
Rafe et al. / J Zhejiang Univ Sci A 2009 10(8):1093-1105 1093

Towards automated software model checking using
graph transformation systems and Bogor

Vahid RAFE†, Adel T. RAHMANI

(Department of Computer Engineering, Iran University of Science and Technology, Tehran, Iran)
†E-mail: rafe@iust.ac.ir

Received June 2, 2008; Revision accepted June 9, 2009; Crosschecked Apr. 28, 2009

Abstract: Graph transformation systems have become a general formal modeling language to describe many models in software
development process. Behavioral modeling of dynamic systems and model-to-model transformations are only a few examples in
which graphs have been used to software development. But even the perfect graph transformation system must be equipped with
automated analysis capabilities to let users understand whether such a formal specification fulfills their requirements. In this paper,
we present a new solution to verify graph transformation systems using the Bogor model checker. The attributed graph grammars
(AGG)-like graph transformation systems are translated to Bandera intermediate representation (BIR), the input language of Bogor,
and Bogor verifies the model against some interesting properties defined by combining linear temporal logic (LTL) and
special-purpose graph rules. Experimental results are encouraging, showing that in most cases our solution improves existing
approaches in terms of both performance and expressiveness.

Key words: Graph transformation, Verification, Bogor, Attributed graph grammars (AGG), Software model checking
doi:10.1631/jzus.A0820415 Document code: A CLC number: TP31

INTRODUCTION

Today, software development is a complex task,
because most of the modern software systems are
large in size and involve different and complex arti-
facts (e.g., distributed, real time and embedded sys-
tems). Hence, to overcome these complexities it is
important to undertake software system modeling and
design before implementation. However, to have
accurate models, using a proper language for model-
ing is mandatory and formal methods have proven to
be a crucial solution for automated software
engineering.

Graphs and diagrams are a very useful means to
describe complex structures and systems and to
model concepts and ideas in a direct and intuitive way.
For example, the structure of an object-oriented sys-
tem or the execution flow of a program can be con-
sidered as a graph. Regardless of the actual process
for modeling, a designer always will end up with
some diagrams or in fact, annotated boxes and lines.

These annotated boxes and lines can easily be con-
ceived as annotated directed/undirected graphs.
Graph transformation (Ehrig et al., 1999; Baresi and
Heckel, 2002) is a popular formalism as a well-known
and expressive specification language (e.g., to for-
mally capture software requirements). Therefore,
using graphs and graph transformation systems as a
formal background for software modeling is a natural
choice. Software architectures, component diagrams,
and state charts are only a few well-known examples
in which graphs have been used to software devel-
opment process (Baresi et al., 2008). These models
and many others can easily be described by means of
suitable graph transformation systems to formalize
their syntax and define the formal semantics of used
notations (Kuske, 2001; Baresi et al., 2003).

Rule-based features of graph transformation
systems can play an important role in modeling of
complex and large systems. Modeling is often not
enough because designers want to be able to ‘dis-
cover’ whether stated requirements (such as the

Journal of Zhejiang University SCIENCE A
ISSN 1673-565X (Print); ISSN 1862-1775 (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

Rafe et al. / J Zhejiang Univ Sci A 2009 10(8):1093-1105 1094

absence of deadlocks, safety and liveness properties)
are fulfilled in the system model. This is why even the
perfect graph transformation system must be com-
plemented with automated analysis capabilities to let
users reason on it and understand whether such a
formal specification fulfills their requirements, and
model checking has proven to be a viable solution for
this purpose.

Having completed our previous preliminary re-
search (Baresi et al., 2008), we present in this paper a
novel solution using Bogor (Robby et al., 2003) to
model check attributed graph grammars (AGG)-like
(www.tfs.cs.tu-berlin.de/agg/) graph transformation
systems. The key characteristics that make our solu-
tion highlighted from the existing proposals are: (1)
supporting models of complex types for verification,
and thus using attributed graphs is mandatory, (2)
using the available data structures in Bogor to support
dynamic systems, that is, systems with dynamic node
creation/deletion, (3) supporting layered graph
transformation systems for verification, and (4) using
graph transformation systems including type graphs
that support meta modeling techniques.

In our approach, graph transformation systems
are translated to Bandera intermediate language (BIR),
the input language of the model checker called Bogor
(Corbett et al., 2000), while properties are defined by
combining linear temporal logic (LTL) and special-
purpose graph rules. Then Bogor generates the tran-
sition system and performs the verification (via tem-
poral logics interpreted on the transition system). If the
result of the verification is negative, Bogor will gen-
erate a counter example to show it to the designers.

RELATED WORKS

There are different approaches and tools for
software model checking. Model checkers [like Murφ
(http://verify.stanford.edu/dill/murphi.html), SAL
(Bensalem et al., 2000), SPIN (Holzmann, 1997)] are
used to verify finite state systems automatically. As it
is hard to use the low-level input language of model
checker tools for modeling systems directly, many
transformation techniques have been developed to
translate high-level modeling languages like unified
modeling language (UML) based models into the
input languages of model checker tools (e.g., Latella

et al., 1999; Paltor and Lilius, 1999; Compton et al.,
2000). But the problem is that UML is not formal,
hence automatic and precise translation of UML dia-
grams to the input languages of the model checkers is
not straightforward. Therefore, in our proposal we are
dealing with graph transformation systems instead of
UML or other informal modeling languages.

The theoretical foundations for the verification
of graph transformation systems through model
checking have been studied by Heckel (1998). The
author suggested that graphs should be interpreted as
states. Then transformation rules can be considered as
transitions between states. This idea is used by both
GROOVE (Rensink, 2004) and CheckVML (Schmidt
and Varró, 2003). Also, we have exploited this idea in
our solution.

GROOVE applies adapted model checking al-
gorithms on graph transformation systems by con-
sidering graphs as states and applications of trans-
formation rules as transition between them. Properties
are defined by means of a combination of graph rules
and computational tree logic (CTL) expressions
containing rule names as atoms. Since GROOVE
cannot support type graphs (in contrast to our pro-
posal), the model checking of real models becomes
complex or infeasible. Later, Kastenberg (2005)
proposed a solution to extend GROOVE with attrib-
uted graphs; however, it supports attributed graphs
partially and in a non-native way. Kastenberg sug-
gested in his proposal that attributes and values are
kept separate, which makes it difficult for users to
work with the graph transformation systems, and
performance decreases as soon as the size of graphs
increases. Furthermore, GROOVE cannot support
layered graph transformation systems, while our ap-
proach not only supports them, but also supports
attributed and type graph transformation systems.

CheckVML (Schmidt and Varró, 2003) exploits
SPIN (Holzmann, 1997) to model check graph
transformation systems. A graph transformation sys-
tem including a type graph, rules and a host graph is
fed to CheckVML as input. Then it produces an
equivalent model in Promela, which is SPIN’s input
language. In CheckVML, properties are defined by
means of a combination of graph rules and LTL.
CheckVML can support only safety and reachability
properties (Schmidt, 2004), while our approach can
support a wide range of properties like safety, liveness,

Rafe et al. / J Zhejiang Univ Sci A 2009 10(8):1093-1105 1095

reachability and deadlock freeness. In the case of
dynamic systems, CheckVML has insufficient per-
formance (Rensink et al., 2004) (in contrast to our
approach) owing to its use of a fixed two-dimensional
0-1 array as a data structure to store graphs in Promela.
Moreover, Gyapay et al.(2004) proposed an approach
to solving the optimization problems in graph trans-
formation systems with time using CheckVML, but
the dynamic creation and deletion of nodes and edges
is bounded a priori, which is a major restriction in
comparison with our work. This work also cannot
support layered graph transformation systems.

Grunske et al.(2008) investigated how graph
transformation systems can improve the specification
of the abstract syntax of a visual modeling language.
They defined the abstract syntax of behavior trees
(BTs). BT is a graphical modeling language for
specifying functional requirements. Then, the authors
defined a translation schema to translate BTs to the
input language of the SAL model checker. In contrast
to our approach, this work describes a special kind of
graph transformation systems restricted to BTs, while
we investigate on the general graph transformation
systems and layered graphs.

Baldan and König (2002) introduced a different
theoretical proposal aiming at verifying a special
class of hypergraph transformation systems (and not
typical graph transformation systems) by means of a
special class of Petri nets which is a static analysis
technique. Later, Baldan et al.(2004a) extended this
proposal by providing a precise (McMillan style)
unfolding strategy. In comparison with our work, they
concentrate on hypergraphs, without considering typi-
cal graph transformation systems or layered graphs.

Dotti et al.(2003) suggested object-based graph
grammars to model object-oriented systems. They
also described an approach to translating object-based
graphs into Promela. The authors restricted the
structure of graph transformation rules to only model
the message exchange mechanism in the object-
oriented systems. Although the used representation in
terms of Promela constructs can support only a re-
stricted system, the equivalent system in Promela
might increase the runtime performance. Ferreira et
al.(2007) extended the work presented in this ap-
proach to verify concurrent object-oriented systems.
They used a special class of object-oriented graph
grammars and defined a translation from such speci-

fications to Promela. According to their claim, they
were not dealing with object creation or deletion.
Hence, it is not suitable for dynamic systems. In
contrast to these approaches, our proposal has no such
restriction for the shape of the graphs and can support
dynamic systems efficiently. In addition, these pro-
posals cannot support layered systems.

Baresi and Spoletini (2006) described a proposal
to verify graph transformation systems by means of
Alloy (Jackson, 2006) based on first order logic. They
defined an approach to translating AGG transforma-
tion systems in Alloy. Due to the nature of Alloy, the
presented proposal can support only bounded and a
priori limited domains. Finally, Liu et al.(2007) pre-
sented a constructive method to check if a transfor-
mation satisfies a set of correctness constraints and
proposed an algorithm based on critical pair analysis
to automatically prove whether a transformation rule
satisfies a transformation construct or not.

BACKGROUND

In this section we briefly introduce the required

background, i.e., graph transformation systems and
Bogor.

Graph transformation system

The mathematical foundation of graph trans-
formation systems returns to 40 years ago in response
to shortcomings in the expressiveness of classical
approaches to rewriting (e.g., Chomsky grammars) to
deal with nonlinear grammars (Ehrig et al., 1999). In
this subsection, we describe graph transformation
briefly, as a modeling means. For more information
about the theoretical background and semantics of
graph transformation, interested readers can refer to
(Ehrig et al., 1999; Baresi and Heckel, 2002).
Definition 1 (Attributed type graph transformation)
An attributed type graph transformation system is a
triple: AGT=(TG, HG, R), where TG is the type graph,
HG is the host graph and R is the set of rules.
Definition 2 (Type graph) Let TGN be a set of node
types and TGE be a set of edge types. A type graph TG
is a tuple: TG=(TGN, TGE, src, trg), with two func-
tions src: TGE→TGN and trg: TGE→TGN. These
functions assign to each edge a source and a target
node. Each node type NT in TGN is a triple: NT=(Mult,

Rafe et al. / J Zhejiang Univ Sci A 2009 10(8):1093-1105 1096

Attr, Out). Mult, being a pair, is the multiplicity of the
node: Mult=(min, max), which specifies lower and
upper bounds for the number of nodes of type NT in
the host graphs. Attr, being a tuple, is the set of its
attributes: Attr=(SN, V, X, sort), where SN is a set of
sort names (or type names), V is a set of attribute
values including a subset X⊆V of variable names, and
a function sort: V→SN associating every value and
variable with a sort (type). Out is the set of its out-
going edges (or associations) with corresponding
multiplicity and destination nodes. More precisely,
each outgoing edge OE in Out is a pair: OE=(Card,
Dest), where Card is formally defined by two pairs of
functions minSrc, minTrg: TGE→ù+∪{0} and maxSrc,
maxTrg: TGE→ù+∪{*} with minSrc(OE)≤maxSrc(OE)
and minTrg(OE)≤maxTrg(OE), and Dest is the desti-
nation node of the edge.
Definition 3 (Host graph) A host graph HG, also
called ‘instance graph’ over TG, is a graph equipped
with a graph morphism typeG: HG→TG that assigns a
type to every node and edge in HG.
Definition 4 (Graph rules) In this study, we follow
the algebraic double pushout (DPO) approach to
graph transformation as first introduced by Ehrig et
al.(1973) for untyped graphs. A graph transformation
rule P over an attributed type graph TG is given by

(, ,),l rP L K R type NAC= ←⎯ ⎯→ where lL K←⎯
r R⎯→ is a rule span with injective graph morphisms

l, r and graphs L (left hand side or LHS), K (gluing
graph) and R (right hand side or RHS) typed over TG,
type=(typeL: L→TG, typeK: K→TG, typeR: R→TG) is
a triple of morphisms, and NAC is a set of triples
nac=(N, n, typeN) with N being a graph, n: L→N a
graph morphism, and typeN: N→TG a morphism.

The application of a rule to a host graph H re-
places a matching of the LHS in H by an image of the
RHS. This is performed by (1) finding a matching of
the LHS in H, (2) checking the NAC (which prevents
the existence of certain nodes and edges), (3) deleting
a part of the host graph (that can be mapped to LHS
but not to RHS) producing the context model, and (4)
connecting the context model with a matching of the
RHS by adding new nodes and edges (that can be
mapped to the RHS but not to the LHS) and resulting
in a new model H'.

By recursively applying all enabled graph
transformation rules to the host graph, a transition
system can be generated. Transition systems are fre-
quently used to represent the behavior semantics of
software systems. In the case of graph transition sys-
tems, one considers graphs as representations of sys-
tem states. If the resulting state space of the graph
transition system is finite, we can easily check dif-
ferent properties (e.g., reachability, safety, and live-
ness), even for unrestricted forms of graph transfor-
mation systems, by searching the state space.

Bogor

In this paper we use Bogor (Robby et al., 2003)
to verify graph transformation systems. Bogor is an
extensible software model checking tool developed at
Kansas State University. Bogor has novel capabilities
for checking different properties on a variety of
modern software artifacts, and its internal, modular
architecture lets domain experts extend it to provide a
domain-specific model checker.

Bogor’s input language, Bandera intermediate
representation (BIR), provides the different instruc-
tions that are supported by the modeling languages of
verification tools (e.g., SPIN). These instructions
include primitive and non-primitive data types, like
arrays and records. Bogor also supports advanced
features, like function pointers, dynamic creation of
threads and objects, automatic memory management
(garbage collector), and generic data types. Control-
flow and actions in BIR are expressed in a guarded
command format: ‘guard expressions’ are devoted to
check expressions, while ‘actions’ (commands)
change the value of variables in the system.

For example, the BIR model of Fig.1 comprises
one thread (i.e., MAIN) and a global integer variable x
whose initial value is set to 100. Thread MAIN de-
fines a simple loop. For example, the first guard
checks whether x is even and, if it is the case, com-
putes its new value (x/2). Notice that both guards are
evaluated simultaneously.

When there is more than one true guard, Bogor
chooses non-deterministically one of them; when all
the guards are false, Bogor detects a deadlock. In the
BIR example of Fig.1, instruction ‘goto loc0’ at the
end of the code shows that loc0 must be reached again,
and thus it causes a loop.

Rafe et al. / J Zhejiang Univ Sci A 2009 10(8):1093-1105 1097

While the BIR code is executed, Bogor creates

an automaton. In the generated automaton, states
show a configuration of the system based on the
values of the variables in the code. Hence, in the
example, when the value of variable x is changed,
Bogor adds a new state to the automaton and contin-
ues until no new state is found; in this case the exe-
cution is terminated and the automaton represents all
reachable program states.

Bogor also has a module for checking different
properties expressed in LTL (Bogor extensions for
LTL checking, www.projects.cis.ksu.edu/projects/
gudangbogor/). Each property must be stated in BIR
as a function fun. Then Bogor checks the function.
Fig.2 shows two examples (Baresi et al., 2008). The
first LTL formulae, G((x>0)→F(x<0)), is true if in
each execution of the automaton there is a state where
x>0, and eventually there must be a state in the postfix
of that path where x<0. Based on the BIR model of
Fig.1, this property function is not satisfied.

In Fig.2, “p” and “q” correspond to the proposi-
tion “x>0” and “x<0”, respectively. The second LTL
formula, G(x>0^x≤100), will be true if in each exe-
cution of the automaton and in all states, 0<x≤100.
The example model of Fig.1 satisfies this property. In
this example, “LTL.always” and “LTL.conjunction”
are equivalents for operators G and ^, respectively.

ENCODING GRAPH TRANSFORMATION TO
BIR

We can summarize the main steps of the pro-

posed solution as follows: (1) we define the required
data structures in BIR to translate graph transforma-
tion systems by using the type graph; (2) we initialize
the data structures in BIR using the host graph in the
graph transformation system; (3) we translate the
rules to BIR: the LHS of each rule is encoded as one
or more guarded commands in BIR, while the RHS as
actions (the body of the guards). These steps are ex-
plained through the well-known Dining Philosopher
example, which has been modeled in (Schmidt, 2004)
as a graph transformation system. We choose this
example because it is a simple model, able to illustrate
our approach without any complexity. In addition, it is
also a usual benchmark for evaluating the perform-
ance of model checkers. In the ‘VALIDATION’ sec-
tion, we will show some experimental results for
more realistic models.

Fig.3a shows the type graph of the example. This
type graph includes two types of nodes, each having
its own attributes, multiplicities, and associations.
Rules of Fig.4 describe all the actions that a phi-
losopher can carry out on the model. For example,
rule “GetHungry” defines an event in which a phi-
losopher with the status “thinking” (LHS of the rule)
gets hungry (RHS of the rule). Fig.3b shows the
example host graph. It shows the starting configura-
tion of the system. In the example host graph, three
philosophers are thinking.

At first, the type graph must be encoded. In this
step the data structure in BIR is defined. Each node in
the type graph is encoded to a record in BIR. This
record contains all the attributes and associations of
the node. Then a further record must be defined to
store the whole type graph. These steps can be listed
formally as follows: ∀n∈NT, a record is defined in

system example {
int x:=100;

 main thread MAIN() {
 loc loc0;
 when x%2==0 do {x:=x/2;}
 goto loc0;
 when x%2!=0 do {x:=3*x+1;}
 goto loc0;
 }
}

Fig.1 Example BIR model

Fig.2 Example property functions (Baresi et al., 2008)

fun fail() returns boolean=
 LTL.temporalProperty(
 Property.createObservableDictionary(
 Property.createObservableKey(“p”, x>0),
 Property.createObservableKey(“q”, x<0)
),
 LTL.always(LTL.implication(LTL.prop(“p”),

LTL.eventually(LTL.prop(“q”))))
);

fun hold() returns boolean=
 LTL.temporalProperty(
 Property.createObservableDictionary(
 Property.createObservableKey(“p”, x>0),
 Property.createObservableKey(“q”, x<=100)
),
 LTL.always(LTL.conjunction(LTL.prop(“p”),

LTL.prop(“q”)))
);

Rafe et al. / J Zhejiang Univ Sci A 2009 10(8):1093-1105 1098

BIR with the following fields:
∀a∈n.Attr, a field is added to the record with the

same type as a;
∀o∈n.Out, if o.Card.maxTrg(o)=1, an element

of type o.Dest is added as field of the record; if o.Card.
maxTrg(o)>1, an array of elements of type o.Dest is
added as field of the record.

In general, each node in the type graph is a re-
cord and each attribute in the node type is encoded to
an equivalent field of the record. Associations in the
type graph, along with their multiplicities, are en-
coded to a field of the type of the destination node
with a multiplicity equal to 1, or an array otherwise.

As an example, Fig.5 shows the PHIL node of
Fig.3 encoded to an equivalent record in BIR. Its first
field, “status”, corresponds to the attribute of the node,
while the other fields represent the associations.

In Fig.5, “left” and “right” are single elements of

type “FORK”, while “hold” is an array of “FORK”,
since a philosopher can hold more than one FORK (at
most two in this case).

A further record must be defined in BIR to store
the whole type graph. This further record represents
all the nodes that a type graph has. For example, the
record of Fig.6 shows the type graph of Fig.3. In this
example, all the fields have been encoded to arrays
because the multiplicity of these nodes is *.

After defining the data structures, we define a

main thread in BIR. This thread contains all the be-
havior of the graph transformation. The main thread
consists of different locations (loc). In the first loca-
tion (loc0), the type graph is instantiated and the host
graph is implemented. At first, a variable of type
“graph” must be defined. Then, based on the existing
nodes in the host graph the size of contained arrays
must be determined.

Fig.7 presents a portion of generated BIR code
for loc0 in the main thread, where “instance” is a
variable of type “graph”. As an example, instruction
instance.PHILs:=new PHIL[3] allocates the neces-
sary space for the philosophers in the host graph
(three in this example), and instance.PHILs[0].status:
=“thinking” sets the value of field status for the first
philosopher in the model to “thinking”.

Status=“thinking” Status=“thinking”

PHIL

Status=“thinking”

PHIL

Status=“string”

PHIL *

right

Fig.3 Example type graph (a) and host graph (b)

FORK *

0-2

FORK

FORK

FORK

PHIL

right left

left

right left

rightleft hold

(a)

(b)

record PHIL {
 string status;
 FORK left;
 FORK right;
 FORK[] hold;
 }

Fig.5 The BIR record equivalent to type PHIL

record graph {
 PHIL[] PHILs;
 FORK[] FORKs;
 }

Fig.6 Graph data structure in BIR

Fig.4 Example transformation rules

 GetRightFork

LHS +NAC RHS

1: PHIL
Status =“thinking”

1: PHIL
Status =“hungry”GetHungry

1: PHIL
Status=“Hungry”

2 : FORK 3 : PHIL
left

right
hold 2 : FORK 3:PHIL

left

right

1: PHIL
Status=“HasLeftF”

hold GetLeftFork

2 : FORK 3: PHIL

right

left
hold

1: PHIL
Status =“HasLeftF”

2 : FORK 3:PHIL

right

left

hold

1: PHIL
Status =“eating”

2 : FORK

lefthold

1 : PHIL
Status =“eating”

3 :FORK

righthold

2: FORK

left

1:PHIL
Status=“thinking”

3: FORK

right ReleaseFork

Rafe et al. / J Zhejiang Univ Sci A 2009 10(8):1093-1105 1099

Up to now, we have described our approach to

translating the type and host graph to BIR. After the
first location was generated in BIR, we should
transform the rules. The encoding of rules can be
divided into two different sub-problems: “matching”
and “acting”, i.e., the LHS (and the NAC, if it exists)
and the RHS, respectively. The matching routine must
be implemented in the second location for
non-layered graph transformation systems or in con-
secutive locations for layered systems (one location
per each layer) as guarded commands, while each
action is implemented as bodies of the guards.

In the previous work (Baresi et al., 2008), we
used a different way to implement “matching” and
“acting”. Therein we found the main components in
the LHS (the nodes of the LHS through which all the
other nodes in that LHS are reachable), and generated
a thread for each RHS. But using threads decreases
the performance, because it generates many addi-
tional states. In this study, we use another way to
translate rules (both LHS and RHS), which leads to a
better performance as will be discussed in the next
section.

The matching procedure computes all possible
combinations for matching between nodes in the LHS
of each rule and the nodes in the host graph. Notice
that the NAC is handled as the LHS; the only differ-
ence is that we treat it as a negative condition. The
acting procedure is based on the RHS of the rule.

As an example, consider rule GetHungry of
Fig.4. There are three possible matches for the LHS of
this rule on the host graph. Fig.8 shows the guarded
commands and actions to detect this rule.

These instructions are generated automatically,
located in the second location (loc1) in BIR. Bogor
evaluates the guards and executes the action associ-
ated with a selected true guard.

As an additional example, consider rule

GetLeftFork of Fig.4. In the LHS of this rule, there
are two nodes of type PHIL and one node of type
FORK. Hence, there are six possible combinations for
matching of philosophers in the host graph and three
different combinations for matching of forks in the
host graph. Also, as each philosopher can hold two
forks, we should check in which cells of the “hold”
array this fork can be stored. Consequently, there are
18×2 (or 36) different matchings for this rule, so 36
different guards and actions must be generated in BIR
to support this rule. Fig.9 shows some of the guards
and actions. Notice that some of these guards might
never be true (because we only use nodes to detect
matchings); but to implement the matching procedure
as generally as possible, we need to consider all
situations. Furthermore, in the preprocessing step
where we generate these guards and actions, it is
impossible to foresee future changes in the model
(host graph).

These instructions check the status of the first
philosopher to be “hungry”. If its left hand side fork
was not held by another philosopher, then he should
hold the fork and change the value of his status.

When detecting a matching for the LHS of a rule,
we generate the suitable guarded commands (based
on the LHS and NACs), and then generate the actions
associated with those guards (based on the RHS):

(1) If there are some nodes in the RHS but not in
the LHS, these nodes must be set to “active”, and in-
stantiated as stated by the rule [The maximum number
of dynamic nodes is not always known a priori, and
the host graph only gives a lower bound. Hence, our
approach gets the maximum numbers of dynamic

loc loc0:
 do {
 instance:=new graph;
 instance.PHILs:=new PHIL[3];
 instance.FORKs:=new FORKs[3];
 instance.PHILs[0]:=new PHIL;
 instance.FORKs[0]:=new FORK;
 instance.PHILs[0].status:=“thinking”;
 instance.PHILs[0].right:=instance.FORKs[0];
 }

Fig.7 A portion of loc0 in the main thread

when instance.PHILs[0].status==“thinking” do {
 instance.PHILs[0].status:=“hungry”;
 }
goto loc1;
when instance.PHILs[1].status==“thinking” do {
 instance.PHILs[1].status:=“hungry”;
 }
goto loc1;
when instance.PHILs[2].status==“thinking” do {
 instance.PHILs[2].status:=“hungry”;
 }
goto loc1;

Fig.8 Guarded commands to detect rule GetHungry

Rafe et al. / J Zhejiang Univ Sci A 2009 10(8):1093-1105 1100

nodes as parameters and considers an attribute named
“isactive” to manage them as in (Schmidt, 2004).].

(2) If there are some edges in the RHS but not in
the LHS, as to the edge that is a unary association, the
variable corresponding to the destination node is
assigned to the corresponding variable in the record of
the source node and, as to the edge that is stored in an
array, an inactive cell in the array is set as in the case
of unary associations.

(3) If the RHS does not add nodes or edges to the
graph and it only modifies the attributes of a node, the
fields corresponding to the attributes in the record of
the corresponding variable are changed accordingly.

(4) If there are nodes in the LHS but not in the
RHS, the corresponding variables are de-allocated,
set as inactive, and the associations that have these
nodes as sources or destinations are cleared.

(5) If there are edges in the LHS but not in the
RHS, the corresponding variables, i.e., the fields
corresponding to the associations in the source nodes,
are deleted.

For example, the RHS of the GetLeftFork in
Fig.9 sets the “hold” association of the philosopher to
the “fork” which is on the left hand side of this phi-
losopher. As this attribute is an array, only one of its

cells is used. Additionally, the status of the philoso-
pher is changed to “HasLeftF”.

VALIDATION

In this section, we show the experimental results

and we compare them with those of CheckVML and
GROOVE on well-known examples to demonstrate
the validity of our proposal.

To use the Bogor for checking the properties, we
first need a way to define properties as an LTL for-
mula, i.e., the notion of temporal logic that Bogor
understands. Before translating the properties into the
language that Bogor understands (i.e., property BIR
functions), we need to define the LTL formula that
will be used to express the properties:
Definition 5 (LTL formula) Let TS=(S, →, h0) be a
transition system generated by recursively applying
all enabled rules to host graph (h0). Let Path(h0) be
the set of all linear paths in the transition system
starting with state h0, and let p be some atomic
propositions. Then

TS|=G(p) (or □(p)):

⇔∀h0h1h2…∈Path(h0), ∀k∈ù, p holds in hk;

TS|=F(p) (or ◊(p)):
⇔∀h0h1h2…∈Path(h0), ∃k∈ù, p holds in hk.

Note that this is only a subset of LTL. In case of

finite paths, k has to be restricted to the length of the
path.

Now, we should find a way to define proposi-
tions. For example, consider this safety property on
the Dining Philosopher example: “a fork may never
be held by two different philosophers”, or formally:

∀p1, p2: PHIL, ∀f:

FORK: ~(hold(p1, f)∧hold(p2, f)) holds in all states.

“hold” in this formula refers to the “hold” relation
between PHIL and FORK node types of Fig.3. To
avoid Bogor-specific knowledge for stating properties,
users can use special-purpose graph rules for graphi-
cal representation of the properties. We follow both
CheckVML and GROOVE to state the properties for
checking as the combination of graph transformation
rules and LTL operators. Properties are defined by

when instance.PHILs[0].status==“hungry” &&
 instance.PHILs[0].left==instance.FORKs[0] &&
 instance.PHILs[1].right==instance.FORKs[0] &&
 instance.PHILs[1].hold[0]==null do {

 instance.PHILs[0].hold[0]:=instance.FORKs[0];
 instance.PHILs[0].status:=“HasLeftF”;

 }
goto loc1;
when instance.PHILs[0].status==“hungry” &&

 instance.PHILs[0].left==instance.FORKs[1] &&
 instance.PHILs[1].right==instance.FORKs[1] &&
 instance.PHILs[1].hold[0]==null do {

 instance.PHILs[0].hold[0]:=instance.FORKs[1];
 instance.PHILs[0].status:=“HasLeftF”;

 }
goto loc1;
when instance.PHILs[0].status==“hungry” &&

 instance.PHILs[0].left==instance.FORKs[0] &&
 instance.PHILs[2].right==instance.FORKs[0] &&
 instance.PHILs[2].hold[0]==null do {
 instance.PHILs[0].hold[0]:=instance.FORKs[0];
 instance.PHILs[0].status:=“HasLeftF”;
 }
goto loc1;

Fig.9 A portion of generated guards and actions for rule
GetLeftFork

Rafe et al. / J Zhejiang Univ Sci A 2009 10(8):1093-1105 1101

special transformation rules, where NACs show
negative conditions and LHSs positive conditions. We
define a property rule to visually describe the char-
acteristics that nodes must (or must not) have. So the
RHS is identical to the LHS because it does not
change the host graph.

As an example, consider a property rule as
shown in Fig.10. We use this property rule to state the
mentioned safety property. Its LTL expression is:
G(¬HoldTwoForks). “HoldTwoForks” is the name of
the rule.

To encode properties rules to BIR, we carry out

the following steps (Baresi et al., 2008):
∀n∈LHS where n is a node type, we consider all

the possible variables v1, v2, …, vk of the type corre-
sponding to n in the host graph: ∀vi∈{v1, v2, …, vk}
and ∀attrj∈vi attributes in LHS∪NAC, we create a
proposition jattr

ip that checks the attribute for vi.
∀a∈LHS, where a is an association, we consider

all the possible variables v1, v2, …, vh of the type
corresponding to the source of a: ∀vi∈{v1, v2, …, vh}
and ∀aj=a∈vi associations in LHS∪NAC, we create a
proposition ja

ip that checks whether the required
association exists in vi.

We create proposition p formed by the disjunc-
tion of all pi generated in the previous steps. In the
end, using the LTL operator defined by the user, we
make the final LTL expression.

Fig.11 shows how the property is translated to
BIR.

Since there are 36 different possible matchings
for the nodes in the LHS of this property rule and due
to the lack of space, we only consider PHILs[0],
PHILs[1] and FORKs[0] to translate a portion of this
property in Fig.11 (only two cases). The result of
checking this property on the model will be valid.

As another property example, which causes a

deadlock, consider the following liveness property:
“if the philosopher p gets hungry, then the status of p
must be ‘eating’ once in the future”. This property can
be stated formally as the following formula:

∀p: PHIL, ∀h0h1h2…∈Path(h0), ∃i∈ù, Hungry(p)
holds in hi→∃j∈ù, j>i: eating(p) holds in hj.

Fig.12 describes this property as two different

rules. The following LTL expression states this live-
ness property: G(HungryPhil→F(EatingPhil)).

The LTL expression states that, in every execu-

tion if there is a state where a philosopher gets hungry
in a path, eventually there must be a state in the fol-
lowing of that path in which the status of the phi-
losopher is “eating”. Naturally, the result of the veri-
fication is not valid, as a deadlock easily appears in
the model by holding just the left side forks by each
philosopher.

Another interesting point about Bogor is that it
detects deadlocks automatically; i.e., without using
any LTL property, it can detect deadlocks on the

fun Property() returns boolean=
 LTL.temporalProperty(
 Property.createObservableDictionary(

Proerty.createObservableKey(“p1”, (instance.PHILs[0].
hold[0]!=null && instance.PHILs[1].hold[0]!=null &&

 instance.PHILs[0].hold[0]==instance.FORKs[0] &&
 instance.PHILs[1].hold[0]==instance.FORKs[0]) ||

(instance.PHILs[0].hold[0]!=null &&
 instance.PHILs[1].hold[1]!=null &&

 instance.PHILs[0].hold[0]==instance.FORKs[0] &&
 instance.PHILs[1].hold[1]==instance.FORKs[0]))
),
 LTL.always(LTL.negation(LTL.prop(“p1”)))
);

Fig.11 Property in Fig.10 rendered in BIR

Fig.12 Two example property rules

PHIL
Status=“hungry”

PHIL
Status = “hungry”

PHIL
Status=“eating”

PHIL
Status= “ eating”

LHS RHS

HungryPhil

EatingPhil

Fig.10 Example property as a rule

1 : PHIL 2 : PHIL

3 :FORK

hold

1 :PHIL 2 : PHIL

3 : FORK

LHS RHS

hold hold hold

Rafe et al. / J Zhejiang Univ Sci A 2009 10(8):1093-1105 1102

model. In a deadlock state no transitions are enabled.
Hence, without using the above liveness property,
Bogor will detect that there is a deadlock in the model,
thus generating a counter example to show it.
Checking the counter example, we find out that there
is exactly one state in the transition system where all
philosophers hold their left side forks and therefore,
no transitions (rules) are enabled in that state.

Case studies

To show the performance of our approach and to
compare our approach with existing ones, we im-
plemented five different case studies:

(1) The Dining Philosopher problem, introduced
in this article.

(2) The Concurrent Append example presented
in (Rensink et al., 2004). In this example, two, three
or four nodes are added concurrently at the end of a
linked list. For example, 3:7 in Table 1 shows that
three nodes are added to a list with seven nodes in
parallel.

(3) The Shopping Cart example presented in
(Hausmann et al., 2002). In this example the process
of purchasing goods by customers in a market has
been modeled as a graph transformation system.

(4) The Airport case study introduced in (Baldan
et al., 2004b). This example models a system repre-
senting planes landing and taking off from airports
and transports passengers as layered graph transfor-
mation systems.

(5) The SmartCar example specified as a
service-oriented architecture in (Baresi et al., 2006).
This example is a highly dynamic and big model. This
example contains nearly 30 graph rules, a host graph
initially with 40 nodes and nearly 20 dynamic nodes
which are added to the host graph while the system
evolves. Baresi et al.(2006) presented an approach to
modeling service-oriented architectures as a graph
transformation system. Then to verify the designed
model, they could not use model checking but did
some experiments by simulation. Because this model
is a big and dynamic model, existing tools for verifi-
cation graph transformations are not capable of veri-
fying it. By simulation, they only checked that a spe-
cific state was reachable. But by our approach, we can
check different properties on this model.

Our experimental results were obtained on a
3-GHz Pentium IV processor with 1 GB memory; for
CheckVML, we used the results in (Rensink et al.,

2004) where a 3-GHz Pentium IV processor was used
with 1 GB memory; for GROOVE, we used the re-
sults provided by the GROOVE group (on a 3.2-GHz
processor with 500 MB memory).

Table 1 presents the results of our experiments
(some of these models and their corresponding gen-
erated BIR codes along with the translator are avail-
able at http://webpages.iust.ac.ir/rafe/files/expriments.
rar) and compares them with those of CheckVML and
GROOVE. Considering Table 1, we understand that
for the dining philosophers, our approach is similar to
CheckVML but weaker than GROOVE. The biggest
model for dining philosophers that our approach can
verify (on the same machine) is a model with 11
philosophers. In the case of Concurrent Append ex-
amples, our approach is better than CheckVML with
respect to both memory usage and the time taken to
run. Compared with the GROOVE in this example,
our approach is weaker based on the memory used
and the states and transitions generated. The use of
more memory can be explained with the need to
manage typed graphs. But as our approach is designed
to handle attributed type graphs (i.e., Shopping,
SmartCar examples and Airport case studies) and
layered graph transformation systems (i.e., the Air-
port case study), it proves its efficiency in the next
three case studies (the last three rows of Table 1).

As compared with CheckVML, our approach is
more efficient in all the cases but the dining phi-
losophers (where the result is similar). Unfortunately,
CheckVML is not publicly available now; therefore
we could not test the Shopping example, but as men-
tioned in (Rensink et al., 2004), CheckVML has some
drawbacks for dynamic cases and this case study is
also a dynamic model. Furthermore, CheckVML
cannot handle layered graphs like the Airport case
study.

About the range of properties we can check, we
implemented some examples like (Hausmann, 2005;
Engels et al., 2007). In these works, the authors pro-
posed an approach to formally defining semantics for
dynamic meta modeling using graph transformation
systems. They used an activity diagram as a case
study and defined a formal semantics for the activity
diagram based on token flow semantics to model and
analyze workflows. To implement the semantics, they
used GROOVE and finally checked a liveness prop-
erty on activity diagrams. As they mentioned, their

Rafe et al. / J Zhejiang Univ Sci A 2009 10(8):1093-1105 1103

proposal cannot check the liveness property of a sin-
gle activity node in the diagram. To do a comparison,
we implemented this example with our approach
(Rafe and Rahmani, 2008) and found that it can check
not only different properties on activity diagrams but
also the liveness for all the nodes in the model. We
believe that it can check a wide range of properties (in
contrast to CheckVML that can check only such
properties as safety and reachability).

It remains to discuss the time that our translator
will take to generate the BIR code. In general, it can
be quite expensive: in a graph transformation system
with |R| rules, where each rule Ri (i=1, 2, …, |R|) has
|Ri| nodes in its LHS, and each node nj (j=1, 2, …, |Ri|)
can appear |nj| times in the host graph, the number of

possible matchings is | || |

1 1
| |.iRR

ji j
n

= =∑ ∏ But this time is

considerably less than that the Bogor takes to run for
the same model. To show this, we measured the run-
ning time of our translator for various input model
sizes (Table 2). Comparison of the time in Table 2
with that in Table 1 reveals that in all cases the veri-
fication time is more than the translation time. For
each example, the number of generated BIR code
lines is also shown in the table.

Architecture of the translator

The main components of the translator are
shown in Fig.13. The translator is written in Java to
ensure platform independence. As is shown, the graph
transformation system along with the properties to be
checked and the corresponding LTL expression, are
designed in AGG by designers. The translator gets the
graph transformation and the LTL expression as its
inputs. From these inputs our translator derives a
semantically equivalent model in BIR. Then Bogor
runs the generated BIR model and performs the
verification.

Table 2 Running time of translator for different case
studies

Example BIR code lines Time (s)
Dining Philosopher #12 343 1
Concurrent Append 4:8 1007 4
Shopping example 1117 5
Airport case study 352 1
SmartCar example 3120 475
#12 in the Dining Philosopher shows the number of philosophers
in the model; 4:8 in the Concurrent Append denotes the number
of nodes that must be added to the list that initially has 8 nodes

Number of states Number of transitions Memory (MB) Time (s)
Example

GR CV OA GR CV OA GR CV OA GR CV OA
Dining Philosopher

3 17 57 46 35 125 112 0.1 2.6 0.1 0.1 0.2 0.01
4 45 181 162 124 554 533 0.1 2.6 0.2 0.1 0.2 0.06
5 117 603 574 403 2397 2366 0.2 2.6 0.4 0.2 0.2 0.5
8 3261 25 961 25 890 17 984 171 058 170 985 0.6 8.8 10.6 2.2 0.6 32

12 347 337 OM OM 2 873 308 OM OM 72.6 OM OM 367.6 OM OM
Concurrent Append

2:3 57 22 40 94 169 59 0.2 2.6 0.01 0.2 0.5 0.01
2:5 145 86 116 290 395 199 0.4 2.6 0.12 0.3 1.1 0.03
3:5 1125 3311 2124 3161 5764 5428 0.6 37 1.3 1.2 40 1.3
3:7 2617 OM 3386 7766 OM 15 574 1.0 OM 5.4 2.2 OM 4.8
4:8 31 104 OM 40 669 116 642 OM 1 116 697 18.3 OM 467.5 30.8 OM 561

Shopping example 8584 NA 3816 23 196 NA 141 987 5.9 NA 8.9 6.1 NA 7.5
Airport case study CNS CNS 145 CNS CNS 412 CNS CNS 0.15 CNS CNS 0.1
SmartCar example CNS CNS 538 936 CNS CNS 3 338 856 CNS CNS 598 CNS CNS 1186

GR: GROOVE, CV: CheckVML, OA: our approach. In the first column, 3, 4, 5, 8, 12 are the number of philosophers, and 2:3, 2:5, 3:5, 3:7,
4:8 are the number of appends vs the number of cells. OM: out of memory, NA: not available, CNS: cannot support

Table 1 Comparison of GROOVE, CheckVML and our approach in terms of memory used, states and transitions
generated, and processing time

Rafe et al. / J Zhejiang Univ Sci A 2009 10(8):1093-1105 1104

CONCLUSION AND FUTURE WORK

In this study, we completed our previous pre-

liminary research (Baresi et al., 2008), for model
checking graph transformation systems. To do so, we
exploited Bogor and implemented a translator to en-
code graph transformation systems to the input lan-
guage of Bogor (i.e., BIR) using an efficient algo-
rithm. In addition, we used the approach presented by
both GROOVE and CheckVML to state properties by
a combination of LTL and special-purpose graph
transformation rules. Then Bogor verifies the model
against the properties by generating the transition
system and sends the results of the verification back
to the designers. Supporting dynamic metamodeling,
layered graphs and attributed type graphs is the key
characteristic that makes our solution highlighted
from the existing proposals.

In the future, we intend to complete the imple-
mentation of a prototype analysis framework for
back-annotating analysis results so that they could be
simulated in AGG. In addition, we plan to exploit the
extensibility of Bogor to reduce the state space. To do
so, Bogor must consider only the states that contain
different graphs. Obviously, the benefit is a better
performance and less memory use.

ACKNOWLEDGEMENTS

This research was partially done while the first
author was in University of Politecnico di Milano,
Italy as a visiting researcher and we would like to
thank Prof. Luciano Baresi and Dr. Paola Spoletini for
providing supports.

References
Baldan, P., König, B., 2002. Approximating the behavior of

graph transformation systems. LNCS, 2505:14-29.
[doi:10.1007/3-540-45832-8]

Baldan, P., Corradini, A., König, B., 2004a. Verifying finite-
state graph grammars: an unfolding-based approach.
LNCS, 3170:83-98.

Baldan, P., Corradini, A., Gadducci, F., 2004b. Specifying and
verifying UML activity diagrams via graph transforma-
tion. LNCS, 3267:18-33. [doi:10.1007/b103251]

Baresi, L., Heckel, R., 2002. Tutorial introduction to graph
transformation: a software engineering perspective.
LNCS, 2505:402-429. [doi:10.1007/b100934]

Baresi, L., Spoletini, P., 2006. On the use of Alloy to analyze
graph transformation systems. LNCS, 4178:306-320.
[doi:10.1007/11841883_22]

Baresi, L., Heckel, R., Thöne, S., Varró, D., 2003. Modeling
and Validation of Service Oriented Architectures: Appli-
cation vs. Style. European Software Engineering Conf.
and ACM SIGSOFT Symp. on the Foundations of Soft-
ware Engineering, p.68-77.

Baresi, L., Heckel, R., Thöne, S., Varró, D., 2006. Style-based
modeling and refinement of service-oriented architectures:
a graph transformation-based approach. Software Syst.
Model., 5(2):187-207. [doi:10.1007/s10270-006-0001-4]

Baresi, L., Rafe, V., Rahmani, A.T., Spoletini, P., 2008. An
Efficient Solution for Model Checking Graph Transfor-
mation Systems. 3rd Workshop on Graph Transformation
for Verification and Concurrency, ENTCS, 213:3-21.
[doi:10.1016/ j.entcs.2008.04.071]

Bensalem, S., Ganesh, V., Lakhnech, Y., Munoz, C., Owre, S.,
Rueß, H., Rushby, J., Rusu, V., Saϊdi, H., Shankar, N., et
al., 2000. An Overview of SAL. Fifth NASA Langley
Formal Methods Workshop, p.187-196.

Compton, K., Gurevich, Y., Huggins, J., Shen, W., 2000. An
Automatic Verification Tool for UML. Technical Report,
CSE-TR-423-00, Department of Electrical Engineering
and Computer Sciences, University of Michigan, USA.

Corbett, J.C., Dwyer, M.B., Hatcliff, J., Laubach, S., Pasareanu,
C.S., Robby, Zheng, H., 2000. Bandera: Extracting Finite-
state Models from Java Source Code. 22nd Int. Conf. on
Software Engineering, p.439-448. [doi:10.1145/337180.
337234]

Dotti, F.L., Foss, L., Ribeiro, L., Santos, O.M., 2003. Verifi-
cation of object-based distributed systems. LNCS,
2884:261-275. [doi:10.1007/b94120]

Ehrig, H., Pfender, M., Schneider, H.J., 1973. Graph Gram-
mars: An Algebraic Approach. 14th Annual Symp. on
Switching and Automata Theory, p.167-180. [doi:10.
1109/SWAT.1973.11]

Ehrig, H., Engels, G., Kreowski, H., Rozenberg, G. (Eds.),
1999. Handbook on Graph Grammars and Computing by
Graph Transformation: Applications, Languages and
Tools. World Scientific, USA.

Engels, G., Soltenborn, C., Wehrheim, H., 2007. Analysis of
UML activities using dynamic meta modeling. LNCS,
4468:76-90. [doi:10.1007/978-3-540-72952-5]

Fig.13 The proposed architecture of the translator

AGG

Type graph
translator

Host
translator

Property
translator

Rule
translator

Designer

GTS

GTS

GTS
GTS

LTL

Coordi-
nator

Translator

Bogor

BIR
code

Answer
(yes/no)

Output

Rafe et al. / J Zhejiang Univ Sci A 2009 10(8):1093-1105 1105

Ferreira, A.P.L., Foss, L., Ribeiro, L., 2007. Formal Verifica-
tion of Object-oriented Graph Grammars Specifications.
Proc. Third Workshop on Structural Operational Seman-
tics, ENTCS, 175:101-114.

Grunske, L., Winter, K., Yatapanage, N., 2008. Defining the
abstract syntax of visual languages with advanced graph
grammars—a case study based on behavior trees. J. Vis.
Lang. Comput., 19(3):343-379. [doi:10.1016/j.jvlc.2007.
11.003]

Gyapay, S., Schmidt, Á., Varró, D., 2004. Joint Optimization
and Reachability Analysis in Graph Transformation Sys-
tems with Time. Int. Workshop on Graph Transformation
and Visual Modeling Techniques, 109:137-147.

Hausmann, J.H., 2005. Dynamic Meta Modeling: A Semantics
Description Technique for Visual Modeling Languages.
PhD Thesis, University of Paderborn, Germany.

Hausmann, J.H., Heckel, R., Taentzer, G., 2002. Detection of
Conflicting Functional Requirements in a Use Case-
driven Approach: A Static Analysis Technique Based on
Graph Transformation. Proc. 24th Int. Conf. on Software
Engineering, p.105-115.

Heckel, R., 1998. Compositional verification of reactive sys-
tems specified by graph transformation. LNCS, 1382:138-
153. [doi:10.1007/BFb0053578]

Holzmann, G.J., 1997. The model checker SPIN. IEEE Trans.
Software Eng., 23(5):279-295. [doi:10.1109/32.588521]

Jackson, D., 2006. Software Abstractions: Logic, Language,
and Analysis. The MIT Press, USA.

Kastenberg, H., 2005. Towards Attributed Graphs in
GROOVE. First Workshop on Graph Transformation for
Verification and Concurrency, ENTCS, 154:47-54.
[doi:10.1016/j.entcs.2005.03.030]

Kuske, S., 2001. A formal semantics of UML state machines
based on structured graph transformation. LNCS,
2185:241-256. [doi:10.1007/3-540-45441-1_19]

Latella, D., Majzik, I., Massink, M., 1999. Automatic verifi-
cation of UML statechart diagrams using the SPIN model
checker. Formal Aspects Comput., 11(6):637-664. [doi:10.
1007/s001659970003]

Liu, H., Ma, Z.Y., Shao, W.Z., 2007. Description and proof of
property preservation of model transformations. J. Soft-
ware, 18(10):2369-2379. [doi:10.1360/jos182369]

Paltor, I., Lilius, J., 1999. vUML: A Tool for Verifying UML
Models. 14th IEEE Int. Conf. on Automated Software
Engineering, p.255-258.

Rafe, V., Rahmani, A.T., 2008. Formal analysis of workflows
using UML 2.0 activities and graph transformation sys-
tems. LNCS, 5160:305-318.

Rensink, A., 2004. The GROOVE simulator: a tool for state
space generation. LNCS, 3062:479-485.

Rensink, A., Schmidt, Á., Varró, D., 2004. Model checking
graph transformations: a comparison of two approaches.
LNCS, 3256:226-241. [doi:10.1007/b100934]

Robby, Dwyer, M.B., Hatcliff, J., 2003. Bogor: an extensible
and highly-modular software model checking framework.
ACM SIGSOFT Software Eng. Notes, 28(5):267-276.
[doi:10.1145/949952.940107]

Schmidt, Á., 2004. Model Checking of Visual Modeling
Languages. MS Thesis, Budapest University of Tech-
nology, Hungary.

Schmidt, Á., Varró, D., 2003. CheckVML: a tool for model
checking visual modeling languages. LNCS, 2863:92-95.
[doi:10.1007/b14063]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

