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Abstract:    Querying XML data is a computationally expensive process due to the complex nature of both the XML data and the 
XML queries. In this paper we propose an approach to expedite XML query processing by caching the results of frequent queries. 
We discover frequent query patterns from user-issued queries using an efficient bottom-up mining approach called VBUXMiner. 
VBUXMiner consists of two main steps. First, all queries are merged into a summary structure named “compressed global tree 
guide” (CGTG). Second, a bottom-up traversal scheme based on the CGTG is employed to generate frequent query patterns. We 
use the frequent query patterns in a cache mechanism to improve the XML query performance. Experimental results show that our 
proposed mining approach outperforms the previous mining algorithms for XML queries, such as XQPMinerTID and FastXMiner, 
and that by caching the results of frequent query patterns, XML query performance can be dramatically improved. 
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INTRODUCTION 
 

In recent years, XML data have become ubiq-
uitous with the rapid increment in both the number 
and scale of applications such as XML database sys-
tems, business transactions, XML middleware sys-
tems, and so on. Efficient querying techniques of 
XML data have become an important topic for the 
database community. Building an index of XML data 
(Al-Khalifa et al., 2002; Kim et al., 2006; Seo et al., 
2007) has been regarded as an effective way to ac-
celerate retrieval of XML data. However, an indexing 
mechanism may have certain drawbacks: first, it is 
often neither possible nor desirable to maintain an 
entire index in the primary storage; secondly, an in-
dexing mechanism may still incur unnecessary 
computation for repeated or similar queries. To ad-

dress these problems, caching techniques have been 
considered to improve the performance of XML 
query processing. When a query cache is deployed, 
users can obtain the answer right away if the query 
result has already been computed and cached. To date, 
there have been several reports on the caching tech-
niques of XML queries (Chen et al., 2002; 2005; 
Yang et al., 2003a; Hong and Kang, 2005). 

To cache the results of useful queries, one of the 
most effective approaches is to discover frequent 
query patterns from the user queries, as the frequent 
query patterns usually contain a wealth of information 
about user queries. Basically, if we model each XML 
query as a tree, just like some of the previous works 
(Yang et al., 2003a; Paik and Kim, 2006; Gu et al., 
2007), the frequent query pattern mining problem is 
converted to the problem of finding a set of subtrees 
that occur frequently over a set of trees (or queries). 

For the sake of efficiency in discovering frequent 
query subtrees, we present an algorithm called 
VBUXMiner which employs a bottom-up enumerat-
ing method and prunes unsatisfied patterns as early as 
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possible. We introduce a novel data structure called 
the “compressed global tree guide” (CGTG) to ac-
celerate candidate generation and infrequent subtree 
pruning. We firstly remove all infrequent nodes from 
the global tree guide before candidate enumeration, 
and then generate candidates within each prefix 
equivalence class. Unlike the previous algorithms 
such as XQPMiner, XQPMinerTID and FastXMiner 
(Yang et al., 2003a; 2003b), which employ a right-
most branch expansion enumeration approach to 
generate candidates from top to bottom, we perform 
an efficient bottom-up candidate generation process 
instead. Moreover, when computing the support of 
each subtree, previous methods have no guarantee of 
the minimum number of scans on the data set, 
whereas in our approach we no longer need to scan 
the data set, as the support of the subtrees can be 
easily computed from the CGTG. Like in the mining 
algorithms XQPMiner, XQPMinerTID and FastX-
Miner, we do not consider XML queries that contain 
sibling repetitions either. Experimental results on 
public data sets show that our proposed mining algo-
rithm is more efficient compared to previous works. 
The experiments also indicate that the caching 
mechanism exploiting the mining results is effective in 
improving the query response time, and it outperforms 
the traditional LRU (least recently used) and MRU 
(most recently used) caching policies significantly.  

The rest of the paper is organized as follows. In 
Section 2 we discuss previous works related to query 
pattern mining approaches and XML caching. In 
Section 3, we discuss some concepts used in our 
mining approach. We propose the bottom-up XML 
subtree mining algorithm VBUXMiner in Section 4. 
In Section 5 we show how our mining approach is 
applied to cache the results of XML queries. Section 6 
presents the results of the experiments and Section 7 
concludes the paper. 

 
 

RELATED WORKS 
 
In this section, we shall review some related 

works, including papers on tree mining, XML query 
mining, and caching techniques for XML queries. 

Recently, tree-like structure mining has attracted 
a lot of attention. Basically, there are two main steps 
for generating frequent trees. First of all, a systematic 

method should be conceived for generating 
non-redundant candidate trees. Secondly, an efficient 
method is needed to compute the support of each 
candidate tree and determine whether a tree is fre-
quent. In any case, a straightforward generate-and- 
test strategy is adopted. Various algorithms have been 
provided to mine different forms of tree structures 
such as rooted ordered tree, rooted unordered tree, 
free tree, etc. Asai et al.(2002; 2003) present the 
rooted ordered and rooted unordered tree mining 
approaches. Zaki (2002; 2005) gives ordered and 
unordered embedded tree mining algorithms. Chi et al. 
(2003; 2004) bring forward approaches to rooted 
unordered and free trees mining. Unlike previous 
approaches, Chehreghani et al.(2007) do not employ 
the apriori-based approach, but present a top-down 
approach for mining all maximal, labeled, unordered, 
and embedded subtrees from a tree-structured data-
base. However, these mining approaches mainly deal 
with general trees. They do not take schema infor-
mation into consideration when dealing with special 
trees like XML query pattern trees. 

Many approaches have been proposed to dis-
cover information from XML documents or XML 
queries (Yang et al., 2003a; 2003b; Paik and Kim, 
2006; Nayak and Iryadi, 2006; Gu et al., 2007; Bei et 
al., 2007; Kutty et al., 2007). The closest works to 
ours, which find frequent rooted query patterns from a 
set of XML queries, are the algorithms XQPMiner, 
XQPMinerTID, FastXMiner presented in (Yang et al., 
2003a; 2003b). XQPMiner and XQPMinerTID ex-
ploit schema information to guide the enumeration of 
candidates and employ a rightmost branch expansion 
enumeration to generate candidates from top to bot-
tom. When computing the frequency of candidates, 
XQPMiner scans the data set for each candidate, 
while XQPMinerTID scans the data set only when 
expansion happens on the leaf node. As a result, 
XQPMinerTID outperforms XQPMiner due to fewer 
data set scans. FastXMiner also generates candidate 
trees with the help of schema information. However, 
it is more efficient since it needs data set scans only 
when the candidate tree is a single branch tree. The 
support of a non-single branch tree can be computed 
by joining the ID lists of its proper rooted subtrees. 
Bei et al.(2007) develope the algorithm BUXMiner to 
mine rooted XML query patterns using a bottom-up 
approach. BUXMiner enumerates candidate trees 
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from bottom to top based on a compact global tree 
guide. All infrequent nodes are pruned to accelerate 
tree enumeration. The support of a candidate tree is 
computed without scanning the database as it is cal-
culated directly from the global tree guide. 

Caching results of XML queries has been con-
sidered a useful strategy to improve performance of 
XML query processing. XCache (Chen et al., 2002) is 
a holistic XQuery-based semantic caching system. 
Mining approaches for finding frequent queries are 
also incorporated into caching (Yang et al., 2003a; 
Chen et al., 2005). Yang et al.(2003a) employ 
FastXMiner to discover frequent XML query patterns 
and demonstrate how the frequent patterns can be 
used to improve caching performance. Chen et al. 
(2005) take into account temporal features of queries 
for frequent queries discovery and design an appro-
priate cache replacement strategy by finding both 
positive and negative association rules. Hong and 
Kang (2005) integrate heterogeneous data sources on 
the Web and cache results of queries through XML 
views of data sources to accelerate query processing. 

 
 

PRELIMINARY CONCEPTS 
 
Frequent rooted query pattern tree 
Definition 1 (Query pattern tree, QPT)    An XML 
query can be modeled as a query pattern tree 
QPT=<R, N, E>, where R is the root node, N is the 
node set, and E is the edge set. Each node n has a label 
whose value is in {“*”, “//”}∪labelSet where the 
labelSet is the label set of all elements and attributes. 
For each edge e=(n1, n2), node n1 is the parent of n2. 
Definition 2 (Query pattern subtree, QPS)    Given 
two query pattern trees T and S, S is considered to be a 
query pattern subtree of T iff there exists a one-to-one 
mapping φ: VS→VT satisfying the following condi-
tions: (1) φ preserves the labels, i.e., L(v)=L(φ(v)) 
∀v∈VS; (2) φ preserves the parent relation, i.e., 
(u,v)∈ES iff (φ(u), φ(v))∈ET. 
Definition 3 (Rooted query pattern subtree, RQPS) 
Given two query pattern trees T and S, we say that S is 
a rooted query pattern subtree of T iff S is a query 
pattern subtree of T and the trees S and T have the 
same root label. 
Definition 4 (Query database tree, QDT)    An XML 
query database, which is a collection of XML queries, 

can be represented as QDT=<T, R, Q, Φ>, where T is 
a tree whose root is R; Q is the set of query pattern 
trees {q1, q2, …, qn}; R is the virtual root node of the 
tree with a special label not belonging to labelSet; Φ: 
V→Q is a query mapping function from all children 
of the root R to the trees Q, where V represents the set 
of all children of the root R. For a complete tree with 
the root node being the ith node of vi∈V, we have 
Φ(vi)=qi. 
Definition 5 (Frequent rooted query pattern tree, 
FRQPT)    Let D denote all the query pattern trees of 
the issued queries and dT be an indicator variable with 
dT(S)=1 if the query pattern tree S is a rooted query 
pattern subtree of T and dT(S)=0 if tree S is not. The 
support of query pattern tree S in D can be defined as 
σ(S)=∑T∈DdT(S)/∑T∈D, i.e., the percentage of the 
number of trees in D that contain tree S. A rooted 
query pattern tree is frequent if its support is more 
than, or equal to, a user-specified minimum support, 
defined as minsupp. 

With the help of the QDT, we can transform the 
problem of discovering FRQPTs from the original 
query database into the problem of discovering 
FRQPTs over the QDT. Let nT(S) denote the number 
of occurrences of the rooted subtree S in a tree T. 
Then the support of a rooted query pattern tree S can 
be defined as σ(S)=nQDT(S)/|Q|. In this way, we can 
deal with query pattern trees with different root nodes, 
and discover frequent query pattern trees while only 
considering the rooted query pattern subtrees. After 
finding all the FRQPTs over the QDT, the frequent 
query patterns are obtained by simply removing the 
virtual root of each FRQPT. Fig.1 shows a query 
database tree composed of five XML queries. Given 
the minimum support 0.6, we can obtain six FRQPTs. 

 
Compressed global tree guide 

For each user issued QPT, we assign a unique ID, 
denoted as QPT.ID, which will be used for the con-
struction of a global tree guide in the mining process. 
Definition 6 (Global tree guide, GTG)    We merge all 
issued queries over the query database tree to create a 
global tree guide, where the ID list of each node 
represents the queries containing the path from the 
root to the current node. Fig.2 shows a GTG con-
structed using 15 query pattern trees. The QPT list for 
node “Java” indicates that there are six queries that 
contain the path “R/order/items/book/title/Java”. 
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To handle labels like wildcard “*” and descendant 
path “//”, we combine the special label and the fol-
lowing label to produce a new label. For example, a 
single path tree “R/items//_Java” in the GTG will be 
considered a single path tree with nodes “R”, “items” 
and “//_Java”. 

For simplicity, we denote a subtree rooted at the 
root node of the GTG as RT, and a single path starting 
at the root node as SRT.  
Definition 7 (Frequent node)    The support of the 
node in the GTG is defined as the ratio of the number 
of QPTs that contain the path from the root to the 
current node, namely the size of QPT list, to the 
number of all QPTs. For example, the support of node 
“Java” is 3/15=0.2. A node in the GTG is frequent if 
its support is no less than the minimum support. 
Lemma 1    The support of the node is no less than the 
support of its descendant node. 
Proof    A descendant node can be reached only 
through its ancestor in a QPT. If a QPT contains the 
path from the root to the descendant node, then it must 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
contain the path from the root to the ancestor node. 
Therefore, the support of the ancestor is no less than 
that of the descendant. 
Lemma 2    If a node is infrequent in the GTG, then 
an RT including it will not be a frequent rooted tree. 
Proof    Since the support of an RT will be no more 
than the support of a node in the RT, an RT will be 
infrequent if an included node is infrequent. 
Lemma 3    If a node is frequent in the GTG, an SRT 
including it as the leaf node must be a frequent tree. 
Proof    As the support of an SRT equals the support 
of the leaf node, an SRT will be frequent if the node is 
frequent. 

Assume the minimum support is 0.2. In Fig.2 the 
node “Internet” is infrequent, and the RT “R/order/ 
items/book/title/Internet” is also infrequent. The node 
“XML” is a frequent node, and thus the SRT 
“R/order/items/book/title/XML” is also frequent. 

If a node is infrequent, then all its descendant 
nodes are infrequent as well, due to the lesser support 
of the descendant nodes. As a result, we prune all the 
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Fig.2  Global tree guide constructed using 15 query pattern trees from the orders 
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infrequent nodes in the GTG before candidate enu-
meration, using a top-down traversal. We traverse the 
GTG starting at the root level by level and prune 
infrequent nodes along with all its descendants once 
we find an infrequent node. For instance, in Fig.2, the 
second child node of the root as well as its descen-
dants is pruned, since it is an infrequent node. 

Furthermore, to save memory space, the node 
and its child node are compressed into a single node 
with the following satisfaction: (1) the parent node 
has only one child; (2) the parent node and the child 
node have the same ID list of QPTs. For example, in 
Fig.2 we compress the node “book” and its child node 
“title” into a single node “book/title”. 
Definition 8 (Compressed global tree guide, CGTG)    
Employing the infrequent node pruning scheme and 
node compressing scheme, we reduce the GTG into a 
CGTG. Fig.3 presents a CGTG transformed from the 
GTG in Fig.2 with the minimum support 0.2. 
Lemma 4    If a tree S in the CGTG is frequent, then 
the tree constructed by adding the parent node of the 
root of the tree S is also frequent. 
Proof    Suppose the node n is the parent of the root of 
the frequent tree S. Then n must be the ancestor of all 
the nodes in the tree S. Thus any query pattern tree 
containing the nodes in tree S must also contain the 
node n according to our construction of the CGTG. 
Because the new tree only has one direct subtree, the 
support of the new tree generated from its direct sub-
tree S by adding the new root n is equal to the support 
of tree S. Thus the new tree is a frequent tree due to 
the frequency of S. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

QUERY PATTERN TREE MINING 
 
In this section, we present a bottom-up mining 

algorithm VBUXMiner for discovering frequent 
rooted query pattern trees from user queries. 

 
Overview of VBUXMiner 

VBUXMiner performs a bottom-up process to 
generate frequent rooted query pattern trees over the 
CGTG. To generate frequent query pattern trees 
rooted at node n in the CGTG, we will have to gen-
erate all frequent query pattern trees rooted firstly at 
the children of n, and then merge these frequent trees. 
Algorithm 1 shows the high level structure of 
VBUXMiner. We first scan all query pattern trees to 
construct a GTG and create a CGTG based on the 
GTG by means of pruning and compression. And then 
we use the root node of the CGTG as an input to re-
cursive generation of frequent rooted query patterns 
from bottom to top over the CGTG. Finally, we re-
move the virtual node of the discovered frequent 
pattern trees to obtain the final result. 

 
Algorithm 1 VBUXMiner(D, minsupp) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input: A set of query pattern trees; specified minimum 
support 

Output: A set of frequent query pattern trees FRTS 
1 GTG=ConstructGTG(D); 
2 CGTG=CompressGTG(GTG, minsupp); 
3 root=root node of CGTG; 
4 FRTS=GenerateFrequentRT(root, minsupp); 
5 Remove virtual roots of each discovered tree in FRTS;
6 return FRTS 

 

Fig.3  The global tree guide in Fig.2 is compressed employing the infrequent node pruning scheme and the node
compressing scheme 
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CGTG construction 
Construction of the CGTG consists of two steps. 

We first scan the issued queries and generate a GTG, 
and then apply the node pruning and node compres-
sion to the previously generated GTG. When scanning 
queries, a bread-first traversal is adopted on each 
query. We traverse each query level by level from top 
down. For each visited node, we check to see if a node 
exists in the GTG with the same path as the currently 
visited node. If one exists, we simply add the ID of the 
query into the node in the GTG. Otherwise, we ap-
pend a new child to the node in the GTG which has 
the same path to the parent node of the visited node, 
and we add the query ID into the new node. To prune 
infrequent nodes and compress nodes, we adopt a 
depth-first traversal on the GTG. For each node in the 
GTG, we check if it is frequent according to its ID list. 
If it is not, then we will remove the current node as 
well as all its descendant nodes. Otherwise we will 
traverse down to check its child nodes. A node with-
out sibling that has the same ID list as its parent node 
will be compressed by appending its label to its parent 
node. 

 
Frequent query pattern tree generation 
Definition 9 (Query pattern tree encoding)    A string 
encoding scheme introduced by Luccio et al.(2001) is 
adopted to represent query pattern trees, which is 
more space-efficient and is simpler to manipulate 
(Zaki, 2002). The string encoding of a query pattern 
tree is obtained by traversing the tree in a depth-first 
order. Following the order of traversal, we record in 
the string the label for each node. Whenever a back-
tracking occurs from a child to its parent, a distin-
guished label (−1 is used here) is appended to the 
string. For example, the tree CPT in Fig.4 can be 
encoded as a string “items, book, title, Java, −1, XML, 
−1, −1, −1,  −1”. 
 
 
 
 
 
 
 
 
 
 
 

Definition 10 (Prefix equivalence class)    We say that 
a number of query pattern trees are in the same prefix 
equivalence class, if they share a common prefix tree 
in the CGTG. Formally, let X, Y be two query pattern 
trees, and let function p(X, k) return the prefix tree up 
to the kth node. Then X, Y are in the prefix equiva-
lence class iff there exists a k such that p(X, k)=p(Y, k). 
For example, trees QPT1, QPT2, QPT3 in Fig.4 have 
the same prefix tree CPT. We say they are in a same 
equivalence class with the prefix tree CPT. Using the 
previous tree encoding scheme, we can obtain any 
two members of an equivalence class having the same 
prefix string which represents the prefix tree. If the 
prefix tree is represented as a string “Labels, −1”, then 
trees in the equivalence class must have the prefix 
“Labels”. By employing tree encoding, we can easily 
determine whether query pattern trees are in the same 
equivalence class. As QPT1, QPT2, QPT3 have the 
same prefix string encoding “items, book, title, Java, 
−1, XML, −1, −1, −1”, they belong to the same 
equivalence class. 

Frequent query pattern trees rooted at a given 
node are composed of three parts: (1) the root node 
itself; (2) the root node appended by the frequent 
query pattern trees rooted at its child nodes; (3) fre-
quent query pattern trees generated by merging the 
frequent ones in part (2). In Algorithm 2 we show the 
algorithm for generating all the three parts of the 
frequent rooted trees at a given root node over the 
CGTG. 

First of all, we consider the tree with only the 
root node as a frequent query pattern tree (Lines 1~2). 
This is because we perform the searching process in a 
CGTG which has pruned all infrequent nodes. 

We generate all frequent rooted query pattern 
trees at the children (Lines 8~14). According to 
Lemma 4, the trees are frequent which are generated 
 
 
 
 
 
 
 
 
 
 
 

Fig.4  Three query pattern trees having the common prefix tree are in the same equivalence class 
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Algorithm 2 GenerateFrequentRT(root, minsupp) 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

by adding the parent node to the frequent query pat-
tern trees rooted at its child nodes. In this way, the 
frequent query pattern trees of part (2) can be ob-
tained. Frequent query pattern trees rooted at each 
child are regarded as being in the same equivalence 
class because they share the same prefix tree which is 
the child node itself. Then by adding the root node, 
we obtain new equivalence classes, with each prefix 
tree being a combined tree of the root and its child. 

Finally, we employ an equivalence class joining 
strategy on the frequent trees generated at part (2) 
(Lines 15~26). We join frequent rooted trees from 
different equivalence classes to construct new can-
didates and determine whether they are frequent. 
Assume the root node has n children and there exist n 
equivalence classes from EQ1 to EQn. We pick up a 
frequent query pattern tree FRT from EQi and join to 

it all trees from EQi+1 to EQn. Through the joining of 
FRT and all trees in the equivalence class EQ, we 
generate a new equivalence class whose common 
prefix tree is a combined tree of FRT and prefix tree 
of EQ. After the joining of all frequent trees from 
FRTSi+1 to FRTSn, we generate (n−i) equivalence 
classes. Then we regard the (n−i) equivalence classes 
as a new group and perform a next equivalence class 
joining process. This process is repeated until there 
remains only one equivalence class. 

For example, consider the node labeled “items” 
in Fig.3. As it has two frequent child nodes, there 
exist two equivalence classes for each child. If we 
pick up a frequent tree from the equivalence class of 
the first child, and join it with the second equivalence 
class, then we will obtain a new equivalence class. In 
Fig.5, we show frequent subtrees from two equiva-
lence classes of its children and illustrate the joining 
process. The leftmost tree is a frequent tree picked up 
from the first equivalence class, while the trees in the 
middle are all frequent trees in the second equivalence 
class. Then by joining the above trees, we can obtain 
four new trees in the same equivalence class with the 
prefix tree combined with the left tree and the prefix 
tree of the second equivalence class. As shown in 
Fig.5, the tree in the virtual box is the prefix tree of 
the new equivalence class. However, among all the 
newly generated trees only two trees are frequent 
according to the definition of a frequent query pattern 
tree. Because there is only one equivalence class 
through joining the leftmost frequent tree with all the 
other equivalence classes, we finish the equivalence 
class joining process for the current tree. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.5  A query pattern tree is joined with all the trees in

another equivalence class 
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Input: Root node of new generated frequent tree root; 
specified minimum support  

Output: A set of frequent query pattern trees FRTS rooted at 
the root node 

1 FRTroot.label=(root.label, −1);  
FRTroot.IDList=root.IDList; 

2 FRTS={FRTroot};  
3 EQ=∅; 
4 for (each child of root) do  
5 FRTSchild=GenerateFrequentRT(child, minsupp); 
6 EQ=EQ∪{FRTSchild}; 
7 for (each ChildSet in FRTSchild) do 
8 for (each FRTchild in ChildSet) do 
9 NewFRT.label=(root.label, FRTchild.label, −1);
10 NewFRT.IDList=FRTchild.IDList; 
11 FRTS=FRTS∪{NewFRT}; 
12 end for 
13 end for 
14 end for 
15 MergeList={EQ}; 
16 while (|MergeList|>0) do 
17 EQ=MergeList[1]; 
18 MergeList=MergeList−EQ; 
19 for (i=1 to |EQ|−1) do 
20 for (j=i to |EQ|) do 
21 NewEQ=EQi⊕EQj; 
22 FRTS=FRTS∪NewEQ; 
23 MergeList=MergeList∪{NewEQ}; 
24 end for 
25 end for 
26 end while 
27 return FRTS 
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Definition 11 (Tree joining)    Given a prefix tree T1, a 
suffix tree T2, and a common prefix tree CT of T1 and 
T2, we join the two trees T1 and T2 and produce a new 
tree with prefix T1. We denote the joining process as 
T=T1∪CTT2. The ID list of the created tree is the result 
of joining two ID lists of the trees. Suppose the CT is 
represented as the string “CT_Labels, −1”. Then we 
can denote T1 as “CT_Labels, T1_Follow_Labels, −1” 
and T2 as “CT_Labels, T2_Follow_Labels, −1”. The 
constructed tree is represented as “CT_Labels, 
T1_Follow_Labels, T2_Follow_Labels,  −1”. In Fig.6 
we show the tree joining process, where the 
CT_Labels is the string “order, year, 2007, −1,  −1”, 
T1_Follow_Labels is “person, Jane, −1, −1”, and 
T2_Follow_Labels is “items, book, title, Java,  −1, 
C++, −1, −1, −1, −1”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Definition 12 (Frequent decision)    In order to decide 
whether a new candidate tree is a frequent one, we 
will have to calculate its support. However, to avoid 
unnecessary computing, a pruning process is per-
formed before support computing. We prune the new 
candidate k-size tree if it has infrequent (k−1)-size 
rooted subtrees. Once the candidate passes the prun-
ing process, we then compute the support of the can-
didate tree using the ID list of QPTs. However, the ID 
list of the new tree still can be computed quickly by 
way of a merging based on the ascending order of 
each recording ID list. 

Definition 13 (Automatic ordering)    If trees in an 
equivalence class set EQ are ordered according to the 
node order in CGTG, then trees in a new equivalence 
class set NEQ, constructed by means of merging a 
prefix tree with all trees in EQ, are still ordered in the 
node order. This is because the tree merging process 
does not change the node label order, and only ap-
pends a new prefix tree to all suffix trees. The new 
frequent trees are inserted into the new equivalence 
class according to the original order, which results in 
an automatic ordering of the trees in each equivalence 
class. 
Definition 14 (Candidate pruning)    As previously 
described, before computing the support of a k-size 
candidate tree, we carry out a pruning test to make 
sure all its rooted subtrees are frequent. To improve 
the mining efficiency, we only check whether its 
(k−1)-subtrees are frequent. According to our candi-
date generation method, we ensure that all 
(k−1)-subtrees have been enumerated before dealing 
with the current tree. To perform the pruning step 
efficiently, we add each frequent tree into a hash table 
during the creation of frequent trees. The key of each 
entry in the hash table is the string representation of 
the tree. Thus it takes O(1) time to check for each 
(k−1)-subtree. 
Definition 15 (Space reducing)    The main space 
consumption is incurred by the ID list of QPT for each 
frequent rooted tree. If a parent node has been com-
puted, then all frequent trees rooted at the child nodes 
can be removed. In this way, the space consumption 
of our algorithm is the whole CGTG plus the ID list 
for frequent query pattern trees rooted at the current 
node and its children. 
 
 
QUERY PATTERN TREE CACHING 
 

In this section, we present the technique of ap-
plying the frequent query pattern trees into XML 
query caching. We mainly describe the query pattern 
tree rewriting scheme for similar queries and the 
cache replacement strategy. In Fig.7 we show the 
framework of the frequent queries caching system, 
which uses the proposed frequent query discovery 
approach to accelerate the querying process. 
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Fig.6  Two trees with the same prefix tree are joined
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Query pattern tree rewriting 

In most cases, queries issued by users are rarely 
identical. However, there are usually a lot of simi-
larities in the issued queries. To take advantage of the 
similar though not the same queries, a query rewriting 
process is needed. This means when a user performs 
querying, if we do not find a previous query which is 
the same as the new one, we can obtain the most 
similar query from the cache and rewrite the new 
query according to the old one. In order to perform a 
query rewriting process, there can be four relation-
ships between two similar query pattern trees as 
shown in the following: 

1. Exact matching. The QPT T1 exactly matches 
the QPT T2 if T1 is a query pattern subtree of T2 and T2 
is also a query pattern subtree of T1.  

2. Exact containment. The QPT T1 exactly con-
tains tree T2 if T2 is a query pattern subtree of T1. 

3. Semantic matching. We employ a similar idea 
of “Extended Subtree Inclusion” (Yang et al., 2003b) 
for the definition of “Semantic Matching”. Let T1 and 
T2 be two query pattern trees with root nodes t1 and t2, 
respectively. Denote by children(n) the set of child 
nodes of n. We can recursively determine that T1 
semantically matches T2 if t1 and t2 (t1≤t2) satisfy one 
of the following three conditions: 

(1) Both t1 and t2 are leaf nodes; 
(2) t1 is a leaf node and t2=“//”, then ∃t2′∈ 

children(t2) we have a semantic match (T1, T2′); 
(3) Both t1 and t2 are non-leaf nodes, and one of 

the followings holds: 
(i) ∀t1′∈children(t1), ∃t2′∈children(t2) we have a 

semantic match (T1′, T2′); 
(ii) t2=“//” and ∀t1′∈children(t1) we have the 

semantic match (T1′, T2);  
(iii) t2=“//” and ∃t2′∈children(t2) we have the 

semantic match (T1, T2′). 
4. Semantic containment. The QPT T1 semanti-

cally contains tree T2 if any query pattern subtree of 
T1 semantically matches query patterns T2. 

In Fig.8 we describe four query pattern tree re-
writing cases. In each case, the left query pattern tree 
is an existing one, and the right query pattern tree is a 
rewritten one. In Fig.8a, because two queries exactly 
match each other, the result of the issued query can be 
easily acquired from the cached query. In Fig.8b, the 
new query exactly contains the old query, so the result 
of the left query subtree can be obtained from the 
cached query. We just need to compute the result of 
the right subtree and merge the result with the query 
result of the cached one. In Fig.8c, since the new 
query semantically matches a cached query, we can 
retrieve the result through two steps. Firstly, the result 
of the semantically matched query is obtained. Sec-
ondly we compute the parent-child relationship of 
nodes “book” and “title”, nodes “title” and “C++” 
respectively instead of the original grandparent- 
grandchild relationship of nodes “book” and “C++”. 

By means of semantic matching, we reduce the 
search space and only need to compute relationships 
on different labels between queries. Fig.8d shows a 
semantic containment case. Since the new query 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8  Four relationships between two similar query
pattern trees in query pattern tree rewriting. (a) Exact
matching; (b) Exact containment; (c) Semantic match-
ing; (d) Semantic containment 
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Fig.7  Framework of the XML query caching system
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semantically contains the cached one, the result of the 
left query subtree can be obtained with the semantic 
matching method. Then we calculate the right subtree 
and merge results of the two subtrees to achieve the 
final result. 
 
Cache replacement 

The results of cached queries are replaced be-
cause new frequent query pattern trees are discovered 
and the old ones are replaced by the new ones. The 
query pattern tree mining process is automatically 
performed when the number of queries reaches the 
predefined threshold. After the mining process, all 
user queries are discarded. The next mining process 
will not be launched until the number of issued que-
ries reaches the threshold again. The specified support 
of the mining process is self-tuned to adapt to the 
limited size of the cache pool. If too many frequent 
patterns are found in the current mining process, the 
support will be automatically increased to a larger 
value by formula support=support*(1+support_in- 
crease_ percent) so that fewer frequent query patterns 
will be mined next time. On the contrary, if too few 
frequent patterns are discovered, the support is de-
creased by formula support=support*(1−support_ 
decrease_percent). 

After the mining process, new frequent queries 
will be discovered and answers to some previous 
queries need to be replaced. We keep track of the 
following information for each frequent query pattern, 
namely the recently used frequency, the support, and 
the time discovered by an iteration of the mining 
process, as measures for the replacement policy. 
Among all the statistical data, the recently used fre-
quency is regarded as the most important factor for 
cache replacement. The used frequency of query 
patterns is divided into several levels. Query patterns 
on the lower levels will be given more priority to be 
selected as victims. The support and the discovered 
time are only taken into consideration for cache re-
placement at the same frequency level. If the cache is 
full, the replacement manager selects the query with 
the least support and the latest discovered time to be 
replaced. A query pattern with a larger support should 
not be selected as a victim because it is contained in 
more issued queries. To avoid unnecessary computa-
tion, a lazy-result-retrieval scheme is employed, i.e., 
the answer to a frequent query is not retrieved until 
the query is really used.  

EXPERIMENTS 
 

In this section we evaluate both the performance 
of our mining algorithm VBUXMiner and the XML 
querying improvement by caching the frequent query 
patterns mined with our algorithm. We first compare 
VBUXMiner vs. previous algorithms XQPMinerTID 
and FastXMiner. Then we investigate the effective-
ness of applying the mining algorithm in XML query 
caching. All the mining algorithms, the prototypes of 
the caching system, are implemented in Java language, 
and the experiments are carried out on an Intel Xeon 
2.0 GHz computer with 2 GB RAM running RedHat 
Linux 9.0. 

 
Query mining performance 

To simulate XML queries, we employ the 
XMARK.DTD (http://monetdb.cwi.nl/xml/) as the 
DTDs and the DBLP.DTD (http://www.informatik. 
uni-trier.de/~ley/db/) as the schemas to generate the 
rooted query pattern trees. In order to produce more 
general queries, we introduce some wildcard “*” and 
descendant path “//” into the query pattern trees. 
Three steps are used to create the data sets. First of all, 
we translate the DTDs into DTD trees, adding four 
“*” and four “//” into DBLP.DTD, and seven “*” and 
seven “//” into XMARK.DTD. Secondly, we generate 
two query databases, each containing 5 000 000 dif-
ferent queries from the two respective DTD trees. 
Finally, we randomly select a number of queries 
(ranging from 30 000 to 300 000) from the previous 
step. As it is known that the FastXMiner and 
XQPMinerTID algorithms can only be used to dis-
cover frequent rooted query pattern trees with the 
same root node, we only compare the performance of 
VBUXMiner to them on datasets with the same root 
node, although VBUXMiner can also mine frequent 
rooted query pattern trees with different root nodes. 
Therefore, when generating the data sets we assume 
that all query patterns in the same data set have the 
same root node. In Table 1 we show the characteris-
tics of the data sets with a varying number of queries 
from 30 000 to 300 000 for DBLP and XMARK. 

When comparing the performance of the three 
mining algorithms, namely VBUXMiner, FastX-
Miner and XQPMinerTID, we need to slightly modify 
the second and the third algorithms for fair compari-
son. This is because VBUXMiner does not consider 
semantic containment of wildcard and descendant  
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path when generating frequent rooted query pattern 
trees. However, the original XQPMinerTID and 
FastXMiner algorithms both process the semantic 
containment relationships. Therefore, we replace the 
containment computation in the original code of these 
two algorithms with a simplified version, which only 
consists of an ordinary subtree inclusion determina-
tion process. Via such slight modification, we can 
obtain the same frequent patterns from the three al-
gorithms. 

Before the mining process, we assume that all 
the QPTs are loaded into the main memory. Therefore, 
all subsequent operations on the QPTs are performed 
in memory, and there are no disk accesses when 
scanning the data sets. 

Fig.9 shows the performance results of 
VBUXMiner vs. FastXMiner and XQPMinerTID 
with a varying number of QPTs from 30 000 to 
300 000. The specified minimum support is set to 1%. 
From the experimental results, we find that VBUX- 
Miner is about 20% faster than FastXMiner and 
XQPMinerTID. Specifically, when the data set be-
comes larger, the improvement is also more obvious. 
Two reasons may lead to the high efficiency of 
VBUXMiner. First of all, infrequent nodes are pruned 
using CGTG before candidate generation, which 
results in less enumeration of candidates. This is in 
consistency with our experimental results in Fig.10, 
which demonstrates that the VBUXMiner algorithm 
generates fewer candidates and thus incurs less 
computation of the supports of query pattern trees 
compared to the other two. Secondly, unlike 
QPMinerTID and FastXMiner, VBUXMiner does not 
require data set scans, which are needed to compute 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
the support of candidates when determining whether 
the candidates are frequent. Although FastXMiner 
and XQPMinerTID employ various optimization 
schemes to reduce the need for data set scan, it cannot 
be avoided in some special situations such as leaf 
node expansion etc. Since we store the data sets in the 
memory in our experiments, the cost of a data set scan 
is significantly underestimated. Therefore, we expect 
higher performance improvements in VBUXMiner in 
a real disk-resident environment. 

A similar result can be obtained from experi-
ments on various minimum supports. In Fig.11, we 
make comparisons among the three algorithms with 
varying supports from 0.2% to 2% on data sets with 
150 000 QPTs. Just like previous results, VBUX-
Miner performs more efficiently than the other two 
algorithms. The improvement is more obvious when 
the support is low. This is because more candidates 
need to be enumerated and the number of the support 
computations of the candidates increases. Likewise, 
we present the results of the number of enumerated 
candidates with varying minimum supports in Fig.12. 
 
Cache performance 

We apply our mining algorithm in the caching 
prototype system to improve querying performance.  
We evaluate the performance of the caching scheme 
using FRQPT, and compare it with traditional caching 
policies LRU and MRU. The system accepts 
tree-patterns as its queries, and obtains the results 
using the structural join approach (Al-Khalifa et al., 
2002). When conducting experiments, we load the 
XML data set into the memory and create indices for 
XML data before querying. 

Table 1  Characteristics of data sets for DBLP and XMARK with varying numbers of queries 

DBLP XMARK Number of 
queries 
(×103) 

Average 
nodes 

Max 
nodes 

Average 
depth 

Max 
depth

Max 
fanout

Average 
nodes 

Max 
nodes

Average 
depth 

Max 
depth 

Max 
fanout

30 11.95 14 4.77 6 8 10.18 12 4.99 9 11 
60 11.94 13 4.76 7 8 10.17 12 4.98 10 11 
90 11.96 14 4.77 7 8 10.17 11 4.99 9 11 
120 11.94 12 4.76 6 8 10.18 13 4.99 10 11 
150 11.95 13 4.77 7 8 10.17 13 4.98 9 11 
180 11.95 14 4.77 6 8 10.18 12 4.98 9 11 
210 11.95 13 4.76 6 8 10.18 11 4.98 9 11 
240 11.94 12 4.77 7 8 10.17 12 4.99 9 11 
270 11.95 13 4.76 6 8 10.18 13 4.99 9 11 
300 11.96 14 4.76 6 8 10.18 12 4.99 10 11 
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Fig.9  Response time with varying numbers of QPTs. (a) DBLP; (b) XMARK 

Number of QPTs (×103) 

(b) 

20

40

60

80

100

R
es

po
ns

e 
tim

e 
(s

) 

VBUXMiner 
FastXMiner 
XQPMinerTID 

30   60    90  120   150  180   210   240   270  300
0

VBUXMiner 
FastXMiner 
XQPMinerTID 

(a)

300

250

200

150

100

50

0

R
es

po
ns

e 
tim

e 
(s

) 

Number of QPTs (×103) 
30     60     90   120   150  180   210   240   270  300

Fig.10  Number of enumerated trees with varying numbers of QPTs. (a) DBLP; (b) XMARK 
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0 

20 

80 

N
um

be
r o

f e
nu

m
er

at
ed

 
tre

es
 (×

10
3 ) 

  VBUXMiner
  FastXMiner
  XQPMinerTID

(a) 

60 

40 

(b)

0.2  0.4  0.6  0.8  1.0  1.2  1.4  1.6  1.8  2.0 
0

5 

10 

15 

20 

25 

30 

35 

N
um

be
r o

f e
nu

m
er

at
ed

 
tre

es
 (×

10
3 ) 

Minimum support (%) 

VBUXMiner 
FastXMiner 
XQPMinerTID 

0.2  0.4  0.6  0.8  1.0  1.2  1.4  1.6  1.8  2.0 
Minimum support (%)

100 



Bei et al. / J Zhejiang Univ Sci A  2008 9(6):744-757 756

The data set we use is a 116-M XML document 
generated by the XMARK tool. Queries are generated 
randomly using the probabilities in Table 2. The 
wildcard * and descendant path // are added to make 
the generated queries more complex. 

 
 
 
 
 
 
 
 
 
 

 
Fig.13a presents the average response time for 

query processing with a fixed cache size of 100 que-
ries and varying numbers of queries from 20 000 to 
200 000, where Q20k stands for 20 000 queries. The 
initialized support of the mining procedure is set to 
5% and the threshold number of mined queries is 
1000 for the frequent queries caching policy. The 
average response time is defined as the ratio of total 
running time for answering a set of queries to the total 
number of queries in this set. From the results we see 
that FRQPT is more efficient compared to LRU and 
MRU. This is because the LRU and MRU policies can 
handle similar but not exactly the same queries. 
Caching system employing FRQPT policy also has a  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

good scalability. The response time for querying does 
not increase much when the number of queries varies 
from 20 000 to 200 000. In Fig.13b we illustrate the hit 
ratio of the caching system with a varying number of 
queries. From these results we see that FRQPT policy 
has the highest hit ratio. 

In Fig.14 we show the average response time for 
query processing and the hit ratio with varying sup-
port values from 0.01 to 0.1 for the data set Q100k. 
The varying support does not influence the query 
response time much. This is because we employ a 
self-tuning scheme to automatically adjust the mining 
support to be fit for the cache pool. The support may 
be tuned to a stable value after a number of iterations 
of the mining process. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
CONCLUSION 
 

In this paper, we present an efficient mining al-
gorithm called VBUXMiner to extract frequent 
rooted query pattern trees from XML queries, and 
apply the mining approach to a caching mechanism to 
accelerate XML query processing. We mine frequent 
query patterns over a query schema called “com-
pressed global tree guide” (CGTG), which prunes 
infrequent nodes and employs a node compressing 
scheme. We discover frequent query patterns from 
bottom to top and generate tree candidates at each 
node through the equivalence class joining process. 
When deciding whether a candidate is frequent, we 

Fig.14 Average response time (a) and hit ratio (b) for
varying initialized supports for FRQPT 
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Table 2  Probabilities of tags 
Tag Prob. Tag Prob. Tag Prob.

Site 1.0 Australia 0.2 Person 0.7
Regions 0.6 Item 0.7 Person/Name 0.8
People 0.8 Item/Name 0.4 Emailaddress 0.5
Africa 0.2 Incategory 0.3 Address 0.2
Europe 0.5 Quantity 0.2 * 0.1
Asia 0.5 Mailbox 0.1 // 0.2

Fig.13  Effective FRQPT caching policy. (a) Average
response time; (b) Hit ratio 
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avoid a dataset scan since the support of each candi-
date tree can be computed by joining the QPT ID lists 
recorded in the CGTG. To apply the mining approach 
to XML query caching, we introduce four kinds of 
query relationships and employ a query rewriting 
process to deal with similar queries. Our experimental 
results show that the proposed mining approach out-
performs previous mining algorithms XQPMinerTID 
and FastXMiner in terms of efficiency. The caching 
policy using our mining results outperforms the tra-
ditional LRU and MRU caching policies. 
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