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Abstract:    Omnidirectional imaging sensors have been used in more and more applications when a very large field of view is 
required. In this paper, we investigate the unwrapping, epipolar geometry and stereo rectification issues for omnidirectional vision 
when the particular mirror model and the camera parameters are unknown in priori. First, the omnidirectional camera is calibrated 
under the Taylor model, and the parameters related to this model are obtained. In order to make the classical computer vision 
algorithms of conventional perspective cameras applicable, the ring omnidirectional image is unwrapped into two kinds of pano-
ramas: cylinder and cuboid. Then the epipolar geometry of arbitrary camera configuration is analyzed and the essential matrix is 
deduced with its properties being indicated for ring images. After that, a simple stereo rectification method based on the essential 
matrix and the conformal mapping is proposed. Simulations and real data experimental results illustrate that our methods are 
effective for the omnidirectional camera under the constraint of a single view point. 
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INTRODUCTION 
 

In recent years, the omnidirectional camera has 
received considerable attention, due to its large 
viewing area, in the computer vision community with 
its applications in the fields such as video conference, 
image-based rendering, virtual reality, and robot 
navigation. A typical and commonly used omnidirec-
tional camera is the catadioptric camera, which con-
sists of a quadratic mirror [paraboloid, hyperboloid, 
ellipsoid or cone (Lin and Bajcsy, 2006)] and a CCD 
sensor (perspective or orthogonal) (Baker and Nayar, 
1999). The catadioptric camera can obtain a 360° 
view of the environment at one shot, which is more 
convenient and has less computational load than that 

using the method of stitching images induced from a 
rotating perspective camera around a fixed axis or 
along a circle locus (Shum and Szeliski, 1995; Shum 
and He, 1999; Benosman and Kang, 2001; Agarwala 
et al., 2006). 

 
Motivation and contributions 

Previous research on omnidirectional vision has 
shown promising results in the last decade. However, 
most of them are based on an accurate camera model 
and the parameters are known in priori. Unfortunately, 
the parameters of most omnidirectional cameras are 
unavailable in practice. How to make these cameras 
useful in vision applications remains a challenging 
problem. 

In this study, we attempt to develop a generalized 
unwrapping and rectification method for an omnidi-
rectional camera when prior parameters are unknown 
for solving the counterpart problem of the perspective 
camera. Some important issues are investigated, such 
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as omnidirectional camera calibration, ring omnidi-
rectional image unwrapping, the epipolar geometry, 
and the rectification for the omnidirectional stereo 
pair. Based on the information above, we can recon-
struct the 3D environment from two omnidirectional 
images. The contributions of our work are twofold: 

(1) In the case of arbitrary camera configuration, 
a generalized essential matrix is deduced on a virtual 
quadratic surface. It can be computed using a new 
method similar to the classical eight-point algorithm 
(Hartley and Zisserman, 2000). Some important pro- 
perties of the epipolar geometry are emphasized. The 
four epipoles located in a quadratic space, which is the 
null space of the essential matrix. The intersection of 
two lines that connect the two null spaces is the pro-
jection center. We also investigate the shape of epi-
polar conics for some kinds of configuration. 

(2) After epipolar geometry is developed, a 
simple rectification method based on the essential 
matrix and the conformal mapping is proposed. It 
processes the columns and rows of image separately, 
and does not need to compute the constant differences 
between each pair of corresponding conics, which are 
enforced to lie on the same scan line from the essential 
matrix. 
 
Related research 

As a typical omnidirectional camera, the cata-
dioptric imaging system consists of a hyperboloid 
[ellipsoid, cone (Lin and Bajcsy, 2006)] mirror with a 
perspective camera, or a parabolic mirror with an 
orthogonal camera (Baker and Nayar, 1999). The 
single view point constraint is verified by a careful 
selection and assembly of mirrors and imaging de-
vices. In order to acquire the relationship between 
points in the 3D world and the catadioptric image 
plane, we shall first derive the model of image for-
mation process and calculate the parameters. The 
related works can be classified into two different 
categories: individual model and unified model. 

The individual model deals with the different 
types of catadioptric system separately. The types of 
quadric mirror surface must be given before the pa-
rameters could be calibrated. Yamazawa and Yagi 
(Yamazawa et al., 1993; Yagi et al., 1996) described 
an image sensor with a hyperbolic mirror for vision 
based navigation of a mobile robot. In (Svoboda and 
Pajdla, 2002), the epipolar geometry was studied for 

central catadioptric cameras separately. Each kind of 
epipolar geometry depended on the known parameters 
of the mirror. Kang (2000) proposed a technique 
dealing with the parabolic mirror with the aid of 
bounding circles in the image plane. In (Geyer and 
Daniilidis, 2002a), the authors also treated the case of 
parabolic mirror with two sets of parallel lines to 
calibrate the intrinsic parameters. However, the 
properties used in their study cannot be employed to 
other kinds of mirrors. The spherical mirror (Benos-
man and Kang, 2001) was also used. It could provide 
images with fewer blur and had a simple parametric 
model. However, the field of view was very sensitive 
to the camera-mirror alignment. All above mentioned 
techniques allow obtaining accurate calibration re-
sults, but primarily focus on particular sensor types 
and could not generalize to other kinds of sensors. 

In recent years, novel calibration techniques 
have been developed, which can be applied to any 
kind of catadioptric system. Geyer and Daniilidis 
(2001) introduced a unified sphere model for all cen-
tral catadioptric systems, where the conventional 
perspective imaging appeared as a particular case. It 
was proved that central catadioptric projection was 
isomorphic to a projective mapping from the unit 
sphere to a plane with a projection center on the per-
pendicular to the plane. Based on this model, some 
researchers (Ying and Hu, 2004; Ying and Zha, 2008; 
Barreto and Araujo, 2005) calibrated different cata-
dioptric systems by utilizing certain geometrical in-
variants of projection when the line or sphere in 3D 
space was transformed to the image plane. Mei and 
Rives (2007) took misalignment and lens distortion 
into account in the calibration procedure. Besides the 
calibration, the epipolar geometry of the parabolic 
catadioptric system had also been derived. After the 
computation of the fundamental matrix and intrinsic 
parameters (Geyer and Daniilidis, 2002b), the motion 
of the camera and the structure of the 3D scene could 
be obtained (Geyer and Daniilidis, 2003b). Unfortu-
nately, we noticed that the model of the parabolic 
system must be known in advance at this stage. Dif-
ferent from the sphere model, Micusik (2004) studied 
thoroughly the auto-calibration issues of some kinds 
of wide angle cameras including the parabolic cata-
dioptric camera, hyperbolic catadioptric camera, and 
spherical catadioptric camera, and fish-eye lens. For 
each imaging model, a parametric mapping between 
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image points and 3D light rays could be obtained after 
the Taylor expansion at initial values of unknowns. 
The parametric model depended on different omni-
directional camera parameters. But there were some 
shortcomings: the first problem is that some parame-
ters of the model have to be known, such as the field 
of view and the initial values of mirror parameters for 
the hyperbolic catadioptric camera; the second prob-
lem is that the 3D vectors have to be linearized to 
solve the quadratic eigenvalue problem for the 
spherical catadioptric camera. 

Another simple and interesting unified model 
was proposed by Scaramuzza et al.(2006) (henceforth, 
called the Taylor model). This technique does not use 
any specific model of the omnidirectional system. It 
only assumes that the imaging process could be de-
scribed by a Taylor series expansion, whose coeffi-
cients are the parameters to be estimated. These pa-
rameters are estimated by solving a four-step 
least-squares linear minimization problem, followed 
by a nonlinear refinement.  

Among the above unified models, the sphere 
model is the most popular one and proves to be 
equivalent to the central catadioptric image formation 
accurately. But before the parameters of the unit 
sphere could be calibrated, the types of quadric mirror 
must be given in priori. The same problems exist with 
Micusik’s model. This requirement makes them un-
suitable for the systems with unknown prior parame-
ters. In practice, the only model that could be used 
under the condition of unknown parameters is the 
Taylor model. In this study, we extend the research of 
the Taylor model to deal with the problem of ring 
image unwrapping, epipolar geometry and stereo 
rectification. 

 
 

TAYLOR MODEL AND CALIBRATION 
 

As mentioned above, all previous calibration 
procedures focus on particular sensor types and 
strongly depend on the model used. In practice, be-
cause the camera-mirror misalignments cannot be 
avoided, it is difficult to get a catadioptric system 
satisfying the single view point. Considering this 
problem, we utilize the unified model proposed by 
Scaramuzza et al.(2006), which is suitable for dif-
ferent kinds of omnidirectional vision systems. It 
models the projection from a pixel in the image plane 

to a 3D light ray by a Taylor series, whose coefficients 
constitute the calibration parameters. 

In Fig.1a, the bent surface with the reference 
frame Om is the virtual calibrated mirror which re-
flects the 3D light ray onto the sensor plane with the 
reference coordinates Os, as plotted in Fig.1b. Sup-
pose a 3D point Pw=[X, Y, Z] has a projection point 
Pm=[Xm, Ym, Zm] on the mirror surface. The projection 
of Pw in the sensor plane is ps=[us, vs] and pi=[ui, vi] in 
image plane Oi, as described in Fig.1c. All coordi-
nates are expressed in the mirror reference coordi-
nates with the Z-axis aligned with the reference co-
ordinates of the sensor plane. The complete model of 
an omnidirectional camera is 
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where M=[R, T] is the perspective projection matrix; 
A, t are the affine transformation components which 
encode the small camera-mirror misalignments and 
digitize the process error between image plane Oi and 
sensor plane Os. The function g(·) captures the rela-
tionship between a point ps in the sensor plane and the 
vector OmPm. In the Taylor model, g(·) has the form 
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Fig.1  Taylor model and omnidirectional camera calibration
(a) Taylor-series-based image formation and coordinates sys-
tem in the catadioptric case; (b) Reference coordinates of the 
sensor plane in metric coordinates; (c) Reference coordinates 
of image plane in pixel coordinates. The two reference coor-
dinates are related by affine transformation A, t, whose effects 
can be illustrated from the circle in (b) and the ellipse in (c) 
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(b)                                             (c) 
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where 2 2
s su vρ = +  is the radial distance from image 

point ps to projection center Os in the sensor plane. 
The function of Taylor series f(·) is a generalized 
parametric polynomial of the imaging model and can 
compensate for small camera-mirror misalignments. 
So far the intrinsic parameters to be calibrated are aN, 
aN−1, …, a1, a0 and the extrinsic parameters M=[R, T], 
which are the transformation from the world reference 
coordinates to the mirror reference coordinates. After 
substituting Eq.(2) into Eq.(1), a four-step least- 
squares linear minimization problem is solved, fol-
lowed by a nonlinear refinement based on the maxi-
mum likelihood criterion, to estimate these parame-
ters. In most practical cases, the mirror is revolution 
symmetrical when its axis coincident with the prin-
cipal axis of the camera. The Taylor series only con-
tains components with even order. According to the 
minimization of the reprojection error and one-to-one 
mapping from 3D point to its 2D image projections, 
higher order terms are suppressed and the imaging 
model can be approximated by a quadratic polynomial. 
The error caused by the approximation is in a tolerable 
range as illustrated by our experimental results. 

In the back projection, the image point pj=[uj, vj] 
has the corresponding projection on the virtual mirror 
surface Pm=[λuj, λvj, f(λuj, λvj)], according to Eq.(2), 
as portrayed in Fig.1a. But only from this Pm one 
cannot determine the position of the corresponding 
3D point in the world, shown as Pm1, Pm2, Pm3, be-
cause from the knowledge of stereo vision at least two 
images of the same scene structure are needed. In 
other words, the functions g(·) and f(·) model the 
projection procedure from the 3D point Pw to the 
sensor point ps, but it can only map the sensor point pj 
to a 3D light ray OmPm, not a particular 3D point,  
in the mirror reference coordinates in the back  
projection. 
 
 
UNWRAPPING OF RING OMNIDIRECTIONAL 
IMAGES 
 

Calibration is implemented by using ring cata-
dioptric images, which are extremely distorted from 
the real world compared with conventional perspec-

tive images. Furthermore, many classical algorithms 
of planar perspective images cannot be applied to the 
ring image directly. It is difficult to develop the 
counterpart algorithms of conventional perspective 
cameras for the ring image. Motivated by this obser-
vation, we transform the ring image to two kinds of 
images: cylinder panorama and cuboid panorama. 

Roughly speaking, the panorama is a stitched 
picture from a set of images (Shum and Szeliski, 1995; 
Shum and He, 1999; Benosman and Kang, 2001; 
Agarwala et al., 2006), which are produced by a 
perspective camera when it is rotated around a fixed 
vertical axis or following a circle locus with a certain 
angle interval. Compared with a single image cap-
tured by the conventional perspective camera, the 
panorama has a wide field of view with 360° in the 
same local resolution. However, re-sampling and the 
rectification in stitching can also cause new errors. 
These off-line operations will also become a bottle-
neck when the real-time need should be satisfied. 

Here we utilize a ring catadioptric image and 
unwrap it to a cylinder panorama based on the cali-
brated model as Eq.(2) has shown directly, so that the 
complexity and the time consumption of rectification 
and stitching can be avoided. Fig.2 describes the 
process from a ring omnidirectional image to a cyl-
inder panorama at the vertical cross section and at a 
horizontal section, respectively. Assuming the radius 
of the cylinder is R (it depends on the radial distance 
at the maximum elevation), the cylinder has a cir-
cumference of 2πR and its height is 

 
1 2(tan tan ),H R θ θ= +                    (3) 

 
where tan θ1 and tan θ2 are the maximum elevation and 
maximum depression, respectively. At the vertical 
cross section in Fig.2a, for a point P(h, φ) with a po-
sition of height h and rotating angle φ on the cylinder 
surface, the line through Om and P(h, φ) has the form 
 

( ) .hf
R

ρ ρ=                            (4) 

 
From Eqs.(2) and (4), we obtain a point ρ0 on the 

virtual mirror. Note that a line intersects a conic with 
two points. We choose the point that lies between the 
origin Om and P(h, φ). For a rotating angle φ, ρ0 has its 
corresponding image point [u0, v0] through Eq.(5): 
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where A and t are the affine transformation parame-
ters obtained from the calibration; cx, cy are the coor-
dinates of the projection center. Finally, interpolation 
is required to obtain the intensity or color for the point 
P(h, φ) on the cylinder surface. 

Due to the image projection onto a cylinder 
surface, this kind of panorama has a great deal of 
systematic distortions. Thus we consider projecting 
the omnidirectional image onto a plane to obtain an 
equivalent perspective image that is easy to interpret; 
in such a case, most classical vision algorithms, which 
are valid only for perspective cameras, can be applied. 
However, it is a data lossy transformation when the 
ring omnidirectional image is projected only onto a 
single plane. We use a cuboid to encompass the whole 
omnidirectional image. The cuboid panorama can be 
produced by an equivalent system that contains four 
perspective cameras (Fig.2c), each of them has a field 
of view of 90° and they have a common principal 

point O. For clarity, Fig.3 gives the geometrical pro-
jection relationship of cuboid panorama, which is 
similar to the cylinder panorama except that the cor-
responding line of Eq.(4) is f(ρ)=ρh(cos ω)/R, where ω 
is the angular position on each profile of the cuboid. 
The geometry derivation is omitted due to space 
limitation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

EPIPOLAR GEOMETRY 
 

It is well known that stereo matching is difficult 
and time consuming. For a stereo pair of perspective 
cameras, the epipolar geometry constraint reduces the 
search range of correspondences from 2D on a plane 
to 1D on a line, so it is indispensable to find an epi-
polar geometry rule for all of stereo systems. Svoboda 
and Pajdla (2002) derived a closed-form solution for 
an ideal central catadioptric system of a single view 
point and the conclusion resembles the rule of the 
perspective camera: for a catadioptric stereo system, a 
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Fig.2  Cylinder panorama unwrapping 
(a) In vertical cross section; (b) In horizontal section; (c) The 
equivalent network of the perspective cameras for the cu-
boid panorama 

(b)                                        (c) 

Fig.3  Cuboid panorama unwrapping 
(a) In vertical cross section; (b) In horizontal section 
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point in one view defines a conic in the other, and the 
corresponding point in the other view lies on the de-
fined conic. Unfortunately, their solution shares the 
same problem of strongly depending on the prior 
parameters and is not suitable for the systems with 
unknown prior parameters. Based on the Taylor 
model introduced in Section 2, the epipolar geometry 
of arbitrary camera configuration is deduced through 
some geometrical derivations. 

Fig.4a illustrates a generalized epipolar geome-
try relationship between two views of the catadioptric 
camera. The origins of the mirrors are Om1 and Om2, 
respectively. The corresponding reference coordi-
nates of image planes are o1 and o2. Assume p21=[u21, 
v21] and p22=[u22, v22] are two image points of the 
same 3D point P2=[X, Y, Z]. q21=[u21, v21, f(ρ21)]T and 
q22=[u22, v22, f(ρ22)]T are the corresponding points on 
the mirror surfaces according to the calibrated model. 
Suppose the world reference coordinates coincide 
with the reference coordinates of the left mirror, and 
the relative pose is given by a rotation R and a trans-
lation T. In the frame of Om1, the normal l21=T×q21 of 
epipolar plane Om1POm2 is rotated to the frame of Om2, 
l22=Rl21=R(T×q21). The vector q22∈Om1P2Om2 is or-
thogonal to the normal; hence T

22 22⋅ =q l  
T
22 21( ) 0⋅ × =q R T q  becomes a bilinear equation after 

some rearrangements: 
 

T
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symmetric form of the translation T=[Tx, Ty, Tz]. Eq.(6) 
has a similar constraint form to the essential matrix of 
the perspective cameras, but the vectors included are 
defined on a quadratic surface, which is different from 
the vectors in 3D projective space of the perspective 
camera. From Eq.(6), we can find that a point q21 on 
the surface of the left mirror corresponds to a conic on 
the right mirror surface, i.e., C=Eq21=[a, b, c]T. The 
corresponding point, i.e., q22=[u22, v22, f(ρ22)]T, lies on 
this conic. Hence, the conic has the following form: 
 

T
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After projecting onto the image plane, we can 
obtain the image form of the conic in Eq.(7). Similarly, 
the conic on the left mirror corresponding to q22 in the 
right mirror can be computed. A special stereo con-
figuration of the catadioptric cameras is plotted in 
Fig.4b, which brings a simple epipolar geometry re-
lationship. Due to the up-down configuration of the 
cameras, the epipolar line is actually a family of lines 
incident with the projection center. This configuration 
has also been used to construct a rectified stereo sys-
tem by (Gluckman et al., 1998; Lin and Bajcsy, 2003). 
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Fig.4 Epipolar geometry of the catadioptric stereo system
(a) An arbitrary configuration of the catadioptric cameras, 
with its epipolar line as a conic; (b) A typical configuration for 
the catadioptric stereo system, with its epipolar line as a
straight line through the projection center 
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Using a similar derivation process as described above, 
sinusoid epipolar geometry can be obtained for cyl-
inder panoramas, similar to what proposed originally 
by McMillan and Bishop (1995). 

For the form of the epipolar geometry constraint 
shown in Eq.(6), the essential matrix in a quadratic 
space can be recovered through the method similar to 
the linear eight-point algorithm (Hartley and Zisser-
man, 2000). The differences are that our correspon-
dences are defined in a quadratic space and nine pairs 
of points are required. Due to the skew-symmetry of 
the translation matrix T̂  and the rank-3 property of 
the rotation matrix R, the essential matrix E is rank-2. 
Hence, all of the epipolar conics in one of the ring 
images intersect each other at two common points, 
called epipoles, shown as eij (i=1, 2; j=1, 2) in Fig.4a. 
The projections of these epipoles eij on the mirror, i.e., 
N1j and N2j, lie in the null spaces of the essential  
matrix: 

 

1 ,j =EN 0   T
2 .j =E N 0                 (8) 

 
The center of projection lies on the direction of 

two mirrors’ centers in the image plane and is the 
intersection of the two lines that connect the two null 
spaces. These lines coincide with the orientation of 
the mirrors’ centers. Given the essential matrix of the 
two views for the catadioptric camera, the rotation R 
and the translation T̂  can be extracted (Hartley and 
Zisserman, 2000). As soon as we know the epipolar 
geometry of catadioptric cameras, the 3D scene can be 
reconstructed through the correspondences in two 
views. The correspondences are constrained on the 
epipolar conics. In order to make the correspondences 
search simpler and faster in the 2D image plane, the 
rectification for an omnidirectional stereo pair is  
required. 
 
 
RECTIFICATION AND RECONSTRUCTION 
 

For a stereo system of perspective cameras, rec-
tification is employed when a dense match or recon-
struction is required. Here we investigate the stereo 
rectification for the omnidirectional images including 
panoramas induced in Section 3 and the two arbitrary 
ring catadioptric images. 

Rectification for panorama stereo 
A pair of ring images is unwrapped to produce a 

pair of panoramas in Section 3. These two ring images 
are captured by two up-down omnidirectional cam-
eras, similar to the typical configuration of omnidi-
rectional stereo in Fig.4b. This kind of stereo con-
figuration does not have the problem of occlusion, 
which often exists in other configurations. It also 
brings a simple kind of epipolar geometry and can 
generate naturally two rectified omnidirectional im-
ages if the mirrors and the cameras are placed prop-
erly (Gluckman et al., 1998; Lin and Bajcsy, 2003; 
Spacek, 2005). However, since pre-defined ideal 
up-down configuration is often violated in practice, 
the rectification procedure is needed to make the 
epipolar line coincident with the columns. The epi-
polar constraint in columns of unwrapped panoramic 
images is similar to that of perspective cameras. Here 
we adopt the rectification algorithm proposed in (Ma 
et al., 2003). It computes two projective transforma-
tions H1, H2∈ú

3×3 which satisfy 
 

T
1 1 [1, 0, 0] ,∼H e   T

2 2 [1, 0, 0] ,∼H e          (9) 
 

where e1 and e2 are the two epipoles corresponding to 
the fundamental matrix in the panoramas, and ú3×3 is 
the space of real 3×3 matrices. After the transforma-
tions of H1 and H2, the corresponding epipolar lines 
lie in the same columns. 
 
Rectification for ring omnidirectional stereo 

Now we consider the situation of cameras in the 
arbitrary configurations. In this case, the two epipoles 
are located in the image plane. The projection of the 
intersection of the epipolar plane and the mirror is an 
epipolar conic. With the case of the Taylor model, the 
epipolar conics happen to be a family of circles ac-
cording to the minimization of the reprojection error 
and one-to-one mapping from 3D points to its image 
projections. However, there is not much work con-
cerning the rectification for omnidirectional stereo. 
Based on the simple epipolar geometry of a vertical 
camera configuration, Gluckman and Nayar (2000) 
used folded mirrors combined with a camera to build a 
rectified stereo system, which can produce a rectified 
stereo pair directly. Lin and Bajcsy (2003) also ob-
tained two epipolar-line-aligned stereo images with 
the help of a beam splitter. Geyer and Daniilidis 
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(2003a) introduced an interesting rectification method 
for the parabolic catadioptric cameras. In their method, 
the image plane was transformed onto a complex 
plane, and then the constant differences between pairs 
of epipolar conics were estimated. In practice, their 
method is very complex and time consuming because 
the constants need to be calculated every time. If the 
parameters in their sphere model are not known, the 
rectification could not be implemented. Inspired by 
Geyer and Daniilidis (2003a), we propose a new rec-
tification method based on the conformal mapping 
and the essential matrix, which extends the applica-
tions range of ring omnidirectional stereo pair  
rectification. 

1. Bipolar coordinates 
Two-center bipolar coordinates (Lockwood, 

1967) are one of the bipolar coordinates based on 
Apollonian circles that contain two families of circles 
with each circle in the first family intersecting any 
circle in the second family at a right angle. These two 
families of circles are the two bases of bipolar coor-
dinates, τ and σ. There are two fixed points e1 and e2 in 
τ-σ coordinates with the corresponding positions of 
(−r, 0) and (r, 0) in Cartesian coordinates. The map-
ping between these two systems is 

 

0
sinh ,

cosh cos
x r τ

τ σ
=

−
                   (10) 

0
sin ,

cosh cos
y r σ

τ σ
=

−
                   (11) 

 
where σ∈(0, 2π), τ∈(−∞, +∞). When τ and σ are 
constants, the two families of the orthogonal circles 
have the forms in Eqs.(12) and (13): 
 

2
2 0

0 2( cot ) ,
sin

rx y r σ
σ

+ − =               (12) 

2
2 0

0 2( coth ) .
sinh

r
y x r τ

τ
+ − =              (13) 

 
These circles are plotted in Fig.5a. The dashed 

circles intersect each other at two common points e1, 
e2, and the centers of the solid circles lie on a line 
connecting these two fixed points. Actually, the for-
mer is the locus of the points satisfying P={Pi| 
∠e1Pie2=σ0}, and the latter is the set with the con-
straint of P={Pi|ln (|Pie1|/|Pie2|)=τ0}. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Stereo rectification based on the essential 

matrix and the conformal mapping 
The epipolar circles under the Taylor model have 

a similar form to the dashed circles in Fig.5a. We can 
map the image plane u-v to the bipolar plane τ-σ, and 
the mapping is conformal. The bases of the two co-
ordinate frames are orthogonal to each other, which 
satisfy the Cauchy-Riemann equations: 

 

2

sin sinh ,
(cosh cos )

x y σ τ
σ τ τ σ
∂ ∂

= = −
∂ ∂ −

         (14) 

2

1 cos cosh .
(cosh cos )

x y σ τ
τ σ τ σ
∂ ∂ −

= − =
∂ ∂ −

         (15) 

 
For a point L L

0 0( , )σ τp  of the left rectified image 
τ-σ in Fig.5b, the position in standard Cartesian co-
ordinates can be obtained using Eqs.(10) and (11). 
The position of two epipoles in this coordinates are 
(−rL, 0) and (rL, 0), where L L L

1 2|| || /2.r = −e e  This 
Cartesian coordinates system is different from the ring 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
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u

o
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1σ
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R
2e

Fig.5  Illustration of the stereo rectification for the ring 
catadioptric images 
(a) The bipolar coordinates with two families of the or-
thogonal circles plotted; (b) The rectification flow based on 
the essential matrix and the conformal mapping, with p and σ1 
being the corresponding elements 

P

1e 2e

0σ
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image coordinates by a rotation LR̂  and a translation 
Lˆ ,t  which can be computed from two sets of epipoles, 

i.e., L R, ( 1, 2),j j j =e e  in the image plane: 
 

L L
L

L L

cos sinˆ = ,
sin cos

θ θ
θ θ

⎡ ⎤−
⎢ ⎥
⎣ ⎦

R                (16) 

L L
L 2ˆ = ,

2
1 +e et                                  (17) 

 
where θL is the angle from the x-axis of the image 
plane to vector L L

1 2 ,−e e  and the superscript ‘L’ 
represents the left image. The transformation can be 
obtained in the same manner for the right image. After 
that, we obtain the corresponding image point 

L L
0 0( , ).u vq  The corresponding conic (which is a circle 

under the Taylor model) in the right image is 
Qconic=Eq. After the central angle (θ) for two epipoles 
of this circle is computed, we can determine the R

0σ  
in the following way: 
 

L
0

R L
0 0

L
0

/ 2, (0,π/2] (π,3π/2],

/ 2 π, (π/2,π],

π / 2, (3π/2,2π].

θ σ

σ θ σ

θ σ

⎧ ∈ ∪
⎪

= − ∈⎨
⎪ − ∈⎩

     (18) 

 

Then for each point R R
0 0( , )σ τ  along a row of R

0σ  
in the right rectified image, we compute the image 
correspondence using Eqs.(10) and (11) and the 
transformation Rˆ ,R  Rˆ .t  Because the same rows of 
the two rectified images are processed, the corre-
spondences along a same pair of epipolar circles lie on 
the same rows of the rectified images only from epi-
polar geometry. 

After the mapping, the transformed points of the 
corresponding epipolar circles lie on the rows of L

0σ  

and R
0 ,σ  respectively. The rectification flow illus-

trated in Fig.5b and the pseudo-codes presented in 
Algorithm 1 encode the rectification algorithm based 
on the essential matrix and the conformal mapping. 
The algorithm processes the rows and columns of the 
image plane separately, and it also avoids the constant 
difference calculation between L

0σ  and R
0 ,σ  which 

are enforced to be equivalency through the essential 
matrix. 

Algorithm 1    Stereo rectification for ring omnidi-
rectional images 
Input: IL and IR: a pair of omnidirectional images,  

E: essential matrix. 
Output: ILrect and IRrect: a pair of rectified images. 

 

Step 1: Find two sets of epipoles, L R, ( 1, 2)j j j =e e  ac-

cording to Eq.(8). 
Step 2: Compute rL and rR, LR̂  and Rˆ ,R  Lt̂  and Rt̂  

according to Eqs.(16) and (17). 
Step 3: Select any image as the reference, e.g., the left 

image, and L L
max[1, ]τ τ∈ , σL∈(0, 2π]. 

Step 4:  
for σL∈(0, 2π] 

for L L
max[1, ]τ τ∈  

Compute the position of standard coordinates, (xL, yL), 
using Eqs.(10) and (11); 

Transform (xL, yL) into ring image coodinates: 
 

L L T L L L T L L L Tˆ ˆ[ , ] [ , ] [ , ] ;x yu v = x y c c+ +R t  
 

Calculate the intensity for (σL, τL) using bilinear in-
terpolation; 

for a certain L
nτ  

Compute the corresponding epipolar conic using 
the Taylor model and essential matrix; 

Find the central angle R R
1 2( ) / 2θ = ∠e Oe , and ob-

tain σR according to Eq.(18); 
for R R

max[1,  ]τ τ∈  
Compute the position of standard coordinates, 

(xR, yR), using Eqs.(10) and (11); 
Transform (xR, yR) into ring image coodinates: 

 

R R T R R R T R R R Tˆ ˆ[ , ] [ , ] [ , ] ;x yu v = x y c c+ +R t  
 

Calculate the intensity for (σR, τR) using bilinear 
interpolation; 

end 
end 

end 
end 

 
The size of the rectified images is determined by 

the position of two epipoles. This rectification is an 
information lossy transformation when two epipoles 
are in the ring image simultaneously due to its singu-
larity [see Eqs.(10) and (11)]. The algorithm can be 
applied to arbitrary pairs of omnidirectional images 
except those produced by the perspective camera 
combined with a cone mirror, because the cone is a 
degenerate conic and the Taylor expansion of this 
catadioptric system does not contain the term of order 
two. 
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Triangulation 
Given a rectified pair of omnidirectional images, 

numerous matching techniques for perspective im-
ages reviewed in (Scharstein and Szeliski, 2002) can 
be used to compute the correspondence. The search is 
now restricted to one dimension, in the same hori-
zontal scan line in the case of ring catadioptric stereo 
and the same columns in panorama stereo. Because 
stereo matching is outside the scope of this study, here 
we do not discuss the detailed algorithms. 

After matching, a set of image correspondences 
L R L

1, 2, ...,{ , }i i i i i N== −x x x d  of the same scene Xi and 

the disparity di can be obtained. Assume the world 
coordinates is coincident with the left mirror coordi-
nates, and two projective matrices are PL=[I, 0] and 
PL=[R, t], calculated from the epipolar geometry in 
Section 4. The 3D light rays L L L T[ , (|| ||)]i i if=l x x  and 

R R R T[ , (|| ||)]i i if=l x x  on the mirror can be estimated 
based on the calibrated Taylor model. In each view of 
the mirror we obtain the following projection  
equations: 
 

L L L R R R, ,i i i i i iλ λ= =l P X l P X            (19) 
 
where L

iλ  and R
iλ  are two scalars. In Eq.(19), we 

have six equations with five unknowns, which can be 
solved by the linear least-squares method. After that, 
the range information of Xi is estimated. Here we 
should address that the estimated Xi is determined 
only up to scale which can be upgraded to a metric 
scale given the distance between the two cameras. 
 
 
EXPERIMENTAL RESULTES 
 

A set of experiments has been conducted to test 
the described method using both simulations and real 
data. Experimental results and numerical statistics are 
presented in this section. 
 
Simulations 

A catadioptric system consisting of a hyperbolic 
mirror and a perspective camera was simulated. The 
expression of the hyperbolic mirror and the intrinsic 
parameters of the perspective camera is shown in 
Eq.(20) with meter and pixel as units respectively. 

2 2 2 2 2

2 2

( 0.04 0.02 ) 1,
0.04 0.02

1000 0 320
0 1000 240 .
0 0 1

z x y⎧ + + +
− =⎪

⎪⎪
⎡ ⎤⎨
⎢ ⎥⎪ = ⎢ ⎥⎪
⎢ ⎥⎪ ⎣ ⎦⎩

K
    (20) 

 
After the calibration, we obtained a Taylor ex-

pansion f(ρ)=0.0045ρ2−55.728, the center of projec-
tion, (320.0021, 240.0011), and the affine transfor-

mation 
6

6

0.999 96 0.4260 10
.

0.2138 10 1

−

−

⎡ ⎤×
= ⎢ ⎥×⎣ ⎦

A  These 

parameters encoded the mapping from a point in the 
ring image to 3D light rays in the mirror. Then a set of 
random points was generated in the 3D space, and the 
corresponding points in the image plane can be pro-
duced by this simulated catadioptric system for the 
camera’s two views (Figs.6a and 6b). The ring cata-
dioptric image in Fig.6b was unwrapped to the cuboid 
and cylinder panorama in Fig.6c and Fig.6d. The 
mirror was also plotted, and the reference coordinate 
of the mirror was coincident with the panoramas for 
simplicity. At least nine points were needed to com-
pute the essential matrix in the quadratic space. Two 
pairs of epipoles lay in the left and right null spaces of 
this essential matrix. In Fig.6e, some sampled epipo-
lar conics were plotted with the two epipoles marked 
with crosses. The intersection of two lines is the pro-
jection center. Given the essential matrix, the rotation 
and translation can be extracted by the method pro-
posed in (Hartley and Zisserman, 2000). The coordi-
nates of the mirror in the left view was defined as the 
world coordinates. After linear triangulation, we ob-
tained the 3D points corresponding to the points in the 
images. The results were plotted in Fig.6f with two 
poses of the camera and the line connecting the fo-
cuses of two views. 

In order to test the robustness of our method, 
Gaussian noise N~(0, σ2) was added to the simulated 
ring image points coordinates. Under each level of 
noise, we measured the Euclidian distance 
(Qtern.Dist in Eq.(21a)) between the quaternions qest 
and qgrth, which represent the estimated rotation and 
the true rotation respectively, the ratio (Trans.Ratio in 
Eq.(21b)) between the estimated translation Test and 
the ground truth Tgrth, the average distance in pixels 
(Av.EpPts.Dist in Eq.(21c)) from ring image points pi 
to their epipolar conic Ci, the Sampson distance 
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(Yamazawa et al., 1993) in pixels (Av.Samp.Dist in 
Eq.(21d)), the average reprojection error in pixels 
(Av.Rpj.Err in Eq.(21e)), and the average difference 
of rows (in pixels) between the two corresponding 
scan lines after rectification, i.e., Av.Rect.Diff in 
Eq.(21f), in which row

iL  and row
iR  represent the row 

coordinates of the rectified image points in the left and 
the right images, respectively. The above measure-
ments under the noise levels with standard derivation 
from 0 to 1 pixel were plotted in Fig.7. Av.EpPts.Dist 
and Av.Samp.Dist had a similar trend, and they were 
both less than one pixel, but the latter was smaller. 
The reprojection error was less than 0.4 pixels. The 
distance between the estimated quaternion and its 
ground truth increased with the noise. The same 
situation existed with the Trans.Ratio. With the 
ground truth ratio of 2.6493, Trans.Ratio fluctuated in 
the range from 2.64 to 2.66. Fig.7f illustrated the 
average row difference between corresponding epi-
polar conics after the stereo rectification. Av.Rect.Diff 
increased mildly at low levels of noise compared with 
noise levels of larger than 0.8 pixels. But the differ-
ence was limited in 0.8 rows.  
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rpj
=1

1 ( , , ( ), ) ,
N

i i
i

Av.Rpj.Err p f
N

ρ= −∑ p R T X  (21e) 

row row

=1

1 .
N

i i
i

Av.Rect.Diff
N

= −∑ L R          (21f) 

 

Real data 
The camera we used in the real data experiments 

is the SONY RPU-C251 (http://www.visioncom.co.il/ 
m4_Cameras_RPU-C2512.asp). Its output is a stan-
dard NTSC analog video signal and the maximum 
resolution is 640×480. The captured image was 
shown in Fig.8a. The camera is very convenient to use,  

(a)                                                                 (b)                                                                   (c) 
 

 
 
 
 
 
 
 
 
 
h 
 

(d)                                                                 (e)                                                                   (f) 

Fig.6  Simulation results of the proposed algorithm 
(a) The simulated scene with two poses of the omnidirectional camera; (b) The projection points on the image plane; (c) The 
cuboid panorama; (d) The cylinder panorama; (e) Some epipolar conics with their corresponding points lying on it (two lines 
connect two null spaces of the essential matrix and intersect at the projection center); (f) Reconstruction of the simulated scene 
with the estimated poses of omnidirectional cameras 
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but none of the parameters were available. After cali-
bration, we obtained the Taylor expansion f(ρ)= 
0.0032ρ2−105.3535, the center of projection 
(320.3386, 240.0196), and the affine transformation 

4

4

0.9931 3.0928 10
.

1.4047 10 1

−

−

⎡ ⎤×
= ⎢ ⎥×⎣ ⎦

A  These parameters 

encoded the relationship from the ring image point to 
the 3D light ray in the reference coordinates of the 
mirror. The unwrapped panoramas are illustrated in 
Fig.8b and Fig.8c, from which we can see that a line in 
the world coordinates corresponded to a sinusoid in 
the cylinder surface, but it became a straight line in the 
cuboid, as shown in Fig.8c. 

In the computation of the essential matrix, at 
least nine corresponding points were needed, but we 
selected more and solved a linear least-squares prob-
lem to improve accuracy. The rotation and translation 
were also estimated simultaneously. In Fig.9, the 
epipolar conics for two styles of configurations were 
plotted, with the crosses denoting the points corre-
sponding to the epipolar conics. All the conics  
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Fig.7  The algorithm performance evaluation under different levels of noise 
(a) The distance between the quaternions, Eq.(21a); (b) The ratio between the translations, Eq.(21b); (c) The distance in 
pixels from image points to the conic (Eq.(21c)) and the Sampson distance in pixels (Eq.(21d)); (d) The reprojection error in 
pixels (Eq.(21e)) and the rectification difference in pixels between two corresponding epipolar conics (Eq.(21f)) 
 

Fig.8  Omnidirectional image unwrapping 
(a) Ring omnidirectional image; (b) The cylinder panorama
with its sinusoid epipolar curves overlaid; (c) The cuboid
panorama 
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(b) 
 
 
 
 
 
(c) 



Lei et al. / J Zhejiang Univ Sci A   2009 10(8):1125-1139 1137

intersected at two fixed points, named epipoles, and 
the line connecting two epipoles indicated the motion 
direction of two cameras. Measurement results of 
Eqs.(21c) and (21d) were 0.41, 0.28 pixels for Fig.9a, 
and 0.35, 0.21 pixels for Fig.9b. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the epipolar geometry in the panorama case, 

points were projected onto the panorama surface using 
the Taylor model, and a method similar to the nor-
malized linear eight-point algorithm was applied to 
the computation of the essential matrix. The epipolar 
curves were plotted in Fig.8b. We can see that the 
epipolar curve for the cylinder panorama was a sinu-
soid [which was already proofed in (McMillan and 
Bishop, 1995)]. On the whole, the two sets of epipoles 
for the panorama in Fig.8b and for the ring images in 
Fig.9a were in the same position. The errors were 
mainly caused by panorama unwrapping and manual 
selection of points. The epipolar conics in Fig.9b were 
simpler than those in Fig.9a due to the special camera 
configuration of the up-down style. These epipolar 
conics were straight lines incident with the projection 
center, and their projections were a family of vertical 
lines in the panorama image as shown in Fig.10. Our 

ring images were produced by the up-down cameras 
configuration. It was not constrained in the vertical 
direction exactly due to the misalignment of the 
cameras. The epipolar line was not a vertical line in 
practice, as Figs.10a and 10c show. Based on this 
consideration, a rectification was employed before the 
matching to speed up the search for correspondences. 
A pair of rectified images after using the algorithm in 
(Ma et al., 2003) was shown in Figs.10c and 10d, in 
which we can see that the epipolar lines were coinci-
dent with the columns. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The rectification in Fig.10 was the case of cam-

era up-down configuration, which brings linear epi-
polar geometry. But it was not constrained to the spe-
cial trace for the structure from motion as in Fig.9b. 
Hence, the nonlinear epipolar geometry made the 
correspondences lie on a conic and the two epipoles 
existed in the ring image simultaneously, as shown in 
Fig.9a. In this case, the rectification method for the 
panorama stereo used in Fig.10 cannot be applied to 
the ring omnidirectional stereo pair. To solve this 
problem, the algorithm based on the essential matrix 

(a)
 
 
 
 
 

(b)
 
 
 
 
 

(c)
 
 
 
 
 

(d)
Fig.10  The rectification results for panoramas 

An unrectified panorama stereo pair is shown in (a) and (b).
For the up-down configuration, the simple epipolar geometry
is a family of vertical lines. These lines are not vertical exactly
for the misalignment of the cameras. (c) and (d) present the
rectified panoramas using a method similar to the perspective
image 

(a) 
 
 
 
 
 
 
 
 
 
 
 
(b) 

Fig.9  The epipolar geometry 
(a) Arbitrary cameras configuration with a nonlinear epipolar 
geometry; (b) Up-down configuration with a simple epipolar 
geometry that contains a family of lines incident with the 
projection center 
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and the conformal mapping presented in Section 5 
was used to rectify the ring stereo pair in Figs.9a and 
9b. The results were shown in Figs.11a and 11b. For 
Fig.9a, in which the neighborhood of epipoles was 
unwrapped into a part with great distortion due to the 
singularity of Eqs.(10) and (11) at the epipoles. For 
Fig.9b, the produced rectified images had very large 
sizes because one of the two epipoles did not lie in the 
ring image. So we cropped the useful part to display 
(Fig.11b). In order to test the correctness, we  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

manually selected some matched features in stereo 
pairs, and connected them with a straight line. As we 
can see in Figs.11a and 11b, these lines were coinci-
dent with the scan lines and were correctly aligned. 
The error measured by Eq.(21f) was 0.3754 pixels for 
Fig.11a and 0.2966 pixels for Fig.11b. After rectifi-
cation, we can reconstruct the scene more efficiently. 
In our experiments, we reconstructed two chessboards 
in the scene by manually assigning the disparity. The 
results were given in Figs.11c and 11d. In order to 
measure the planeness of the reconstructed plane, we 
first fitted a plane using all the reconstructed 3D 
points, and then computed the distance from these 
points to the plane by 
 

non-plane
1

1 ,
N

i
d

N =

⋅
= ∑ K X

K
                   (22) 

 
where K=[k1, k2, k3, k4] is the estimated norm of the 
plane and X=[X, Y, Z, 1]T is the homogeneous coor-
dinates. dnon-plane gives this error measurement. The 
resulting errors for Figs.11a and 11b were 5.21 and 
4.85 pixels, respectively. 

 
 

CONCLUSION 
 

We developed a generalized unwrapping and 
rectification method for omnidirectional cameras 
when the camera parameters are not available. After 
calibration, we obtained the mirror model based on the 
Taylor series. These parameters encoded the rela-
tionship from the ring image point to a 3D light ray. 
Then, the ring image was unwrapped to two kinds of 
panoramas: the cylinder panorama and the cuboid 
panorama. And the epipolar geometry was deduced 
for arbitrary camera configuration. We also investi-
gated the stereo rectification problem. For the case of 
up-down configuration, the simple epipolar geometry 
eases the rectification process and is similar to that in 
the perspective cameras. For the arbitrary configura-
tion, we proposed a new method based on the essential 
matrix and the conformal mapping. Experiments with 
simulated and real data were conducted. The results 
showed that our methods are effective.  

Future work will focus on the dense matching 
and reconstruction based on the rectified stereo pairs 
and the error correction to improve the robustness and 
the accuracy. 

Fig.11  (a) Rectification result of Fig.9a; (b) Rectification 
result of Fig.9b. Two images connected by lines are a pair 
of rectified images in which the corresponding points are 
denoted. As we can see, the corresponding points lie in the 
same row/column in the rectified image. (c) and (d) are the 
reconstruction results of the two chessboards for Fig.9a 
and Fig.9b, respectively 

0 
−1 

−2 
−3 

1 
2 

1.0

0.5

0

0 1 2 

−1

Ym

Xm 

Z m
 

Z m
 

Ym Xm
0 

2 

−2
0 

−5 

5 

2.5
2.0
1.5
1.0
0.5

(a) 
 

 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
(c) 
 
 
 
 
 
 
 
 
 
(d) 



Lei et al. / J Zhejiang Univ Sci A   2009 10(8):1125-1139 1139

References 
Agarwala, A., Agrawala, M., Cohen, M., Salesin, D., Szeliski, 

R., 2006. Photographing Long Scenes with Multi- 
viewpoint Panoramas. Proc. SIGGRAPH, p.853-861. 

Baker, S., Nayar, S.K., 1999. A theory of single-viewpoint 
catadioptic image formation. Int. J. Comput. Vis., 
35(2):175-196.  [doi:10.1023/A:1008128724364] 

Barreto, J.P., Araujo, H., 2005. Geometric properties of central 
catadioptric line images and their application in calibra-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 27(8): 
1327-1333.  [doi:10.1109/TPAMI.2005.163] 

Benosman, R., Kang, S.B., 2001. Panoramic Vision: Sensors, 
Theory and Applications. Monographs in Computer Sci-
ence. Springer-Verlag, New York. 

Geyer, C., Daniilidis, K., 2001. Catadioptric projective ge-
ometry. Int. J. Comput. Vis., 45(3):223-243.  [doi:10.1023/ 
A:1013610201135] 

Geyer, C., Daniilidis, K., 2002a. Paracatadioptric camera 
calibration. IEEE Trans. Pattern Anal. Mach. Intell., 
24(5):687-695.  [doi:10.1109/34.1000241] 

Geyer, C., Daniilidis, K., 2002b. Properties of the Catadioptric 
Fundamental Matrix. Proc. European Conf. on Computer 
Vision, p.140-154. 

Geyer, C., Daniilidis, K., 2003a. Conformal Rectification of 
Omnidirectional Stereo Pairs. Computer Vision and Pat-
tern Recognition Workshop, 7:73-78.   [doi:10.1109/ 
CVPRW.2003.10082] 

Geyer, C., Daniilidis, K., 2003b. Mirror in Motion: Epipolar 
Geometry and Motion Estimation. Proc. Ninth IEEE Int. 
Conf. on Computer Vision, 2:766-773.  [doi:10.1109/ICCV. 
2003.1238426] 

Gluckman, J.M., Nayar, S.K., 2000. Rectified Catadioptric 
Stereo Sensors. IEEE Conf. on Computer Vision and Pat-
tern Recognition, 2:224-236. . 

Gluckman, J.M., Thoresz, K., Nayar, S.K., 1998. Real Time 
Panorama Stereo. DARPA Image Understanding Work-
shop, p.299-303. 

Hartley, R., Zisserman, A., 2000. Multiple View Geometry in 
Computer Vision. Cambridge University Press, Cam-
bridge, UK.  

Kang, S.B., 2000. Catadioptric Self-calibration. Proc. IEEE 
Conf. on Computer Vision and Pattern Recognition, 
1:201-207. 

Lin, S.S., Bajcsy, R., 2003. High Resolution Catadioptric 
Omni-directional Stereo Sensor for Robot Vision. IEEE 
Int. Conf. on Robotics and Automation, p.1694-1699. 

Lin, S.S., Bajcsy, R., 2006. Single-view-point omnidirectional 
catadioptric cone mirror imager. IEEE Trans. Pattern 
Anal. Mach. Intell., 28(5):840-845.  [doi:10.1109/TPAMI. 
2006.106] 

Lockwood, E.H., 1967. A Book of Curves. Cambridge Uni-
versity Press, Cambridge, England, p.186-190. 

 
 
 
 
 

 
Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S., 2003. An Invitation 

to 3-D Vision: From Images to Geometric Models. 
Springer-Verlag, New York, USA. 

McMillan, L., Bishop, G., 1995. Plenoptic Modeling: An  
Image-based Rendering System. Proc. SIGGRAPH, 
p.39-46. 

Mei, C., Rives, P., 2007. Single View Point Omnidirectional 
Camera Calibration from Planar Grids. Proc. IEEE Int. 
Conf. on Robotics and Automation, p.3945-3950.  
[doi:10.1109/ROBOT.2007.364084] 

Micusik, B., 2004. Two-view Geometry of Omnidirectional 
Cameras. PhD Thesis, Czech Technical University, Pra-
gue, Czech Republic. 

Scaramuzza, D., Martinelli, A., Siegwart, R., 2006. A Toolbox 
for Easy Calibrating Omnidirectional Cameras. IEEE/RSJ 
Int. Conf. on Intelligent Robots and Systems, p.5695- 
5701.  [doi:10.1109/IROS.2006.282372] 

Scharstein, D., Szeliski, R., 2002. A taxonomy and evaluation 
of dense two-frame stereo correspondence algorithms. Int. 
J. Comput. Vis., 47:7-42.  [doi:10.1023/A:1014573219977] 

Shum, H.Y., He, L.W., 1999. Rendering with Concentric Mo-
saics. Proc. SIGGRAPH, p.299-306. 

Shum, H.Y., Szeliski, R., 1995. Stereo Reconstruction from 
Multiperspective Panoramas. Proc. Int. Conf. on Com-
puter Vision, p.14-21. 

Spacek, L., 2005. A catadioptric sensor with multiple view-
points. Rob. Auton. Syst., 51(1):3-15.  [doi:10.1016/j.robot. 
2004.08.009] 

Svoboda, T., Pajdla, T., 2002. Epipolar gometry for central 
catadioptric cameras. Int. J. Comput. Vis., 49(1):23-37.  
[doi:10.1023/A:1019869530073] 

Yagi, Y., Nishii, W., Yamazawa, K., Yachida, M., 1996. Rolling 
Motion Estimation for Mobile Robot by Using Omnidi-
rectional Image Sensor HyperOmniVision. Proc. 13th Int. 
Conf. on Pattern Recognition, 1:946-950.  [doi:10.1109/ 
ICPR.1996.546163] 

Yamazawa, K., Yagi, Y., Yachida, M., 1993. Omnidirectional 
Imaging with Hyperboloidal Projection. Proc. IEEE/RSJ 
Int. Conf. on Intelligent Robots and Systems, 2:1029- 
1034. 

Ying, X.H., Hu, Z.Y., 2004. Catadioptric camera calibration 
using geometric invariants. IEEE Trans. Pattern Anal. 
Mach. Intell., 26(10):1260-1271.  [doi:10.1109/TPAMI. 
2004.79] 

Ying, X.H., Zha, H.B., 2008. Identical projective geometric 
properties of central catadioptric line images and sphere 
images with applications to calibration. Int. J. Comput. 
Vis., 78(1):89-105.  [doi:10.1007/s11263-007-0082-8] 

 
 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


