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1  Introduction 
 

With the ever shortening speed to market, 
computer aided engineering (CAE) has become a 
crucial tool for product development in automobile 
industry. Various computer programs and models are 
developed to simulate dynamic systems. Before us-
ing these models, their validity and predictive capa-
bilities need to be assessed quantitatively. Model 
validation is the process of comparing CAE model 
outputs with test data in order to assess the validity or 
predictive capabilities of the CAE model for its in-
tended usage. One of the critical tasks to achieve 
model validation is to select a validation metric that 
has the desirable metric properties for model as-
sessment of a dynamic system with multiple func-
tional responses (Oberkampf and Barone, 2006; 
Oberkampf and Trucano, 2006). Developing quanti-

tative model validation methods has attracted con-
siderable researchers’ interest in recent years 
(Schwer, 2007; Ferson et al., 2008). Statistical hy-
pothesis testing is one approach to provide quantita-
tive model validation (Mahadevan and Rebba, 2005; 
Rebba and Mahadevan, 2006). Bayesian methods 
have been developed to determine the predictive 
capabilities of CAE models (Jiang and Mahadevan, 
2008). They were applied to various model validation 
problems and showed significant potential. Jiang et 
al. (2009), Fu et al. (2010) and Zhan et al. (2011a) 
further exploited the Bayesian based validation 
methods for multivariate dynamic systems. However, 
these methods considered the whole distribution of 
interested time history, the agreements of the im-
portant features were not addressed. In order to 
evaluate the agreement of crucial features, Schwer 
(2007) and Sarin et al. (2010) evaluated two catego-
ries of metrics for model validation of dynamic sys-
tems, namely, Sprague and Geers metric and 
Knowles and Gear metric. In these metrics, the 
magnitude and phase features are calculated based on 
the time integration of the waveforms. More recently, 
Zhan et al. (2011b) proposed an enhanced method 
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based on error assessment of response time history 
(EARTH) metric. These methods, however, aim to 
quantitatively compare two curves (i.e., model pre-
diction and test data) for a single response. They 
cannot handle multivariate correlation directly, 
which may not be effective in cases of model vali-
dation for multivariate and complex dynamic sys-
tems, such as vehicle crash tests. 

In this paper, a quantitative multivariate valida-
tion method and common process is proposed to 
quantitatively assess the agreements of important 
features of multiple dynamic responses simultane-
ously. It exploits several advanced techniques such as 
principal component analysis (PCA) (Joliffe, 2002) 
and dynamic time warping (DTW) (Lei and Govin-
daraju, 2003). The PCA approach is used to address 
multivariate correlation and dimensionality reduc-
tion, the DTW and correlation coefficient calculation 
are used for error assessment, the subject matter 
experts (SMEs)’ opinions are incorporated to provide 
the overall rating of the dynamic system. In the fol-
lowing sections, the multivariate validation frame-
work is first briefly introduced, and then the PCA 
based dimension reduction, error assessments of 
dynamic responses, SMEs based response scores 
calculation, and PCA based multivariate error as-
sessment of response time histories (M-EARTH) 
score calculation are described in detail. Next, an 
application procedure is provided. Some conclusions 
are given in the end. 

 
 

2  Multivariate error assessment of response 
time histories (M-EARTH) metric 
 

Fig. 1 shows the flowchart of the proposed 
M-EARTH method. It contains multiple steps in-
cluding: (1) PCA based dimension reduction, (2) error 
assessments of dynamic responses, (3) SMEs based 
response scores calculation, and (4) PCA based 
M-EARTH score calculation. The process starts with 
principal component analysis based dimension re-
duction. First, comparable multivariate data from test 
and CAE are normalized by test data peaks to di-
mensionless data. The PCA is then applied to the 
normalized test data to reduce data dimension and 
also to address multivariate data correlation. Using 
the PCA coefficients from test, the CAE data is 

transformed to the reduced PCA space for comparison 
with the test data. Then the error assessments are 
conducted to the PCA reduced test and CAE data. 
Three independent errors including phase, magnitude, 
and shape are calculated for each time history of re-
duced data. Using the SMEs knowledge, in each re-
sponse, the three EARTH errors are transformed and 
combined as an intuitive score ranging from 0 to 
100%. Finally, the scores for all responses of reduced 
data can be combined through the PCA coefficient 
into an overall score of the multivariate dynamic 
system. Based on the result, the decision maker (DM) 
then decides to accept or reject the model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

2.1  PCA based dimension reduction 

In multivariate data analysis, high numbers of 
variables and correlations between variables make it 
difficult to interpret and summarize the results as well 
as to apply multivariate statistics. One major target to 
deal with highly correlated multivariate data is to 
remove the dependence amongst variables and reduce 
the dimension of variables. Amongst all techniques, 
PCA is a well-established statistical method for di-
mensionality reduction and has been widely applied 

Fig. 1  M-EARTH validation process 
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in data compression, image processing, exploratory 
data analysis, pattern recognition, and time series 
prediction (Hotelling, 1933; Joliffe, 2002). PCA is 
capable of reducing data dimensionality and ad-
dressing the multivariate correlation. It is selected in 
this study as the dimension reduction technique.  

PCA involves a matrix analysis technique called 
eigenvalue decomposition. The eigenvalues and ei-
genvectors from decomposition represent the 
amounts of variation accounted for by each principal 
component and the weights for the original variables, 
respectively. Its main objective is to transform a set of 
correlated high dimensional variables to a set of un-
correlated lower dimensional variables (principal 
components). The important property of PCA is that 
the principal component projection minimizes the 
squared reconstruction error in dimensionality reduc-
tion. The PCA is not based on a probabilistic model, 
so no data distribution assumption is involved in a 
PCA transform process. In automotive safety appli-
cations, the output multiple responses are generated 
from the same crash event, hence, some of the re-
sponses are highly correlated. PCA could transform 
highly correlated original responses into uncorrelated 
lower dimensional responses. The judgment based on 
reduced principal components can be efficient and 
minimize the squared reconstruction error in dimen-
sion reduction.  

To determine the proper number of principal 
components that should be retained is an important 
issue in PCA implementation. In our study, we use 
intrinsic dimensionality as the proper number. The 
intrinsic dimensionality is the minimum number of 
latent variables that is necessary to account for 
enough information in the original data. The eigen-
values corresponding to the principal components in 
the PCA represent the amount of variance explained 
by their corresponding eigenvectors. The first p ei-
genvalues are typically high, implying that most in-
formation is accounted for in the corresponding 
principal components. Thus, the intrinsic dimension-
ality p is obtained by calculating the cumulative per-
centage of the p eigenvalues (i.e., the total variability 
by the first p principal components) that is higher than 
a threshold value, say 95%. This implies that the re-
tained p principal components account for 95% in-
formation of the original data. 

Let T=[t1, t2, …, tm]T, C=[c1, c2,…, cm]T represent 

the m×n physical test data and CAE model predic-
tions, ti, ci are the ith row of T and C, respectively, and 

[1,2,..., ],i m  ti, ciú
m,  let 

1 2

T[ , , , ]
p

 T T T TΦ φ φ φ  

be p×n data matrix with 
i

pTφ (pm) representing 

p principal components of test data, each containing 
the corresponding n positions in the reduced space. To 
determine the proper number of principal compo-
nents, we defined that the threshold of 95% informa-
tion of the original data should be retained after PCA 
transformation, which could be decided by eigen-
values of covariance matrix of T as 

 

 
1 1

/ 95%
p m

i ii i
 

 
  .                   (1) 

 
And the m×p weight matrix W consists of the corre-
sponding eigenvectors of λ1, λ2, …, λp. The relation 
between original difference matrix and reduced prin-
cipal components can be expressed as 
 

 T TT WΦ μ .                               (2) 

 
It describes the relationship between the two sets of 
variables T and ΦT, the parameter vector μT consists 
of m mean values of data matrix T, each mean value 
contains the corresponding n positions in the reduced 
space. Hence, ΦT can be expressed as 
 

T ( ) T TΦ W T μ .                       (3) 

 
For comparison, the CAE data should be transformed 
into the same reduced space with test data. Hence, the 
PCA coefficient matrix W from test data is also ap-
plied to CAE data. Thus, the difference of the result-
ing reduced time series data between test and CAE 
data stems only from the data of themselves, not from 
the PCA parameters. So the reduced CAE data ΦC can 
be calculated as 

 
T ( ) C CΦ W C μ .                      (4) 

 
According to the mutual independence amongst 
principal components, the non-diagonal terms of the 
covariance matrix of reduced data should all be zero 
or approaching zero. The data matrices ΦT and ΦC 
will be applied in the quantitative assessment step as 
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discussed in the following subsections, and the ei-
genvalues of the covariance matrix of T are used as a 
weighting factor when producing the overall rating of 
the dynamic system. 

2.2  Error assessments of dynamic responses 

To minimize the influence of the interactions 
among features such as phase, magnitude, and shape, 
an objective metric named EARTH is developed by 
Sarin et al. (2010). The EARTH validation metric is 
divided into global response error and target point 
response error. The global response error can be de-
fined as the error associated with the complete func-
tional response with equal weight on each point. The 
three main components of global response error are 
phase error nε, magnitude error εmagnitude, and shape 
error εshape. Target point errors can be defined as the 
errors associated with certain localized phenomena of 
interest and are generally application dependent. 
Therefore, they are not the focus of this study. 

The phase error deals with the overall error in 
timing between two functional responses when con-
sidering all the points of the response, and it is de-
picted in Fig. 2a. Magnitude error is defined as the 
difference in amplitude of the two functional re-
sponses when there is no time lag between the two 
and it is depicted in Fig. 2b. Shape error deals with 
error associated with the shape of the functional re-
sponses, such as the number of peaks, valleys, and 
slope, etc., and it is depicted in Fig. 2c. A unique 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

feature of the EARTH metric is using DTW to sepa-
rate the interaction of phase, magnitude, and shape 
errors. DTW is an algorithm for measuring discrep-
ancy between time histories and was first used in 
context with speech recognition in the 1960s (Rabiner 
and Huang, 1993). The time warping technique aligns 
peaks and valleys as much as possible by expanding 
and compressing the time axis according to a given 
cost (distance) function (Lei and Govindaraju, 2003). 
When calculating the magnitude and shape errors, the 
DTW method is employed to minimize the effect of 
local or target point errors. 

To calculate the phase error, the coefficient of 
correlation between test and CAE data is first calcu-
lated. The coefficient of correlation is a measure that 
indicates the extent of linear relationship between two 
time histories, i.e., to what extent can reduced CAE 
data ΦC be represented as a1ΦT +b1 (where a1 and b1 
are constants). The coefficient of correlation can 
range from −1 to +1. The value of +1 represents a 
perfect positive linear relationship between the time 
histories, which implies that they are both identical in 
shape but might be scaled. −1 would indicate a perfect 
negative linear relation which would indicate that the 
two time histories are scaled mirror images of each 
other. The coefficient of correlation is computed as  

 

=1
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     (5)  

 
The number of time steps shifted to maximize 

the coefficient of correlation, nε, is considered as the 
measure for error. 

To calculate the magnitude error, the difference 
between the time histories caused by error in phase 
and shape need to be minimized. We can compensate 
for global time shift by shifting the time history by nε 
time steps. The resultant time histories after time shift 
are referred to as time shifted histories and are rep-
resented as ΦC

ts and ΦT
ts. But even in these time 

shifted histories, there exist local timing errors be-
tween the histories. Also, error due to difference in 
slope cannot be treated as error in magnitude, and 
hence needs to be compensated for. In order to over-
come these issues DTW (Lei and Govindaraju, 2003) 
is used. 

Fig. 2  Examples to illustrate the three types of global 
response errors 
(a) Phase error; (b) Magnitude error; (c) Shape error 
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The key idea of DTW is that any point of a time 
history can be (forward and/or backward) aligned 
with multiple points of the other time history that lie 
in different temporal positions, so as to compensate 
for temporal shifts (Capitani and Ciaccia, 2007). The 
cost function for warping is defined to penalize for 
distance and difference in slope between the two 
points. This ensures the mapping of a point to the 
closest point having similar slope on the other time 
history. To avoid scaling, the form of the cost function 
is (Sarin et al., 2010) 

 
ts ts 2 2

ts ts

[ , ] (( ) ( ) )

d d
.

d d

i j i j

ji

d i j



   

   
    

  

C T T T

C T

t tt t

φ φ φ φ

Φ Φ

t t

              (6) 

 

The warping path W defines an alignment be-
tween two time histories and, consequently, a cost to 
align them. The DTW distance is the minimum of 
such costs, i.e., the cost of the optimal warping path is 
give as 

 

ts ts 2

[ , ]

DTW( , ) min [ , ] .
W

i j W

d i j


 
  

 
C TΦ Φ      (7) 

 

Fig. 3 depicts results before and after the DTW 
that are performed on the time histories. The warped 
time histories are now represented as ΦC

ts+w and 
ΦT

ts+w. It can be observed that warping minimizes the 
local phase and shape effects. The L1 norm can now 
be used on the warped time shifted histories to isolate 
the contribution of magnitude error. 

 
ts w ts w

1
magnitude ts w

1

.
 






C T

T

Φ Φ

Φ
                    (8) 

 
The shape error is a measure of discrepancy in 

shape of the two time histories. The shape of a time 
history is defined by the slope at each point. Therefore, 
the shape error is computed on the derivative of the 
time histories. In order to ensure that the effect of 
global time shift is minimized, the slope is calculated 
for the time shifted histories. Thus, by taking the 
derivative at each point, we obtain derivative time 
shifted histories represented by ΦC

ts+d and ΦT
ts+d. 

Considering the derivative information ensures that 
the effect of magnitude is compensated for, as the 

derivative depends on the slope and not on the am-
plitude. The effect of localized time shifts though still 
exist (Fig. 4a). Thus, we use the same methodology to 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3  Test vs. CAE time histories (a) before DTW and (b) 
after DTW 
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evaluate the magnitude error on the derivative time 
shifted histories. The L1 norm of the warped deriva-
tive time shifted histories should quantify the isolated 
contribution of shape error. Fig. 4 depicts the deriva-
tive time histories before and after warping. 

 
ts d w ts d w

1
shape ts d w

1

.
   

 




C T

T

Φ Φ

Φ
                (9) 

 
In addition to the inputs, there are two parame-

ters that need to be set for executing this function and 
they are the time axis scale for warping (s), and the 
maximum warping window limit. It is a limit beyond 
which a point should not be warped in time. This also 
reduces the computation time for DTW. 

2.3  SMEs’ knowledge and PCA based model  
rating 

The original EARTH metric (Sarin et al., 2010) 
provides three independent values of phase, magni-
tude, and shape errors. Because the ranges of these 
errors are quite different, it is difficult for engineers to 
interpret how good or how bad a CAE model is based 
on these raw error data. To provide more intuitive 
rating based on the original EARTH metric, an en-
hanced EARTH rating score is proposed to combine 
the three errors of the original EARTH metric into one 
global score (Zhan et al., 2011b). The enhanced 
EARTH score translates the original three errors into 
one score between 0 and 100%, so that it can provide 
an intuitive rating score and can be easily compared 
with other objective validation metrics. 

Firstly, the original CAE curve is shifted one 
step at a time towards or away from the original test 
data, and the correlation coefficient between the 
truncated test data and CAE data is calculated until 
the maximum allowable time shift thresholds are 
reached. The number of the shifting steps resulted the 
maximum correlation coefficient is defined as the 
original EARTH phase error nε. In this study, Eq. (10) 
is used to calculate the enhanced EARTH phase score 
eP, where n is the total number of the data points in the 
original functional responses, ε*

P is the maximum 
allowable percentage of time shift, kEp defines the 
order of the regression. In this way, the best EARTH 
phase score is 100%, which means there is no need to 
shift CAE data to reach the maximum correlation 

coefficient between the original test and CAE data. If 
the shift is equal to or greater than the maximum 
allowable time shift threshold ε*

P×n, then the en-
hanced EARTH phase score is 0. In between, the 
EARTH phase score is calculated by regression 
method. 
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Secondly, the derivatives at each data point of 

the truncated test data, and the shifted and truncated 
CAE data are calculated, and they form the truncated 
test slope curve, and the shifted and truncated CAE 
slope curve. DTW is then performed on the truncated 
test data and the shifted and truncated CAE data. In 
this study, Eq. (11) is used to calculate the enhanced 
EARTH magnitude score eM. 
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       (11) 

 

where ε*
m is the maximum allowable magnitude error, 

kEm defines the order of the regression. 
Thirdly, DTW is performed on the truncated test 

slope curve and the shifted and truncated CAE slope 
curve. It results in the truncated and warped test slope 
curve, and the shifted, truncated, and warped CAE 
slope curve. Based on these two curves, the original 
EARTH shape error εshape is calculated (Sarin et al., 
2010). Eq. (12) is then used to calculate the enhanced 
EARTH shape score eS. 

 

s
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shape
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S shape S
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S shape S
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        (12)  

 

where ε*
S is the maximum allowable shape error, kES 

defines the order of the regression. 
The above three enhanced EARTH scores are 

then combined into one EARTH global score of a 
response by 
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P P M M S S ,E w e w e w e                   (13) 

 
where ei and wi represent the scores and weight fac-
tors of the phase, magnitude, and shape rating. An 
SMEs based calibration process was proposed in 
(Zhan et al., 2011b) to obtain the optimal setting of 
parameter values which have the least discrepancies 
with the experts’ judgments. Hence, the knowledge 
from SMEs is incorporated into the evaluation results. 

To combine the EARTH rating of all principal 
components, the variability of each principal com-
ponent is used to calculate the weighting factor of 
each dimension. Let E=[E1, E2, …, Ep], so the mul-
tivariate overall rating EM is calculated as 

 

M 1
1

( / ) .
p

p

i i ii
i

E E 




                   (14) 

 
 
3  Case study 
 

A driver side occupant restraint system 
MADYMO model (Fu et al., 2009; Zhan et al., 
2011c) shown in Fig. 5 is used to demonstrate the 
proposed method. The model simulates a full frontal 
rigid barrier impact scenario at a speed of 35 m/h with 
a 50th percentile belted Hybrid III dummy (National 
Highway Traffic Safety Administration (NHTSA)) in 
a vehicle. This represents one of the USA New Car 
Assessment Program (NCAP) test modes.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6 and Fig. 7 show the time history plots of 
the test data and the corresponding results of model A 
and model B, with the 11 responses (Table 1). In 

model A, note that some CAE responses match well 
with the test (e.g., belt load at shoulder shown in 
Fig. 6e), but some do not (e.g., right femur load 
shown in Fig. 6g and upper neck moment shown in 
Fig. 6j). In model B, it can be observed that some 
responses, such as left femur load in z-direction (Fig. 
7f), right femur load in z-direction (Fig. 7g), head 
acceleration in x-direction (Fig. 7h), and upper neck 
moment (Fig. 7j), are significantly better than model 
A. While some other responses are slightly worse 
comparing with the test data. Clearly, it is very diffi-
cult, if not impossible, to assess the quality, validity, 
and important feature agreements of the two CAE 
models with test data just using visual inspection. 

 
 
 
 
 
 
 
 
 
 
 
 
 
The PCA method is then applied to the normal-

ized test data, to reduce the dimensionality and take 
care of correlation of validation data. The proper 
number of the reduced dimensionality, which is the 
number of principal component, is first determined 
based on the 11×121 test data matrix T by predefining 
the amount of information in the original data to be 
considered. Assuming that the reduced data matrix in 
the PCA should account for at least 95% information 
in the original data matrix, the value of p=4 is ob-
tained for the test data matrix, which accurately ac-
counts for 95.6% information in the original data. 
Fig. 8 (p.129) shows the percentage of variability 
accounted for by each principal component. Clearly, 
the original eleven-dimensional data matrix is highly 
correlated and can be reduced to the data matrix with 
the dimension of four, which accounts for more than 
95% information in the original data. In addition, it is 
observed that the first two principal components 
(p=2) contain more than 85% information in the 
original data matrix, while the first six principal  

Fig. 5  A driver side occupant restraint system model

Table 1  Eleven occupant responses 

Response Description 
Ra Chest deflection 
Rb Chest acceleration in x-direction 
Rc Belt load at anchor 
Rd Belt load at retractor 
Re Belt load at shoulder 
Rf Femur load left in z-direction 
Rg Femur load right in z-direction 
Rh Head acceleration in x-direction 
Ri Upper neck load in z-direction 
Rj Upper neck moment 
Rk Pelvis acceleration in x-direction 
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Fig. 6  Time history plots for the test and CAE model A with 11 responses (a)-(k) 

Fig. 7  Time history plots for the test and CAE model B with 11 responses (a)-(k)  
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components (p=6) contain or account for about 99% 
information. The information of difference principal 
components is used to rate the overall predictive ca-
pability of the CAE model. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9 and Fig. 10 show the first four principal 

components of the test data against the test PCA re-
duced data of two CAE models (p1, p2, p3, and p4),  
which account for more than 95% information of the 
original data. Note that the horizontal axis in each 
sub-figure represents the time interval, whilst the 
vertical axis represents the dimensionless magnitude. 
It is observed that both CAE models match well with 
the test data in terms of the first principal component 
which accounts for 63% of information in the original 
data, whilst for the next three principal components 
which account for 22.5%, 6.5%, and 3.3% of infor-
mation respectively, the discrepancies between CAE 
model A and test data are significantly greater than 
those of the CAE model B by visual inspection. 

Table 2 shows both the original EARTH metric 
errors and the enhanced EARTH ratings for two CAE 
models. Note that the phase error nε, magnitude error 
εmagnitude, and shape εshape given by the original 
EARTH metric are in different ranges, and they are 
not intuitive for users to interpret the goodness of the 
CAE model in a standard way. Extra knowledge or 
references are needed to understand the information 
provided by these errors and they are usually appli-
cation dependent. The enhanced EARTH metric pro-
vides scores of phase, magnitude, shape errors, and 
the final global score in the range of 0 to 100%, which 
are consistent with the other validation metrics in the 
study for comparison (Zhan et al., 2011b). It is also 
noted that all the ratings from the enhanced EARTH 

metric are dependent on the values of the metrics 
parameters, and they can be customized by using 
different parameters for different applications 
(Eqs. (10)–(13)). The information accounted by dif-
ferent principal components is used to calculate the 
overall rating. As the bolded values shown in Table 2, 
model A is rated an overall MEARTH score of 56.6%, 
and model B is rated 64.1%. The results are consistent 
with the SMEs’ opinions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9  Four principal components (a)-(d) of test and CAE 
model A 
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Fig. 10  Four principal components (a)-(d) of test and CAE 
model B  
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5  Conclusions 

 
Development and selection of an appropriate 

objective metric is one of the most important factors 
to achieve successful applications of model validation. 
There are several critical ideal characteristics to be 
considered when selecting a model validation metric, 
such as objectiveness, generalization, simplicity, with 
physical meaning and able to incorporate engineering 
knowledge. In addition, most dynamic systems re-
quire considering the differences of both the func-
tional responses and the key features, such as phase, 
magnitude, and shape between test and CAE data. A 
metric named M-EARTH is developed in this paper to 
provide one intuitive score to assess the validity of the 
CAE model with multiple dynamic responses simul-
taneously for its intended usage. The PCA method is 
used to reduce data dimension and address multi-
variate correlation. The correlation coefficient and 
DTW are used to calculate the phase, magnitude, and 
shape error measures of each response. The physical- 
based thresholds, SMEs’ knowledge, and PCA coef-
ficients are incorporated to obtain the overall as-
sessment of the model consisting of multiple dynamic 
responses. A real-world example with two CAE 
models is used to demonstrate the effectiveness and 
advantages of the M-EARTH metric. The results 
show that the M-EARTH metric not only maintains 
the existing advantages of the original EARTH 
method, but is also superior to the existing metric. 
The advantages of the M-EARTH are as follows: (1) 
it is capable of differentiating the goodness of CAE 
models with multiple dynamic responses; (2) it can  

 
 
 
 
 
 
  
 
 
 
 
 
 

 
 

provide an intuitive rating score; (3) it is scalable to 
other applications; and (4) it is consistent with SMEs’ 
knowledge. Furthermore, since most of the 
M-EARTH metric parameters have clear physical 
meanings, they may be reused for similar applications. 
Note that the example in this paper is analytical in 
nature, and it has been published elsewhere (Fu et al., 
2009; Zhan et al., 2011c). 
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