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Abstract:    Graph transformation systems have become a general formal modeling language to describe many models in software 
development process. Behavioral modeling of dynamic systems and model-to-model transformations are only a few examples in 
which graphs have been used to software development. But even the perfect graph transformation system must be equipped with 
automated analysis capabilities to let users understand whether such a formal specification fulfills their requirements. In this paper, 
we present a new solution to verify graph transformation systems using the Bogor model checker. The attributed graph grammars 
(AGG)-like graph transformation systems are translated to Bandera intermediate representation (BIR), the input language of Bogor, 
and Bogor verifies the model against some interesting properties defined by combining linear temporal logic (LTL) and  
special-purpose graph rules. Experimental results are encouraging, showing that in most cases our solution improves existing 
approaches in terms of both performance and expressiveness. 
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INTRODUCTION 
 

Today, software development is a complex task, 
because most of the modern software systems are 
large in size and involve different and complex arti-
facts (e.g., distributed, real time and embedded sys-
tems). Hence, to overcome these complexities it is 
important to undertake software system modeling and 
design before implementation. However, to have 
accurate models, using a proper language for model-
ing is mandatory and formal methods have proven to 
be a crucial solution for automated software  
engineering. 

Graphs and diagrams are a very useful means to 
describe complex structures and systems and to 
model concepts and ideas in a direct and intuitive way. 
For example, the structure of an object-oriented sys-
tem or the execution flow of a program can be con-
sidered as a graph. Regardless of the actual process 
for modeling, a designer always will end up with 
some diagrams or in fact, annotated boxes and lines. 

These annotated boxes and lines can easily be con-
ceived as annotated directed/undirected graphs. 
Graph transformation (Ehrig et al., 1999; Baresi and 
Heckel, 2002) is a popular formalism as a well-known 
and expressive specification language (e.g., to for-
mally capture software requirements). Therefore, 
using graphs and graph transformation systems as a 
formal background for software modeling is a natural 
choice. Software architectures, component diagrams, 
and state charts are only a few well-known examples 
in which graphs have been used to software devel-
opment process (Baresi et al., 2008). These models 
and many others can easily be described by means of 
suitable graph transformation systems to formalize 
their syntax and define the formal semantics of used 
notations (Kuske, 2001; Baresi et al., 2003). 

Rule-based features of graph transformation 
systems can play an important role in modeling of 
complex and large systems. Modeling is often not 
enough because designers want to be able to ‘dis-
cover’ whether stated requirements (such as the  
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absence of deadlocks, safety and liveness properties) 
are fulfilled in the system model. This is why even the 
perfect graph transformation system must be com-
plemented with automated analysis capabilities to let 
users reason on it and understand whether such a 
formal specification fulfills their requirements, and 
model checking has proven to be a viable solution for 
this purpose.  

Having completed our previous preliminary re-
search (Baresi et al., 2008), we present in this paper a 
novel solution using Bogor (Robby et al., 2003) to 
model check attributed graph grammars (AGG)-like 
(www.tfs.cs.tu-berlin.de/agg/) graph transformation 
systems. The key characteristics that make our solu-
tion highlighted from the existing proposals are: (1) 
supporting models of complex types for verification, 
and thus using attributed graphs is mandatory, (2) 
using the available data structures in Bogor to support 
dynamic systems, that is, systems with dynamic node 
creation/deletion, (3) supporting layered graph 
transformation systems for verification, and (4) using 
graph transformation systems including type graphs 
that support meta modeling techniques. 

In our approach, graph transformation systems 
are translated to Bandera intermediate language (BIR), 
the input language of the model checker called Bogor 
(Corbett et al., 2000), while properties are defined by 
combining linear temporal logic (LTL) and special- 
purpose graph rules. Then Bogor generates the tran-
sition system and performs the verification (via tem- 
poral logics interpreted on the transition system). If the 
result of the verification is negative, Bogor will gen-
erate a counter example to show it to the designers. 

 
 

RELATED WORKS 
 

There are different approaches and tools for 
software model checking. Model checkers [like Murφ 
(http://verify.stanford.edu/dill/murphi.html), SAL 
(Bensalem et al., 2000), SPIN (Holzmann, 1997)] are 
used to verify finite state systems automatically. As it 
is hard to use the low-level input language of model 
checker tools for modeling systems directly, many 
transformation techniques have been developed to 
translate high-level modeling languages like unified 
modeling language (UML) based models into the 
input languages of model checker tools (e.g., Latella 

et al., 1999; Paltor and Lilius, 1999; Compton et al., 
2000). But the problem is that UML is not formal, 
hence automatic and precise translation of UML dia-
grams to the input languages of the model checkers is 
not straightforward. Therefore, in our proposal we are 
dealing with graph transformation systems instead of 
UML or other informal modeling languages. 

The theoretical foundations for the verification 
of graph transformation systems through model 
checking have been studied by Heckel (1998). The 
author suggested that graphs should be interpreted as 
states. Then transformation rules can be considered as 
transitions between states. This idea is used by both 
GROOVE (Rensink, 2004) and CheckVML (Schmidt 
and Varró, 2003). Also, we have exploited this idea in 
our solution.  

GROOVE applies adapted model checking al-
gorithms on graph transformation systems by con-
sidering graphs as states and applications of trans-
formation rules as transition between them. Properties 
are defined by means of a combination of graph rules 
and computational tree logic (CTL) expressions 
containing rule names as atoms. Since GROOVE 
cannot support type graphs (in contrast to our pro-
posal), the model checking of real models becomes 
complex or infeasible. Later, Kastenberg (2005) 
proposed a solution to extend GROOVE with attrib-
uted graphs; however, it supports attributed graphs 
partially and in a non-native way. Kastenberg sug-
gested in his proposal that attributes and values are 
kept separate, which makes it difficult for users to 
work with the graph transformation systems, and 
performance decreases as soon as the size of graphs 
increases. Furthermore, GROOVE cannot support 
layered graph transformation systems, while our ap-
proach not only supports them, but also supports 
attributed and type graph transformation systems. 

CheckVML (Schmidt and Varró, 2003) exploits 
SPIN (Holzmann, 1997) to model check graph 
transformation systems. A graph transformation sys-
tem including a type graph, rules and a host graph is 
fed to CheckVML as input. Then it produces an 
equivalent model in Promela, which is SPIN’s input 
language. In CheckVML, properties are defined by 
means of a combination of graph rules and LTL. 
CheckVML can support only safety and reachability 
properties (Schmidt, 2004), while our approach can 
support a wide range of properties like safety, liveness, 
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reachability and deadlock freeness. In the case of 
dynamic systems, CheckVML has insufficient per-
formance (Rensink et al., 2004) (in contrast to our 
approach) owing to its use of a fixed two-dimensional 
0-1 array as a data structure to store graphs in Promela. 
Moreover, Gyapay et al.(2004) proposed an approach 
to solving the optimization problems in graph trans-
formation systems with time using CheckVML, but 
the dynamic creation and deletion of nodes and edges 
is bounded a priori, which is a major restriction in 
comparison with our work. This work also cannot 
support layered graph transformation systems. 

Grunske et al.(2008) investigated how graph 
transformation systems can improve the specification 
of the abstract syntax of a visual modeling language. 
They defined the abstract syntax of behavior trees 
(BTs). BT is a graphical modeling language for 
specifying functional requirements. Then, the authors 
defined a translation schema to translate BTs to the 
input language of the SAL model checker. In contrast 
to our approach, this work describes a special kind of 
graph transformation systems restricted to BTs, while 
we investigate on the general graph transformation 
systems and layered graphs. 

Baldan and König (2002) introduced a different 
theoretical proposal aiming at verifying a special 
class of hypergraph transformation systems (and not 
typical graph transformation systems) by means of a 
special class of Petri nets which is a static analysis 
technique. Later, Baldan et al.(2004a) extended this 
proposal by providing a precise (McMillan style) 
unfolding strategy. In comparison with our work, they 
concentrate on hypergraphs, without considering typi-
cal graph transformation systems or layered graphs. 

Dotti et al.(2003) suggested object-based graph 
grammars to model object-oriented systems. They 
also described an approach to translating object-based 
graphs into Promela. The authors restricted the 
structure of graph transformation rules to only model 
the message exchange mechanism in the object- 
oriented systems. Although the used representation in 
terms of Promela constructs can support only a re-
stricted system, the equivalent system in Promela 
might increase the runtime performance. Ferreira et 
al.(2007) extended the work presented in this ap-
proach to verify concurrent object-oriented systems. 
They used a special class of object-oriented graph 
grammars and defined a translation from such speci-

fications to Promela. According to their claim, they 
were not dealing with object creation or deletion. 
Hence, it is not suitable for dynamic systems. In 
contrast to these approaches, our proposal has no such 
restriction for the shape of the graphs and can support 
dynamic systems efficiently. In addition, these pro-
posals cannot support layered systems. 

Baresi and Spoletini (2006) described a proposal 
to verify graph transformation systems by means of 
Alloy (Jackson, 2006) based on first order logic. They 
defined an approach to translating AGG transforma-
tion systems in Alloy. Due to the nature of Alloy, the 
presented proposal can support only bounded and a 
priori limited domains. Finally, Liu et al.(2007) pre-
sented a constructive method to check if a transfor-
mation satisfies a set of correctness constraints and 
proposed an algorithm based on critical pair analysis 
to automatically prove whether a transformation rule 
satisfies a transformation construct or not. 

 
 

BACKGROUND 
 
In this section we briefly introduce the required 

background, i.e., graph transformation systems and 
Bogor. 

 
Graph transformation system 

The mathematical foundation of graph trans-
formation systems returns to 40 years ago in response 
to shortcomings in the expressiveness of classical 
approaches to rewriting (e.g., Chomsky grammars) to 
deal with nonlinear grammars (Ehrig et al., 1999). In 
this subsection, we describe graph transformation 
briefly, as a modeling means. For more information 
about the theoretical background and semantics of 
graph transformation, interested readers can refer to 
(Ehrig et al., 1999; Baresi and Heckel, 2002). 
Definition 1 (Attributed type graph transformation)    
An attributed type graph transformation system is a 
triple: AGT=(TG, HG, R), where TG is the type graph, 
HG is the host graph and R is the set of rules. 
Definition 2 (Type graph)    Let TGN be a set of node 
types and TGE be a set of edge types. A type graph TG 
is a tuple: TG=(TGN, TGE, src, trg), with two func-
tions src: TGE→TGN and trg: TGE→TGN. These 
functions assign to each edge a source and a target 
node. Each node type NT in TGN is a triple: NT=(Mult, 
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Attr, Out). Mult, being a pair, is the multiplicity of the 
node: Mult=(min, max), which specifies lower and 
upper bounds for the number of nodes of type NT in 
the host graphs. Attr, being a tuple, is the set of its 
attributes: Attr=(SN, V, X, sort), where SN is a set of 
sort names (or type names), V is a set of attribute 
values including a subset X⊆V of variable names, and 
a function sort: V→SN associating every value and 
variable with a sort (type). Out is the set of its out-
going edges (or associations) with corresponding 
multiplicity and destination nodes. More precisely, 
each outgoing edge OE in Out is a pair: OE=(Card, 
Dest), where Card is formally defined by two pairs of 
functions minSrc, minTrg: TGE→ù+∪{0} and maxSrc, 
maxTrg: TGE→ù+∪{*} with minSrc(OE)≤maxSrc(OE) 
and minTrg(OE)≤maxTrg(OE), and Dest is the desti-
nation node of the edge. 
Definition 3 (Host graph)    A host graph HG, also 
called ‘instance graph’ over TG, is a graph equipped 
with a graph morphism typeG: HG→TG that assigns a 
type to every node and edge in HG. 
Definition 4 (Graph rules)    In this study, we follow 
the algebraic double pushout (DPO) approach to 
graph transformation as first introduced by Ehrig et 
al.(1973) for untyped graphs. A graph transformation 
rule P over an attributed type graph TG is given by 

( , , ),l rP L K R type NAC= ←⎯ ⎯→  where lL K←⎯  
r R⎯→  is a rule span with injective graph morphisms 

l, r and graphs L (left hand side or LHS), K (gluing 
graph) and R (right hand side or RHS) typed over TG, 
type=(typeL: L→TG, typeK: K→TG, typeR: R→TG) is 
a triple of morphisms, and NAC is a set of triples 
nac=(N, n, typeN) with N being a graph, n: L→N a 
graph morphism, and typeN: N→TG a morphism. 

The application of a rule to a host graph H re-
places a matching of the LHS in H by an image of the 
RHS. This is performed by (1) finding a matching of 
the LHS in H, (2) checking the NAC (which prevents 
the existence of certain nodes and edges), (3) deleting 
a part of the host graph (that can be mapped to LHS 
but not to RHS) producing the context model, and (4) 
connecting the context model with a matching of the 
RHS by adding new nodes and edges (that can be 
mapped to the RHS but not to the LHS) and resulting 
in a new model H'. 

 

By recursively applying all enabled graph 
transformation rules to the host graph, a transition 
system can be generated. Transition systems are fre-
quently used to represent the behavior semantics of 
software systems. In the case of graph transition sys-
tems, one considers graphs as representations of sys-
tem states. If the resulting state space of the graph 
transition system is finite, we can easily check dif-
ferent properties (e.g., reachability, safety, and live-
ness), even for unrestricted forms of graph transfor-
mation systems, by searching the state space. 

 
Bogor 

In this paper we use Bogor (Robby et al., 2003) 
to verify graph transformation systems. Bogor is an 
extensible software model checking tool developed at 
Kansas State University. Bogor has novel capabilities 
for checking different properties on a variety of 
modern software artifacts, and its internal, modular 
architecture lets domain experts extend it to provide a 
domain-specific model checker. 

Bogor’s input language, Bandera intermediate 
representation (BIR), provides the different instruc-
tions that are supported by the modeling languages of 
verification tools (e.g., SPIN). These instructions 
include primitive and non-primitive data types, like 
arrays and records. Bogor also supports advanced 
features, like function pointers, dynamic creation of 
threads and objects, automatic memory management 
(garbage collector), and generic data types. Control- 
flow and actions in BIR are expressed in a guarded 
command format: ‘guard expressions’ are devoted to 
check expressions, while ‘actions’ (commands) 
change the value of variables in the system. 

For example, the BIR model of Fig.1 comprises 
one thread (i.e., MAIN) and a global integer variable x 
whose initial value is set to 100. Thread MAIN de-
fines a simple loop. For example, the first guard 
checks whether x is even and, if it is the case, com-
putes its new value (x/2). Notice that both guards are 
evaluated simultaneously.  

When there is more than one true guard, Bogor 
chooses non-deterministically one of them; when all 
the guards are false, Bogor detects a deadlock. In the 
BIR example of Fig.1, instruction ‘goto loc0’ at the 
end of the code shows that loc0 must be reached again, 
and thus it causes a loop. 
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While the BIR code is executed, Bogor creates 

an automaton. In the generated automaton, states 
show a configuration of the system based on the 
values of the variables in the code. Hence, in the 
example, when the value of variable x is changed, 
Bogor adds a new state to the automaton and contin-
ues until no new state is found; in this case the exe-
cution is terminated and the automaton represents all 
reachable program states. 

Bogor also has a module for checking different 
properties expressed in LTL (Bogor extensions for 
LTL checking, www.projects.cis.ksu.edu/projects/ 
gudangbogor/). Each property must be stated in BIR 
as a function fun. Then Bogor checks the function. 
Fig.2 shows two examples (Baresi et al., 2008). The 
first LTL formulae, G((x>0)→F(x<0)), is true if in 
each execution of the automaton there is a state where 
x>0, and eventually there must be a state in the postfix 
of that path where x<0. Based on the BIR model of 
Fig.1, this property function is not satisfied.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Fig.2, “p” and “q” correspond to the proposi-
tion “x>0” and “x<0”, respectively. The second LTL 
formula, G(x>0^x≤100), will be true if in each exe-
cution of the automaton and in all states, 0<x≤100. 
The example model of Fig.1 satisfies this property. In 
this example, “LTL.always” and “LTL.conjunction” 
are equivalents for operators G and ^, respectively. 
 
 
ENCODING GRAPH TRANSFORMATION TO 
BIR 

 
We can summarize the main steps of the pro-

posed solution as follows: (1) we define the required 
data structures in BIR to translate graph transforma-
tion systems by using the type graph; (2) we initialize 
the data structures in BIR using the host graph in the 
graph transformation system; (3) we translate the 
rules to BIR: the LHS of each rule is encoded as one 
or more guarded commands in BIR, while the RHS as 
actions (the body of the guards). These steps are ex-
plained through the well-known Dining Philosopher 
example, which has been modeled in (Schmidt, 2004) 
as a graph transformation system. We choose this 
example because it is a simple model, able to illustrate 
our approach without any complexity. In addition, it is 
also a usual benchmark for evaluating the perform-
ance of model checkers. In the ‘VALIDATION’ sec-
tion, we will show some experimental results for 
more realistic models. 

Fig.3a shows the type graph of the example. This 
type graph includes two types of nodes, each having 
its own attributes, multiplicities, and associations. 
Rules of Fig.4 describe all the actions that a phi-
losopher can carry out on the model. For example, 
rule “GetHungry” defines an event in which a phi-
losopher with the status “thinking” (LHS of the rule) 
gets hungry (RHS of the rule). Fig.3b shows the 
example host graph. It shows the starting configura-
tion of the system. In the example host graph, three 
philosophers are thinking. 

At first, the type graph must be encoded. In this 
step the data structure in BIR is defined. Each node in 
the type graph is encoded to a record in BIR. This 
record contains all the attributes and associations of 
the node. Then a further record must be defined to 
store the whole type graph. These steps can be listed 
formally as follows: ∀n∈NT, a record is defined in  

system example { 
int x:=100; 

    main thread MAIN() { 
         loc loc0; 
           when x%2==0 do  {x:=x/2;} 
             goto loc0; 
             when x%2!=0 do  {x:=3*x+1;} 
         goto loc0; 
    } 
} 

Fig.1  Example BIR model 

Fig.2  Example property functions (Baresi et al., 2008)

fun fail() returns boolean= 
  LTL.temporalProperty( 
     Property.createObservableDictionary( 
      Property.createObservableKey(“p”, x>0), 
      Property.createObservableKey(“q”, x<0) 
     ), 
  LTL.always(LTL.implication(LTL.prop(“p”), 

LTL.eventually(LTL.prop(“q”)))) 
  ); 
 
fun hold() returns boolean= 
  LTL.temporalProperty( 
     Property.createObservableDictionary( 
       Property.createObservableKey(“p”, x>0), 
       Property.createObservableKey(“q”, x<=100) 
     ), 
  LTL.always(LTL.conjunction(LTL.prop(“p”), 

LTL.prop(“q”))) 
  ); 
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BIR with the following fields: 
∀a∈n.Attr, a field is added to the record with the 

same type as a;  
∀o∈n.Out, if o.Card.maxTrg(o)=1, an element 

of type o.Dest is added as field of the record; if o.Card. 
maxTrg(o)>1, an array of elements of type o.Dest is 
added as field of the record. 

In general, each node in the type graph is a re-
cord and each attribute in the node type is encoded to 
an equivalent field of the record. Associations in the 
type graph, along with their multiplicities, are en-
coded to a field of the type of the destination node 
with a multiplicity equal to 1, or an array otherwise. 

As an example, Fig.5 shows the PHIL node of 
Fig.3 encoded to an equivalent record in BIR. Its first 
field, “status”, corresponds to the attribute of the node, 
while the other fields represent the associations. 

 
 
 
 
 
 
 
 
 
 
In Fig.5, “left” and “right” are single elements of 

type “FORK”, while “hold” is an array of “FORK”, 
since a philosopher can hold more than one FORK (at 
most two in this case).  

A further record must be defined in BIR to store 
the whole type graph. This further record represents 
all the nodes that a type graph has. For example, the 
record of Fig.6 shows the type graph of Fig.3. In this 
example, all the fields have been encoded to arrays 
because the multiplicity of these nodes is *. 

 
 
 
 
 
 
 
After defining the data structures, we define a 

main thread in BIR. This thread contains all the be-
havior of the graph transformation. The main thread 
consists of different locations (loc). In the first loca-
tion (loc0), the type graph is instantiated and the host 
graph is implemented. At first, a variable of type 
“graph” must be defined. Then, based on the existing 
nodes in the host graph the size of contained arrays 
must be determined. 

Fig.7 presents a portion of generated BIR code 
for loc0 in the main thread, where “instance” is a 
variable of type “graph”. As an example, instruction 
instance.PHILs:=new PHIL[3] allocates the neces-
sary space for the philosophers in the host graph 
(three in this example), and instance.PHILs[0].status: 
=“thinking” sets the value of field status for the first 
philosopher in the model to “thinking”. 

Status=“thinking” Status=“thinking”

PHIL 

Status=“thinking” 

PHIL 

Status=“string” 

PHIL * 

right

Fig.3  Example type graph (a) and host graph (b)

FORK * 

0-2

FORK

FORK 

FORK

PHIL 

right left

left

right left

rightleft hold

(a)

(b)

record  PHIL { 
        string status; 
        FORK left; 
        FORK right; 
        FORK[] hold; 
    } 

Fig.5  The BIR record equivalent to type PHIL

record graph { 
       PHIL[] PHILs; 
       FORK[] FORKs; 
    } 

Fig.6  Graph data structure in BIR 

Fig.4  Example transformation rules

  GetRightFork 

LHS +NAC RHS

1: PHIL 
Status =“thinking”

1: PHIL 
Status =“hungry”GetHungry

1: PHIL 
Status=“Hungry” 

2 : FORK 3 : PHIL 
left

right
hold 2 : FORK 3:PHIL

left

right

1: PHIL 
Status=“HasLeftF”

hold   GetLeftFork 

2 : FORK 3: PHIL

right

left
hold

1: PHIL 
Status =“HasLeftF”

2 : FORK 3:PHIL

right

left

hold

1: PHIL 
Status =“eating” 

2 : FORK 

lefthold 

1 : PHIL 
Status =“eating”

3 :FORK 

righthold

2: FORK 

left

1:PHIL 
Status=“thinking”

3: FORK

right  ReleaseFork
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Up to now, we have described our approach to 

translating the type and host graph to BIR. After the 
first location was generated in BIR, we should 
transform the rules. The encoding of rules can be 
divided into two different sub-problems: “matching” 
and “acting”, i.e., the LHS (and the NAC, if it exists) 
and the RHS, respectively. The matching routine must 
be implemented in the second location for 
non-layered graph transformation systems or in con-
secutive locations for layered systems (one location 
per each layer) as guarded commands, while each 
action is implemented as bodies of the guards. 

In the previous work (Baresi et al., 2008), we 
used a different way to implement “matching” and 
“acting”. Therein we found the main components in 
the LHS (the nodes of the LHS through which all the 
other nodes in that LHS are reachable), and generated 
a thread for each RHS. But using threads decreases 
the performance, because it generates many addi-
tional states. In this study, we use another way to 
translate rules (both LHS and RHS), which leads to a 
better performance as will be discussed in the next 
section. 

The matching procedure computes all possible 
combinations for matching between nodes in the LHS 
of each rule and the nodes in the host graph. Notice 
that the NAC is handled as the LHS; the only differ-
ence is that we treat it as a negative condition. The 
acting procedure is based on the RHS of the rule. 

As an example, consider rule GetHungry of 
Fig.4. There are three possible matches for the LHS of 
this rule on the host graph. Fig.8 shows the guarded 
commands and actions to detect this rule. 

These instructions are generated automatically, 
located in the second location (loc1) in BIR. Bogor 
evaluates the guards and executes the action associ-
ated with a selected true guard. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
As an additional example, consider rule 

GetLeftFork of Fig.4. In the LHS of this rule, there 
are two nodes of type PHIL and one node of type 
FORK. Hence, there are six possible combinations for 
matching of philosophers in the host graph and three 
different combinations for matching of forks in the 
host graph. Also, as each philosopher can hold two 
forks, we should check in which cells of the “hold” 
array this fork can be stored. Consequently, there are 
18×2 (or 36) different matchings for this rule, so 36 
different guards and actions must be generated in BIR 
to support this rule. Fig.9 shows some of the guards 
and actions. Notice that some of these guards might 
never be true (because we only use nodes to detect 
matchings); but to implement the matching procedure 
as generally as possible, we need to consider all 
situations. Furthermore, in the preprocessing step 
where we generate these guards and actions, it is 
impossible to foresee future changes in the model 
(host graph). 

These instructions check the status of the first 
philosopher to be “hungry”. If its left hand side fork 
was not held by another philosopher, then he should 
hold the fork and change the value of his status. 

When detecting a matching for the LHS of a rule, 
we generate the suitable guarded commands (based 
on the LHS and NACs), and then generate the actions 
associated with those guards (based on the RHS): 

(1) If there are some nodes in the RHS but not in 
the LHS, these nodes must be set to “active”, and in- 
stantiated as stated by the rule [The maximum number 
of dynamic nodes is not always known a priori, and 
the host graph only gives a lower bound. Hence, our 
approach gets the maximum numbers of dynamic 

loc loc0: 
     do { 
             instance:=new graph; 
             instance.PHILs:=new PHIL[3]; 
             instance.FORKs:=new FORKs[3]; 
             instance.PHILs[0]:=new PHIL; 
             instance.FORKs[0]:=new FORK; 
             instance.PHILs[0].status:=“thinking”; 
             instance.PHILs[0].right:=instance.FORKs[0]; 
     } 

Fig.7  A portion of loc0 in the main thread

when instance.PHILs[0].status==“thinking” do { 
     instance.PHILs[0].status:=“hungry”; 
     } 
goto loc1; 
when instance.PHILs[1].status==“thinking” do { 
     instance.PHILs[1].status:=“hungry”; 
     } 
goto loc1; 
when instance.PHILs[2].status==“thinking” do { 
     instance.PHILs[2].status:=“hungry”; 
     } 
goto loc1; 

Fig.8  Guarded commands to detect rule GetHungry



Rafe et al. / J Zhejiang Univ Sci A   2009 10(8):1093-1105 1100 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
nodes as parameters and considers an attribute named 
“isactive” to manage them as in (Schmidt, 2004).]. 

(2) If there are some edges in the RHS but not in 
the LHS, as to the edge that is a unary association, the 
variable corresponding to the destination node is 
assigned to the corresponding variable in the record of 
the source node and, as to the edge that is stored in an 
array, an inactive cell in the array is set as in the case 
of unary associations. 

(3) If the RHS does not add nodes or edges to the 
graph and it only modifies the attributes of a node, the 
fields corresponding to the attributes in the record of 
the corresponding variable are changed accordingly. 

(4) If there are nodes in the LHS but not in the 
RHS, the corresponding variables are de-allocated, 
set as inactive, and the associations that have these 
nodes as sources or destinations are cleared. 

(5) If there are edges in the LHS but not in the 
RHS, the corresponding variables, i.e., the fields 
corresponding to the associations in the source nodes, 
are deleted. 

For example, the RHS of the GetLeftFork in 
Fig.9 sets the “hold” association of the philosopher to 
the “fork” which is on the left hand side of this phi-
losopher. As this attribute is an array, only one of its 

cells is used. Additionally, the status of the philoso-
pher is changed to “HasLeftF”. 

 
 

VALIDATION 
 
In this section, we show the experimental results 

and we compare them with those of CheckVML and 
GROOVE on well-known examples to demonstrate 
the validity of our proposal.  

To use the Bogor for checking the properties, we 
first need a way to define properties as an LTL for-
mula, i.e., the notion of temporal logic that Bogor 
understands. Before translating the properties into the 
language that Bogor understands (i.e., property BIR 
functions), we need to define the LTL formula that 
will be used to express the properties: 
Definition 5 (LTL formula)    Let TS=(S, →, h0) be a 
transition system generated by recursively applying 
all enabled rules to host graph (h0). Let Path(h0) be 
the set of all linear paths in the transition system 
starting with state h0, and let p be some atomic 
propositions. Then 
 
TS|=G(p) (or □(p)): 

⇔∀h0h1h2…∈Path(h0), ∀k∈ù, p holds in hk; 

TS|=F(p) (or ◊(p)): 
⇔∀h0h1h2…∈Path(h0), ∃k∈ù, p holds in hk. 

 
Note that this is only a subset of LTL. In case of 

finite paths, k has to be restricted to the length of the 
path.  

Now, we should find a way to define proposi-
tions. For example, consider this safety property on 
the Dining Philosopher example: “a fork may never 
be held by two different philosophers”, or formally: 
 
∀p1, p2: PHIL, ∀f:  

FORK: ~(hold(p1, f)∧hold(p2, f)) holds in all states. 
 
“hold” in this formula refers to the “hold” relation 
between PHIL and FORK node types of Fig.3. To 
avoid Bogor-specific knowledge for stating properties, 
users can use special-purpose graph rules for graphi-
cal representation of the properties. We follow both 
CheckVML and GROOVE to state the properties for 
checking as the combination of graph transformation 
rules and LTL operators. Properties are defined by 

when instance.PHILs[0].status==“hungry” && 
       instance.PHILs[0].left==instance.FORKs[0] && 
       instance.PHILs[1].right==instance.FORKs[0] && 
       instance.PHILs[1].hold[0]==null do { 

        instance.PHILs[0].hold[0]:=instance.FORKs[0];
        instance.PHILs[0].status:=“HasLeftF”; 

            } 
goto loc1; 
when   instance.PHILs[0].status==“hungry” && 

            instance.PHILs[0].left==instance.FORKs[1] && 
            instance.PHILs[1].right==instance.FORKs[1] && 
            instance.PHILs[1].hold[0]==null do { 

        instance.PHILs[0].hold[0]:=instance.FORKs[1];
        instance.PHILs[0].status:=“HasLeftF”; 

            } 
goto loc1; 
when   instance.PHILs[0].status==“hungry” && 

            instance.PHILs[0].left==instance.FORKs[0] && 
            instance.PHILs[2].right==instance.FORKs[0] && 
            instance.PHILs[2].hold[0]==null do { 
                 instance.PHILs[0].hold[0]:=instance.FORKs[0]; 
  instance.PHILs[0].status:=“HasLeftF”; 
            } 
goto loc1; 

Fig.9  A portion of generated guards and actions for rule
GetLeftFork 
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special transformation rules, where NACs show 
negative conditions and LHSs positive conditions. We 
define a property rule to visually describe the char-
acteristics that nodes must (or must not) have. So the 
RHS is identical to the LHS because it does not 
change the host graph. 

As an example, consider a property rule as 
shown in Fig.10. We use this property rule to state the 
mentioned safety property. Its LTL expression is: 
G(¬HoldTwoForks). “HoldTwoForks” is the name of 
the rule. 

 
 
 
 
 
 
 

 
 
 
To encode properties rules to BIR, we carry out 

the following steps (Baresi et al., 2008): 
∀n∈LHS where n is a node type, we consider all 

the possible variables v1, v2, …, vk of the type corre-
sponding to n in the host graph: ∀vi∈{v1, v2, …, vk} 
and ∀attrj∈vi attributes in LHS∪NAC, we create a 
proposition jattr

ip  that checks the attribute for vi. 
∀a∈LHS, where a is an association, we consider 

all the possible variables v1, v2, …, vh of the type 
corresponding to the source of a: ∀vi∈{v1, v2, …, vh} 
and ∀aj=a∈vi associations in LHS∪NAC, we create a 
proposition ja

ip  that checks whether the required 
association exists in vi. 

We create proposition p formed by the disjunc-
tion of all pi generated in the previous steps. In the 
end, using the LTL operator defined by the user, we 
make the final LTL expression. 

Fig.11 shows how the property is translated to 
BIR.  

Since there are 36 different possible matchings 
for the nodes in the LHS of this property rule and due 
to the lack of space, we only consider PHILs[0], 
PHILs[1] and FORKs[0] to translate a portion of this 
property in Fig.11 (only two cases). The result of 
checking this property on the model will be valid. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As another property example, which causes a 

deadlock, consider the following liveness property: 
“if the philosopher p gets hungry, then the status of p 
must be ‘eating’ once in the future”. This property can 
be stated formally as the following formula: 

 

∀p: PHIL, ∀h0h1h2…∈Path(h0), ∃i∈ù, Hungry(p) 
holds in hi→∃j∈ù, j>i: eating(p) holds in hj. 

 
Fig.12 describes this property as two different 

rules. The following LTL expression states this live-
ness property: G(HungryPhil→F(EatingPhil)). 

 
 
 
 
 
 
 
 
 
 
The LTL expression states that, in every execu-

tion if there is a state where a philosopher gets hungry 
in a path, eventually there must be a state in the fol-
lowing of that path in which the status of the phi-
losopher is “eating”. Naturally, the result of the veri-
fication is not valid, as a deadlock easily appears in 
the model by holding just the left side forks by each 
philosopher.  

Another interesting point about Bogor is that it 
detects deadlocks automatically; i.e., without using 
any LTL property, it can detect deadlocks on the 

fun Property() returns boolean= 
  LTL.temporalProperty( 
    Property.createObservableDictionary( 

Proerty.createObservableKey(“p1”, (instance.PHILs[0].
hold[0]!=null && instance.PHILs[1].hold[0]!=null &&

        instance.PHILs[0].hold[0]==instance.FORKs[0] && 
        instance.PHILs[1].hold[0]==instance.FORKs[0]) || 

(instance.PHILs[0].hold[0]!=null && 
        instance.PHILs[1].hold[1]!=null && 

  instance.PHILs[0].hold[0]==instance.FORKs[0] && 
        instance.PHILs[1].hold[1]==instance.FORKs[0])) 
     ), 
  LTL.always(LTL.negation(LTL.prop(“p1”))) 
); 

Fig.11  Property in Fig.10 rendered in BIR

Fig.12  Two example property rules 

PHIL
Status=“hungry”

PHIL 
Status = “hungry”

PHIL
Status=“eating”

PHIL 
Status= “ eating” 

LHS RHS 

HungryPhil

EatingPhil

Fig.10  Example property as a rule

1 : PHIL 2 : PHIL 

3 :FORK 

hold 

1 :PHIL 2 : PHIL

3 : FORK 

LHS RHS 

hold hold hold
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model. In a deadlock state no transitions are enabled. 
Hence, without using the above liveness property, 
Bogor will detect that there is a deadlock in the model, 
thus generating a counter example to show it. 
Checking the counter example, we find out that there 
is exactly one state in the transition system where all 
philosophers hold their left side forks and therefore, 
no transitions (rules) are enabled in that state. 

 
Case studies 

To show the performance of our approach and to 
compare our approach with existing ones, we im-
plemented five different case studies: 

(1) The Dining Philosopher problem, introduced 
in this article. 

(2) The Concurrent Append example presented 
in (Rensink et al., 2004). In this example, two, three 
or four nodes are added concurrently at the end of a 
linked list. For example, 3:7 in Table 1 shows that 
three nodes are added to a list with seven nodes in 
parallel. 

(3) The Shopping Cart example presented in 
(Hausmann et al., 2002). In this example the process 
of purchasing goods by customers in a market has 
been modeled as a graph transformation system. 

(4) The Airport case study introduced in (Baldan 
et al., 2004b). This example models a system repre-
senting planes landing and taking off from airports 
and transports passengers as layered graph transfor-
mation systems. 

(5) The SmartCar example specified as a  
service-oriented architecture in (Baresi et al., 2006). 
This example is a highly dynamic and big model. This 
example contains nearly 30 graph rules, a host graph 
initially with 40 nodes and nearly 20 dynamic nodes 
which are added to the host graph while the system 
evolves. Baresi et al.(2006) presented an approach to 
modeling service-oriented architectures as a graph 
transformation system. Then to verify the designed 
model, they could not use model checking but did 
some experiments by simulation. Because this model 
is a big and dynamic model, existing tools for verifi-
cation graph transformations are not capable of veri-
fying it. By simulation, they only checked that a spe-
cific state was reachable. But by our approach, we can 
check different properties on this model. 

Our experimental results were obtained on a 
3-GHz Pentium IV processor with 1 GB memory; for 
CheckVML, we used the results in (Rensink et al., 

2004) where a 3-GHz Pentium IV processor was used 
with 1 GB memory; for GROOVE, we used the re-
sults provided by the GROOVE group (on a 3.2-GHz 
processor with 500 MB memory). 

Table 1 presents the results of our experiments 
(some of these models and their corresponding gen-
erated BIR codes along with the translator are avail-
able at http://webpages.iust.ac.ir/rafe/files/expriments. 
rar) and compares them with those of CheckVML and 
GROOVE. Considering Table 1, we understand that 
for the dining philosophers, our approach is similar to 
CheckVML but weaker than GROOVE. The biggest 
model for dining philosophers that our approach can 
verify (on the same machine) is a model with 11 
philosophers. In the case of Concurrent Append ex-
amples, our approach is better than CheckVML with 
respect to both memory usage and the time taken to 
run. Compared with the GROOVE in this example, 
our approach is weaker based on the memory used 
and the states and transitions generated. The use of 
more memory can be explained with the need to 
manage typed graphs. But as our approach is designed 
to handle attributed type graphs (i.e., Shopping, 
SmartCar examples and Airport case studies) and 
layered graph transformation systems (i.e., the Air-
port case study), it proves its efficiency in the next 
three case studies (the last three rows of Table 1). 

As compared with CheckVML, our approach is 
more efficient in all the cases but the dining phi-
losophers (where the result is similar). Unfortunately, 
CheckVML is not publicly available now; therefore 
we could not test the Shopping example, but as men-
tioned in (Rensink et al., 2004), CheckVML has some 
drawbacks for dynamic cases and this case study is 
also a dynamic model. Furthermore, CheckVML 
cannot handle layered graphs like the Airport case 
study. 

About the range of properties we can check, we 
implemented some examples like (Hausmann, 2005; 
Engels et al., 2007). In these works, the authors pro-
posed an approach to formally defining semantics for 
dynamic meta modeling using graph transformation 
systems. They used an activity diagram as a case 
study and defined a formal semantics for the activity 
diagram based on token flow semantics to model and 
analyze workflows. To implement the semantics, they 
used GROOVE and finally checked a liveness prop-
erty on activity diagrams. As they mentioned, their 
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proposal cannot check the liveness property of a sin-
gle activity node in the diagram. To do a comparison, 
we implemented this example with our approach 
(Rafe and Rahmani, 2008) and found that it can check 
not only different properties on activity diagrams but 
also the liveness for all the nodes in the model. We 
believe that it can check a wide range of properties (in 
contrast to CheckVML that can check only such 
properties as safety and reachability). 

It remains to discuss the time that our translator 
will take to generate the BIR code. In general, it can 
be quite expensive: in a graph transformation system 
with |R| rules, where each rule Ri (i=1, 2, …, |R|) has 
|Ri| nodes in its LHS, and each node nj (j=1, 2, …, |Ri|) 
can appear |nj| times in the host graph, the number of 

possible matchings is | || |

1 1
| |.iRR

ji j
n

= =∑ ∏  But this time is 

considerably less than that the Bogor takes to run for 
the same model. To show this, we measured the run-
ning time of our translator for various input model 
sizes (Table 2). Comparison of the time in Table 2 
with that in Table 1 reveals that in all cases the veri-
fication time is more than the translation time. For 
each example, the number of generated BIR code 
lines is also shown in the table. 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Architecture of the translator 

The main components of the translator are 
shown in Fig.13. The translator is written in Java to 
ensure platform independence. As is shown, the graph 
transformation system along with the properties to be 
checked and the corresponding LTL expression, are 
designed in AGG by designers. The translator gets the 
graph transformation and the LTL expression as its 
inputs. From these inputs our translator derives a 
semantically equivalent model in BIR. Then Bogor 
runs the generated BIR model and performs the  
verification. 

 
 

Table 2  Running time of translator for different case 
studies 

Example BIR code lines Time (s) 
Dining Philosopher #12 343 1 
Concurrent Append 4:8 1007 4 
Shopping example 1117 5 
Airport case study 352 1 
SmartCar example 3120 475 
#12 in the Dining Philosopher shows the number of philosophers 
in the model; 4:8 in the Concurrent Append denotes the number 
of nodes that must be added to the list that initially has 8 nodes

Number of states  Number of transitions Memory (MB) Time (s) 
Example 

GR CV OA GR CV OA GR CV OA GR CV OA
Dining Philosopher    

3 17 57 46 35 125 112 0.1 2.6 0.1 0.1 0.2 0.01
4 45 181 162 124 554 533 0.1 2.6 0.2 0.1 0.2 0.06
5 117 603 574 403 2397 2366 0.2 2.6 0.4 0.2 0.2 0.5
8 3261 25 961 25 890 17 984 171 058 170 985 0.6 8.8 10.6 2.2 0.6 32

12 347 337 OM OM 2 873 308 OM OM 72.6 OM OM 367.6 OM OM 
Concurrent Append    

2:3 57 22 40 94 169 59 0.2 2.6 0.01 0.2 0.5 0.01
2:5 145 86 116 290 395 199 0.4 2.6 0.12 0.3 1.1 0.03
3:5 1125 3311 2124 3161 5764 5428 0.6 37 1.3 1.2 40 1.3
3:7 2617 OM 3386 7766 OM 15 574 1.0 OM 5.4 2.2 OM 4.8
4:8 31 104 OM 40 669 116 642 OM 1 116 697 18.3 OM 467.5 30.8 OM 561

Shopping example 8584 NA 3816 23 196 NA 141 987 5.9 NA 8.9 6.1 NA 7.5
Airport case study CNS CNS 145 CNS CNS 412 CNS CNS 0.15 CNS CNS 0.1
SmartCar example CNS CNS 538 936 CNS CNS 3 338 856 CNS CNS 598 CNS CNS 1186

GR: GROOVE, CV: CheckVML, OA: our approach. In the first column, 3, 4, 5, 8, 12 are the number of philosophers, and 2:3, 2:5, 3:5, 3:7, 
4:8 are the number of appends vs the number of cells. OM: out of memory, NA: not available, CNS: cannot support 

Table 1  Comparison of GROOVE, CheckVML and our approach in terms of memory used, states and transitions 
generated, and processing time 
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CONCLUSION AND FUTURE WORK 

 
In this study, we completed our previous pre-

liminary research (Baresi et al., 2008), for model 
checking graph transformation systems. To do so, we 
exploited Bogor and implemented a translator to en-
code graph transformation systems to the input lan-
guage of Bogor (i.e., BIR) using an efficient algo-
rithm. In addition, we used the approach presented by 
both GROOVE and CheckVML to state properties by 
a combination of LTL and special-purpose graph 
transformation rules. Then Bogor verifies the model 
against the properties by generating the transition 
system and sends the results of the verification back 
to the designers. Supporting dynamic metamodeling, 
layered graphs and attributed type graphs is the key 
characteristic that makes our solution highlighted 
from the existing proposals.  

In the future, we intend to complete the imple-
mentation of a prototype analysis framework for 
back-annotating analysis results so that they could be 
simulated in AGG. In addition, we plan to exploit the 
extensibility of Bogor to reduce the state space. To do 
so, Bogor must consider only the states that contain 
different graphs. Obviously, the benefit is a better 
performance and less memory use. 
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