the
middle are all frequent trees in the second equivalence
class. Then by joining the above trees, we can obtain
four new trees in the same equivalence class with the
prefix tree combined with the left tree and the prefix
tree of the second equivalence class. As shown in
Fig.5, the tree in the virtual box is the prefix tree of
the new equivalence class. However, among all the
newly generated trees only two trees are frequent
according to the definition of a frequent query pattern
tree. Because there is only one equivalence class
through joining the leftmost frequent tree with all the
other equivalence classes, we finish the equivalence
class joining process for the current tree.

 Fig.5 A query pattern tree is joined with all the trees in

another equivalence class

book/title

Java C++

[1, 2, 3, 5]

CD/title

My Love

[1, 5, 9]

CD/title

Ballads

[1, 3, 5, 7, 9]

CD/title

My Love Ballads

[1, 5, 9]

CD/title
[1, 3, 5, 7, 9]

book/title

CD/title

Java C++

items [1, 3, 5]

Ballads

×

×

Infrequent

Infrequent

book/title
CD/title

Java
C++

items [1, 3, 5]+

Input: Root node of new generated frequent tree root;
specified minimum support

Output: A set of frequent query pattern trees FRTS rooted at
the root node

1 FRTroot.label=(root.label, −1);
FRTroot.IDList=root.IDList;

2 FRTS={FRTroot};
3 EQ=∅;
4 for (each child of root) do
5 FRTSchild=GenerateFrequentRT(child, minsupp);
6 EQ=EQ∪{FRTSchild};
7 for (each ChildSet in FRTSchild) do
8 for (each FRTchild in ChildSet) do
9 NewFRT.label=(root.label, FRTchild.label, −1);
10 NewFRT.IDList=FRTchild.IDList;
11 FRTS=FRTS∪{NewFRT};
12 end for
13 end for
14 end for
15 MergeList={EQ};
16 while (|MergeList|>0) do
17 EQ=MergeList[1];
18 MergeList=MergeList−EQ;
19 for (i=1 to |EQ|−1) do
20 for (j=i to |EQ|) do
21 NewEQ=EQi⊕EQj;
22 FRTS=FRTS∪NewEQ;
23 MergeList=MergeList∪{NewEQ};
24 end for
25 end for
26 end while
27 return FRTS

Bei et al. / J Zhejiang Univ Sci A 2008 9(6):744-757 751

Definition 11 (Tree joining) Given a prefix tree T1, a
suffix tree T2, and a common prefix tree CT of T1 and
T2, we join the two trees T1 and T2 and produce a new
tree with prefix T1. We denote the joining process as
T=T1∪CTT2. The ID list of the created tree is the result
of joining two ID lists of the trees. Suppose the CT is
represented as the string “CT_Labels, −1”. Then we
can denote T1 as “CT_Labels, T1_Follow_Labels, −1”
and T2 as “CT_Labels, T2_Follow_Labels, −1”. The
constructed tree is represented as “CT_Labels,
T1_Follow_Labels, T2_Follow_Labels, −1”. In Fig.6
we show the tree joining process, where the
CT_Labels is the string “order, year, 2007, −1, −1”,
T1_Follow_Labels is “person, Jane, −1, −1”, and
T2_Follow_Labels is “items, book, title, Java, −1,
C++, −1, −1, −1, −1”.

Definition 12 (Frequent decision) In order to decide
whether a new candidate tree is a frequent one, we
will have to calculate its support. However, to avoid
unnecessary computing, a pruning process is per-
formed before support computing. We prune the new
candidate k-size tree if it has infrequent (k−1)-size
rooted subtrees. Once the candidate passes the prun-
ing process, we then compute the support of the can-
didate tree using the ID list of QPTs. However, the ID
list of the new tree still can be computed quickly by
way of a merging based on the ascending order of
each recording ID list.

Definition 13 (Automatic ordering) If trees in an
equivalence class set EQ are ordered according to the
node order in CGTG, then trees in a new equivalence
class set NEQ, constructed by means of merging a
prefix tree with all trees in EQ, are still ordered in the
node order. This is because the tree merging process
does not change the node label order, and only ap-
pends a new prefix tree to all suffix trees. The new
frequent trees are inserted into the new equivalence
class according to the original order, which results in
an automatic ordering of the trees in each equivalence
class.
Definition 14 (Candidate pruning) As previously
described, before computing the support of a k-size
candidate tree, we carry out a pruning test to make
sure all its rooted subtrees are frequent. To improve
the mining efficiency, we only check whether its
(k−1)-subtrees are frequent. According to our candi-
date generation method, we ensure that all
(k−1)-subtrees have been enumerated before dealing
with the current tree. To perform the pruning step
efficiently, we add each frequent tree into a hash table
during the creation of frequent trees. The key of each
entry in the hash table is the string representation of
the tree. Thus it takes O(1) time to check for each
(k−1)-subtree.
Definition 15 (Space reducing) The main space
consumption is incurred by the ID list of QPT for each
frequent rooted tree. If a parent node has been com-
puted, then all frequent trees rooted at the child nodes
can be removed. In this way, the space consumption
of our algorithm is the whole CGTG plus the ID list
for frequent query pattern trees rooted at the current
node and its children.

QUERY PATTERN TREE CACHING

In this section, we present the technique of ap-
plying the frequent query pattern trees into XML
query caching. We mainly describe the query pattern
tree rewriting scheme for similar queries and the
cache replacement strategy. In Fig.7 we show the
framework of the frequent queries caching system,
which uses the proposed frequent query discovery
approach to accelerate the querying process.

year

Jane

order order

book/title

Java C++

year items

=

order

Java C++

year

2007

items

book/title

Jane

person

ID list: [1, 3, 5, 6] [1, 2, 3, 5]

 [1, 3, 5]

2007
2007

person

ID list:

ID list:

∪

Fig.6 Two trees with the same prefix tree are joined

Bei et al. / J Zhejiang Univ Sci A 2008 9(6):744-757 752

Query pattern tree rewriting

In most cases, queries issued by users are rarely
identical. However, there are usually a lot of simi-
larities in the issued queries. To take advantage of the
similar though not the same queries, a query rewriting
process is needed. This means when a user performs
querying, if we do not find a previous query which is
the same as the new one, we can obtain the most
similar query from the cache and rewrite the new
query according to the old one. In order to perform a
query rewriting process, there can be four relation-
ships between two similar query pattern trees as
shown in the following:

1. Exact matching. The QPT T1 exactly matches
the QPT T2 if T1 is a query pattern subtree of T2 and T2
is also a query pattern subtree of T1.

2. Exact containment. The QPT T1 exactly con-
tains tree T2 if T2 is a query pattern subtree of T1.

3. Semantic matching. We employ a similar idea
of “Extended Subtree Inclusion” (Yang et al., 2003b)
for the definition of “Semantic Matching”. Let T1 and
T2 be two query pattern trees with root nodes t1 and t2,
respectively. Denote by children(n) the set of child
nodes of n. We can recursively determine that T1
semantically matches T2 if t1 and t2 (t1≤t2) satisfy one
of the following three conditions:

(1) Both t1 and t2 are leaf nodes;
(2) t1 is a leaf node and t2=“//”, then ∃t2′∈

children(t2) we have a semantic match (T1, T2′);
(3) Both t1 and t2 are non-leaf nodes, and one of

the followings holds:
(i) ∀t1′∈children(t1), ∃t2′∈children(t2) we have a

semantic match (T1′, T2′);
(ii) t2=“//” and ∀t1′∈children(t1) we have the

semantic match (T1′, T2);
(iii) t2=“//” and ∃t2′∈children(t2) we have the

semantic match (T1, T2′).
4. Semantic containment. The QPT T1 semanti-

cally contains tree T2 if any query pattern subtree of
T1 semantically matches query patterns T2.

In Fig.8 we describe four query pattern tree re-
writing cases. In each case, the left query pattern tree
is an existing one, and the right query pattern tree is a
rewritten one. In Fig.8a, because two queries exactly
match each other, the result of the issued query can be
easily acquired from the cached query. In Fig.8b, the
new query exactly contains the old query, so the result
of the left query subtree can be obtained from the
cached query. We just need to compute the result of
the right subtree and merge the result with the query
result of the cached one. In Fig.8c, since the new
query semantically matches a cached query, we can
retrieve the result through two steps. Firstly, the result
of the semantically matched query is obtained. Sec-
ondly we compute the parent-child relationship of
nodes “book” and “title”, nodes “title” and “C++”
respectively instead of the original grandparent-
grandchild relationship of nodes “book” and “C++”.

By means of semantic matching, we reduce the
search space and only need to compute relationships
on different labels between queries. Fig.8d shows a
semantic containment case. Since the new query

Fig.8 Four relationships between two similar query
pattern trees in query pattern tree rewriting. (a) Exact
matching; (b) Exact containment; (c) Semantic match-
ing; (d) Semantic containment

items

order order

C++

itemsitems

2007

yearitems

C++

title

//

order

C++

title

//

order

year year

2007
2007

Cached New

C++

title

//

order

Cached

C++

title

//

order
New

T3

C++

title

book

C++

*

book

items

(a) (b)

(c)

NewCached

C++

*

book

items

order

title

book

order

year

New

(d)

2007

items

Cached

items

Fig.7 Framework of the XML query caching system

Querying Query rewriting

General
querying

Query matching

Caching Query pattern mining

Issuing
queries

Find similar
queries

Rewrite
 queries

Caching
queries

Discover
frequent
queries

Perform
querying

Perform querying

Bei et al. / J Zhejiang Univ Sci A 2008 9(6):744-757 753

semantically contains the cached one, the result of the
left query subtree can be obtained with the semantic
matching method. Then we calculate the right subtree
and merge results of the two subtrees to achieve the
final result.

Cache replacement

The results of cached queries are replaced be-
cause new frequent query pattern trees are discovered
and the old ones are replaced by the new ones. The
query pattern tree mining process is automatically
performed when the number of queries reaches the
predefined threshold. After the mining process, all
user queries are discarded. The next mining process
will not be launched until the number of issued que-
ries reaches the threshold again. The specified support
of the mining process is self-tuned to adapt to the
limited size of the cache pool. If too many frequent
patterns are found in the current mining process, the
support will be automatically increased to a larger
value by formula support=support*(1+support_in-
crease_ percent) so that fewer frequent query patterns
will be mined next time. On the contrary, if too few
frequent patterns are discovered, the support is de-
creased by formula support=support*(1−support_
decrease_percent).

After the mining process, new frequent queries
will be discovered and answers to some previous
queries need to be replaced. We keep track of the
following information for each frequent query pattern,
namely the recently used frequency, the support, and
the time discovered by an iteration of the mining
process, as measures for the replacement policy.
Among all the statistical data, the recently used fre-
quency is regarded as the most important factor for
cache replacement. The used frequency of query
patterns is divided into several levels. Query patterns
on the lower levels will be given more priority to be
selected as victims. The support and the discovered
time are only taken into consideration for cache re-
placement at the same frequency level. If the cache is
full, the replacement manager selects the query with
the least support and the latest discovered time to be
replaced. A query pattern with a larger support should
not be selected as a victim because it is contained in
more issued queries. To avoid unnecessary computa-
tion, a lazy-result-retrieval scheme is employed, i.e.,
the answer to a frequent query is not retrieved until
the query is really used.

EXPERIMENTS

In this section we evaluate both the performance
of our mining algorithm VBUXMiner and the XML
querying improvement by caching the frequent query
patterns mined with our algorithm. We first compare
VBUXMiner vs. previous algorithms XQPMinerTID
and FastXMiner. Then we investigate the effective-
ness of applying the mining algorithm in XML query
caching. All the mining algorithms, the prototypes of
the caching system, are implemented in Java language,
and the experiments are carried out on an Intel Xeon
2.0 GHz computer with 2 GB RAM running RedHat
Linux 9.0.

Query mining performance

To simulate XML queries, we employ the
XMARK.DTD (http://monetdb.cwi.nl/xml/) as the
DTDs and the DBLP.DTD (http://www.informatik.
uni-trier.de/~ley/db/) as the schemas to generate the
rooted query pattern trees. In order to produce more
general queries, we introduce some wildcard “*” and
descendant path “//” into the query pattern trees.
Three steps are used to create the data sets. First of all,
we translate the DTDs into DTD trees, adding four
“*” and four “//” into DBLP.DTD, and seven “*” and
seven “//” into XMARK.DTD. Secondly, we generate
two query databases, each containing 5 000 000 dif-
ferent queries from the two respective DTD trees.
Finally, we randomly select a number of queries
(ranging from 30 000 to 300 000) from the previous
step. As it is known that the FastXMiner and
XQPMinerTID algorithms can only be used to dis-
cover frequent rooted query pattern trees with the
same root node, we only compare the performance of
VBUXMiner to them on datasets with the same root
node, although VBUXMiner can also mine frequent
rooted query pattern trees with different root nodes.
Therefore, when generating the data sets we assume
that all query patterns in the same data set have the
same root node. In Table 1 we show the characteris-
tics of the data sets with a varying number of queries
from 30 000 to 300 000 for DBLP and XMARK.

When comparing the performance of the three
mining algorithms, namely VBUXMiner, FastX-
Miner and XQPMinerTID, we need to slightly modify
the second and the third algorithms for fair compari-
son. This is because VBUXMiner does not consider
semantic containment of wildcard and descendant

Bei et al. / J Zhejiang Univ Sci A 2008 9(6):744-757 754

path when generating frequent rooted query pattern
trees. However, the original XQPMinerTID and
FastXMiner algorithms both process the semantic
containment relationships. Therefore, we replace the
containment computation in the original code of these
two algorithms with a simplified version, which only
consists of an ordinary subtree inclusion determina-
tion process. Via such slight modification, we can
obtain the same frequent patterns from the three al-
gorithms.

Before the mining process, we assume that all
the QPTs are loaded into the main memory. Therefore,
all subsequent operations on the QPTs are performed
in memory, and there are no disk accesses when
scanning the data sets.

Fig.9 shows the performance results of
VBUXMiner vs. FastXMiner and XQPMinerTID
with a varying number of QPTs from 30 000 to
300 000. The specified minimum support is set to 1%.
From the experimental results, we find that VBUX-
Miner is about 20% faster than FastXMiner and
XQPMinerTID. Specifically, when the data set be-
comes larger, the improvement is also more obvious.
Two reasons may lead to the high efficiency of
VBUXMiner. First of all, infrequent nodes are pruned
using CGTG before candidate generation, which
results in less enumeration of candidates. This is in
consistency with our experimental results in Fig.10,
which demonstrates that the VBUXMiner algorithm
generates fewer candidates and thus incurs less
computation of the supports of query pattern trees
compared to the other two. Secondly, unlike
QPMinerTID and FastXMiner, VBUXMiner does not
require data set scans, which are needed to compute

the support of candidates when determining whether
the candidates are frequent. Although FastXMiner
and XQPMinerTID employ various optimization
schemes to reduce the need for data set scan, it cannot
be avoided in some special situations such as leaf
node expansion etc. Since we store the data sets in the
memory in our experiments, the cost of a data set scan
is significantly underestimated. Therefore, we expect
higher performance improvements in VBUXMiner in
a real disk-resident environment.

A similar result can be obtained from experi-
ments on various minimum supports. In Fig.11, we
make comparisons among the three algorithms with
varying supports from 0.2% to 2% on data sets with
150 000 QPTs. Just like previous results, VBUX-
Miner performs more efficiently than the other two
algorithms. The improvement is more obvious when
the support is low. This is because more candidates
need to be enumerated and the number of the support
computations of the candidates increases. Likewise,
we present the results of the number of enumerated
candidates with varying minimum supports in Fig.12.

Cache performance

We apply our mining algorithm in the caching
prototype system to improve querying performance.
We evaluate the performance of the caching scheme
using FRQPT, and compare it with traditional caching
policies LRU and MRU. The system accepts
tree-patterns as its queries, and obtains the results
using the structural join approach (Al-Khalifa et al.,
2002). When conducting experiments, we load the
XML data set into the memory and create indices for
XML data before querying.

Table 1 Characteristics of data sets for DBLP and XMARK with varying numbers of queries

DBLP XMARK Number of
queries
(×103)

Average
nodes

Max
nodes

Average
depth

Max
depth

Max
fanout

Average
nodes

Max
nodes

Average
depth

Max
depth

Max
fanout

30 11.95 14 4.77 6 8 10.18 12 4.99 9 11
60 11.94 13 4.76 7 8 10.17 12 4.98 10 11
90 11.96 14 4.77 7 8 10.17 11 4.99 9 11
120 11.94 12 4.76 6 8 10.18 13 4.99 10 11
150 11.95 13 4.77 7 8 10.17 13 4.98 9 11
180 11.95 14 4.77 6 8 10.18 12 4.98 9 11
210 11.95 13 4.76 6 8 10.18 11 4.98 9 11
240 11.94 12 4.77 7 8 10.17 12 4.99 9 11
270 11.95 13 4.76 6 8 10.18 13 4.99 9 11
300 11.96 14 4.76 6 8 10.18 12 4.99 10 11

Bei et al. / J Zhejiang Univ Sci A 2008 9(6):744-757 755

Fig.9 Response time with varying numbers of QPTs. (a) DBLP; (b) XMARK

Number of QPTs (×103)

(b)

20

40

60

80

100

R
es

po
ns

e
tim

e
(s

)

VBUXMiner
FastXMiner
XQPMinerTID

30 60 90 120 150 180 210 240 270 300
0

VBUXMiner
FastXMiner
XQPMinerTID

(a)

300

250

200

150

100

50

0

R
es

po
ns

e
tim

e
(s

)

Number of QPTs (×103)
30 60 90 120 150 180 210 240 270 300

Fig.10 Number of enumerated trees with varying numbers of QPTs. (a) DBLP; (b) XMARK

0
5

10
15
20
25
30
35
40
45

(b)

N
um

be
r o

f e
nu

m
er

at
ed

tre

es
 (×

10
3)

VBUXMiner FastXMiner XQPMinerTID

30 60 90 120 150 180 210 240 270 300
0

1

2

3

4

5

6

Number of QPTs (×103)

N
um

be
r o

f e
nu

m
er

at
ed

tre

es
 (×

10
3)

(a)

30 60 90 120 150 180 210 240 270 300
Number of QPTs (×103)

50 VBUXMiner FastXMiner XQPMinerTID

Fig.11 Response time with varying minimum supports. (a) DBLP; (b) XMARK
(b)

0
20
40
60
80

100
120
140

R
es

po
ns

e
tim

e
(s

)

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Minimum support (%)

 VBUXMiner
FastXMiner
 XQPMinerTID

(a)

0
50

100
150
200
250

R
es

po
ns

e
tim

e
(s

)

VBUXMiner
FastXMiner
XQPMinerTID

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Minimum support (%)

Fig.12 Number of enumerated trees with varying minimum supports. (a) DBLP; (b) XMARK

0

20

80

N
um

be
r o

f e
nu

m
er

at
ed

tre

es
 (×

10
3)

 VBUXMiner
 FastXMiner
 XQPMinerTID

(a)

60

40

(b)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

5

10

15

20

25

30

35

N
um

be
r o

f e
nu

m
er

at
ed

tre

es
 (×

10
3)

Minimum support (%)

VBUXMiner
FastXMiner
XQPMinerTID

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Minimum support (%)

100

Bei et al. / J Zhejiang Univ Sci A 2008 9(6):744-757 756

The data set we use is a 116-M XML document
generated by the XMARK tool. Queries are generated
randomly using the probabilities in Table 2. The
wildcard * and descendant path // are added to make
the generated queries more complex.

Fig.13a presents the average response time for

query processing with a fixed cache size of 100 que-
ries and varying numbers of queries from 20 000 to
200 000, where Q20k stands for 20 000 queries. The
initialized support of the mining procedure is set to
5% and the threshold number of mined queries is
1000 for the frequent queries caching policy. The
average response time is defined as the ratio of total
running time for answering a set of queries to the total
number of queries in this set. From the results we see
that FRQPT is more efficient compared to LRU and
MRU. This is because the LRU and MRU policies can
handle similar but not exactly the same queries.
Caching system employing FRQPT policy also has a

good scalability. The response time for querying does
not increase much when the number of queries varies
from 20 000 to 200 000. In Fig.13b we illustrate the hit
ratio of the caching system with a varying number of
queries. From these results we see that FRQPT policy
has the highest hit ratio.

In Fig.14 we show the average response time for
query processing and the hit ratio with varying sup-
port values from 0.01 to 0.1 for the data set Q100k.
The varying support does not influence the query
response time much. This is because we employ a
self-tuning scheme to automatically adjust the mining
support to be fit for the cache pool. The support may
be tuned to a stable value after a number of iterations
of the mining process.

CONCLUSION

In this paper, we present an efficient mining al-
gorithm called VBUXMiner to extract frequent
rooted query pattern trees from XML queries, and
apply the mining approach to a caching mechanism to
accelerate XML query processing. We mine frequent
query patterns over a query schema called “com-
pressed global tree guide” (CGTG), which prunes
infrequent nodes and employs a node compressing
scheme. We discover frequent query patterns from
bottom to top and generate tree candidates at each
node through the equivalence class joining process.
When deciding whether a candidate is frequent, we

Fig.14 Average response time (a) and hit ratio (b) for
varying initialized supports for FRQPT

0

20

40

60

80

100
(a)

R
es

po
ns

e
tim

e
(m

s)

0 2 4 6 8 10

1.0

0.8

0.6

0.4

0.2

0

(b)

H
it

ra
tio

Initialized support (%)

Table 2 Probabilities of tags
Tag Prob. Tag Prob. Tag Prob.

Site 1.0 Australia 0.2 Person 0.7
Regions 0.6 Item 0.7 Person/Name 0.8
People 0.8 Item/Name 0.4 Emailaddress 0.5
Africa 0.2 Incategory 0.3 Address 0.2
Europe 0.5 Quantity 0.2 * 0.1
Asia 0.5 Mailbox 0.1 // 0.2

Fig.13 Effective FRQPT caching policy. (a) Average
response time; (b) Hit ratio

20

40

60

80

100

(a)

R
es

po
ns

e
tim

e
(m

s)

(b)

0 40 80 120 160 200
0

0.2
0.4
0.6
0.8
1.0

H
it

ra
tio

Number of QPTs (×103)

FRQPT LRU MRU

Bei et al. / J Zhejiang Univ Sci A 2008 9(6):744-757 757

avoid a dataset scan since the support of each candi-
date tree can be computed by joining the QPT ID lists
recorded in the CGTG. To apply the mining approach
to XML query caching, we introduce four kinds of
query relationships and employ a query rewriting
process to deal with similar queries. Our experimental
results show that the proposed mining approach out-
performs previous mining algorithms XQPMinerTID
and FastXMiner in terms of efficiency. The caching
policy using our mining results outperforms the tra-
ditional LRU and MRU caching policies.

References
Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M.,

Srivastava, D., Wu, Y., 2002. Structural Joins: A Primitive
for Efficient XML Query Pattern Matching. Proc. 18th
ICDE, p.141-152. [doi:10.1109/ICDE.2002.994704]

Asai, T., Abe, K., Kawasoe, S., Arimura, H., Satamoto, H.,
Arikawa, S., 2002. Efficient Substructure Discovery from
Large Semi-structured Data. Proc. 2nd SIAM Int. Conf.
on Data Mining, p.158-174.

Asai, T., Arimura, H., Uno, T., Nakano, S., 2003. Discovering
Frequent Substructures in Large Unordered Trees. Proc.
6th Int. Conf. on Discovery Science, p.47-61. [doi:10.
1007/b14292]

Bei, Y.J., Chen, G., Dong, J.X., 2007. BUXMiner: An Efficient
Bottom-Up Approach to Mining XML Query Patterns.
Proc. APWEB/WAIM, p.709-720. [doi:10.1007/978-3-
540-72524-4_73]

Chehreghani, M.H., Rahgozar, M., Lucas, C., 2007. Mining
Maximal Embedded Unordered Tree Patterns. Proc. IEEE
Symp. on Computational Intelligence and Data Mining,
p.437-443. [doi:10.1109/CIDM.2007.368907]

Chen, L., Rundensteiner, E.A., Wang, S., 2002. XCache: A
Semantic Caching System for XML Queries. Proc. ACM
SIGMOD Int. Conf. on Management of Data, p.618.
[doi:10.1145/564691.564771]

Chen, L., Bhowmick, S.S., Chia, L.T., 2005. Mining Positive
and Negative Association Rules from XML Query Pat-
terns for Caching. Proc. 10th DASFAA, p.736-747.
[doi:10.1007/11408079_67]

Chi, Y., Yang, Y., Muntz, R.R., 2003. Indexing and Mining
Free Trees. Proc. 3rd ICDM, p.509-512. [doi:10.1109/
ICDM.2003.1250964]

Chi, Y., Yang, Y., Muntz, R.R., 2004. HybridTreeMiner: An
Efficient Algorihtm for Mining Frequent Rooted Trees
and Free Trees Using Canonical Forms. Proc. 16th Int.
Conf. on Scientific and Statistical Database Management,
p.11-20. [doi:10.1109/SSDBM.2004.41]

Gu, M.S., Hwang, J.H., Ryu, K.H., 2007. Frequent XML
Query Pattern Mining Based on FP-Tree. Proc. DEXA
Workshops, p.555-559. [doi:10.1109/DEXA.2007.78]

Hong, J.W., Kang, H., 2005. Data Integration and Cache-An-
swerability of Queries through XML View of Data Source
on the Web. Proc. IMSA, p.242-247.

Kim, Y., Park, S.H., Kim, T.S., Lee, J.H., Park, T.S., 2006. An
Efficient Index Scheme for XML Databases. Proc.
SOFSEM, p.370-378. [doi:10.1007/11611257_35]

Kutty, S., Nayak, R., Li, Y., 2007. PCITMiner-Prefix-Based
Closed Induced Tree Miner for Finding Closed Induced
Frequent Subtrees. Proc. 6th AusDM, p.151-160.

Luccio, F., Enriquez, A.M., Rieumont, P.O., Pagli, L., 2001.
Exact Rooted Subtree Matching in Sublinear Time.
Technical Report TR-01-14.

Nayak, R., Iryadi, W., 2006. XMine: A Methodology for
Mining XML Structure. Proc. APWeb, p.786-792. [doi:10.
1007/11610113_74]

Paik, J., Kim, U.M., 2006. A Simple Yet Efficient Approach
for Maximal Frequent Subtrees Extraction from a Col-
lection of XML Documents. Proc. WISE Workshops,
p.94-103. [doi:10.1007/11906070_9]

Seo, D.M., Yoo, J.S., Cho, K.H., 2007. An Efficient XML
Index Structure with Bottom-Up Query Processing. Proc.
ICCS, p.813-820. [doi:10.1007/ 978-3-540-72588-6_131]

Yang, L.H., Lee, M.L., Hsu, W., 2003a. Efficient Mining of
XML Query Patterns for Caching. Proc. 29th VLDB,
p.69-80. [doi:10.1016/B978-012722442-8/50015-X]

Yang, L.H., Lee, M.L., Hsu, W., Acharya, S., 2003b. Mining
Frequent Query Patterns from XML Queries. Proc. 8th
DASFAA, p.355-362. [doi:10.1109/DASFAA.2003.1192
401]

Zaki, M.J., 2002. Efficiently Mining Frequent Trees in a Forest.
Proc. 8th ACM SIGKDD Int. Conf. on Knowledge Dis-
covery and Data Mining, p.71-80. [doi:10.1145/775047.
775058]

Zaki, M.J., 2005. Efficiently mining frequent embedded un-
ordered trees. Fundamenta Informaticae, 65:33-52.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

