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Abstract:    Analyzing the service behavior of high dams and establishing early-warning systems for them have become in-
creasingly important in ensuring their long-term service. Current analysis methods used to obtain safety monitoring data are suited 
only to single survey point data. Unreliable or even paradoxical results are inevitably obtained when processing large amounts of 
monitoring data, thereby causing difficulty in acquiring precise conclusions. Therefore, we have developed a new method based on 
multi-source information fusion for conducting a comprehensive analysis of prototype monitoring data of high dams. In addition, 
we propose the use of decision information entropy analysis for building a diagnosis and early-warning system for the long-term 
service of high dams. Data metrics reduction is achieved using information fusion at the data level. A Bayesian information fusion 
is then conducted at the decision level to obtain a comprehensive diagnosis. Early-warning outcomes can be released after sorting 
analysis results from multi-positions in the dam according to importance. A case study indicates that the new method can effec-
tively handle large amounts of monitoring data from numerous survey points. It can likewise obtain precise real-time results and 
export comprehensive early-warning outcomes from multi-positions of high dams. 
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1  Introduction 

 
With the increasing number of dangerous and 

aged hydraulic projects in China, the long-term 
service safety of high dams on great rivers has 
attracted attention from all social sectors (Wu and Su, 
2005; Wu and Gu, 2006). High dams and large 
reservoirs are often built on great rivers with millions 
of people and several important infrastructures 
downstream. Therefore, the failure of high dams has 

serious consequences for the lives, properties, and 
economic situation of residents downstream. 

An integrated safety monitoring system is usu-
ally built according to standards, given the crucial 
importance of ensuring the safety of high dams and 
large reservoirs. The safety of high dams is ensured 
by evaluating their behaviors through prototype 
monitoring data analysis (Wu et al., 2007; Mata, 
2011). With the development of technology, different 
advanced safety monitoring techniques (such as op-
tical fiber monitoring and wireless sensing monitor-
ing) and automatic monitoring systems have gradu-
ally been applied in monitoring the safety of high 
dams. Dense point groups (or sets) need to be laid at 
key positions to ensure the safety of high dams and 
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form a large-scale online monitoring data collection 
system. Due to the high frequency of intensive  
observation, the capacity of monitoring data increases 
as a geometric series. Current analysis methods can 
handle a local single data point repeatedly (De Sortis 
and Paoliani, 2007; Leger and Leclerc, 2007). How-
ever, the computing time surges when processing a 
large amount of data. The repeated treatment of data 
without considering their relationships hinders the 
assessment of data error and redundancy, leading to 
difficulties in obtaining accurate information regard-
ing the behavior of high dams. Thus, methods for 
extracting effective information from numerous data 
and improvement of the speed and precision of 
analysis in acquiring comprehensive information 
about service behavior have become topics of interest 
in the field of safety monitoring of high dams. 

Recently, various new theories (Friedman et al., 
2000; Su, 2003; Yang et al., 2006; Su et al., 2007; 
Bao et al., 2008; Huang et al., 2010; Wu et al., 2010) 
have been introduced to solve these issues. The pre-
liminary formation of a structural health monitoring 
and safety evaluation analysis system has been 
achieved. On the other hand, studies focused on the 
application of information fusion theory to the health 
diagnosis and early-warning methods of high dams 
are insufficient. 

In the present study, a new method based on 
multi-source information fusion is proposed to con-
duct a comprehensive analysis of the prototype mon-
itoring data of high dams. Information fusion at the 
data level is conducted by computing the distance 
among the monitoring data statistical characters (i.e., 
confidence distance measure) of multi-positions and 
multi-points to reduce data metrics. Bayesian fusion 
is conducted at the decision level to obtain a com-
prehensive diagnosis and analysis outcomes. Deci-
sion information entropy analysis is proposed for 
carrying out the sorting of analysis results in multi- 
positions according to importance. This procedure is 
done to diagnose the service behavior of high dams 
and release early-warnings of abnormity on time. 

 
 

2  Data metrics reduction 
 

The monitoring data of high dams are huge data 
sets based on multiple positions, sections and points, 

and contain data abnormity caused by monitoring 
error, data noise and equipment damage. For the 
purpose of actualizing effective filtration and fast 
reduction, we use inner relevancy of data at the same 
position to conduct input data fusion. Commonly, 
methods such as optional clustering ant colony and 
means clustering are chosen for processing data 
clustering and reduction. These methods identify the 
main data characters through eliminating irrelevant 
data and data noise. However, they are limited by 
their thousands of iterations and non-unique 
calculation results when facing numerous monitoring 
data. Relevancy exists in data measured at the same 
sections or positions of a dam (Fig. 1), and becomes 
more apparent when large numbers of measurements 
are being taken and their trends and statistical 
distribution characters are being obtained. In this 
study, the confidence distance measure (CDM) is 
proposed to research the relevancy of data statistical 
distribution characters and for processing and 
analyzing data.  

 
 

 

 
 

 
 

 
 

CDM refers to a value that monitors the degree 
of deviation among measurement data of the same 
index parameter. Using m points to measure the same 
index parameter, the measurement sequence, mean 
values and deviation of points i and j are Xi and Xj, xi 
and xj, σi and σj, respectively. Assuming these values 
obey a normal distribution, their probability density 
function curve as an Eigen function for points, can be 
written as pi(x|xi) and pj(x|xj). Then, CDM can reflect 
the deviation between two sequences: 
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where  

Fig. 1  Similarity of data measured at the same positions 
of a dam 
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A and B are integral areas surrounded by parts below 
the curves pi(x|xi) or pj(x|xj) and the intervals of (xi, xj) 
or (xj, xi), respectively (Fig. 2). The values of dij and 
dji vary between 0 and 1.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Usually, the value of dij can be calculated by the 

error function erf(θ): 
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Comparing with Eq. (1), dij can be expressed as 
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For m points, a confidence distance matrix Dm is 

formed by calculating the CDM dij (i, j =1, 2, …, m) 
between each pair. Dm is given as 
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Obviously, the smaller the CDM value, the 
smaller is the distance of measurement sequences 
between two points, as well as the difference. To 
distinguish the difference,   is set as a threshold. If 
dij<ε, the points of two sides have a good coherence; 
called point i supports point j. Conversely, if the 
points of two sides have a bad coherence; called point 
i does not support point j. A hard threshold is often 
chosen to directly partition the data difference. 
However, given the fact that the value of dij is be-
tween 0 and 1, which is a relatively fuzzy range and 
varies with the change of monitoring data, the Otsu 
(1979) method has been used to conduct data parti-
tioning to achieve a better dynamic partition of nu-
merous data. The Otsu method parts CDM quickly by 
analyzing the maximum between-cluster variance of 
data and converts CDM to degree of support to form a 
relationship matrix of degree of support between 
points. The matrix is 
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Based on Rm, the comprehensive degree of 
support (CDS) can be calculated to reflect the sup-
port of one certain point by other data. The CDS for 
each point is computed by calculating the maximum 
eigenvalues λ and corresponding eigenvector Y of 
Rm: 

 
T

1 2( , , , ) ,m my y y    Y R Y           (12) 

 
which is expanded to 
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where λyk represents the support of m points to point 
k. A larger value of the degree of support means the 
point is more reliable and important. Otherwise, the 
point is supported only by a few points and is of low 
reliability, even invalid, and should be eliminated. 
Finally, data conducted by metrics reduction form an 
effective point data set (PDS) X={x1, x2, ..., xn}. 
Subsequent analysis and diagnosis can then be ap-
plied to these data. 

 
 

3  Bayesian fusion and analysis 
 
If we focus only on single point analysis in 

processing large amounts of data, it is hard to acquire 
the complete behavior of the dam and contradictory 
analysis results could be obtained due to the effect of 
data error invalidation. Bayesian fusion method fuses 
analysis results to build an effective method that can 
draw a unified conclusion. It forms a decision fusion 
set (DFS) including analysis decision variables by 
aggregating analysis results at each point; it then 
conducts fusion to the analysis results in realizing the 
unity of analysis and decision. The following section 
will describe decision variables fusion based on the 
Bayesian fusion method. 

3.1  Bayesian estimation and dynamic learning of 
decision variables 

In moment algorithm, maximum total-probability 
algorithm and maximum likelihood algorithm, the 
unknown parameter θ is defined as a non-random 
variable to estimate parameters. Sequentially, the basic 
idea of Bayesian estimation is to obtain information 

additional to θ in advance, so that the precision of es-
timating θ can be improved. The specific theory of 
Bayesian estimation is described as follows: assuming 
state θ is {θ1, θ2, , θk}, p(θi) stands for the prior 
probability and p(x|θi) stands for probability of event x 
under the condition of state θi. The posterior probabil-
ity p(θi|x) then can be calculated as 
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This means that prior probability p(θi) can be 

converted to p(θi|x) by observing event x, where p(θi) 
is treated as additional information of an unknown 
parameter, so that the estimation precision is  
improved. 

According to Eq. (14), we can develop the spe-
cific calculation processes based on Bayesian theory. 
Assuming DFS X obeys N(μ, σ2) and parameter μ 
obeys N(μ0, σ0

2): 
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 α and α′ are fac-

tors depending on fusion set X and irrelevant to μ. 
This is an exponential function and its exponential 
part is a quadratic function about μ. Thus, p(μ|X) 
obeys a normal distribution and keeps its distribution 
as the number n  of fusion sets increases. It also can 
be written as  
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Comparing parameters of Eqs. (15) and (16) and 

according to the principle that the corresponding parts 

are equal, we can obtain μn and 2
n : 
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where n
  is the mean value of fusion set X. Then, the 

Bayesian estimation   of μ can be computed after 

acquiring the distribution of μ: 
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where   is the optimal fusion value in the fusion set 

and is more accurate and objective. Given that p(μ|X) 

obeys a normal distribution, .n   Commonly, 2
n  

stands for the degree of estimation uncertainty. 
Eqs. (17) and (18) show that as the number n of fusion 
variables keeps on increasing, μn gradually ap-
proaches ,n

  σn
2 to δ2/n. Meanwhile, the distribution 

of p(μ|X) becomes sharper, with its uncertainty degree 
decreasing continually, and reaches its peak around 
the real value of the estimating parameters. Its dis-
tribution then approaches a Dirac function, thereby 
forming a dynamic learning process (Fig. 3). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Information, including monitoring data and 
decision variables, is not provided during the real 
time monitoring of dams, whereas it is gradually 
deepening and changing in the course of time. The 
Bayesian learning method can not only realize the 
optimal analysis of existing decision variables, but 
also fuse with new decision information with the 
passage of time in order to obtain more precise and 
real-time results. Consequently, this method is more 
suited to conduct the online analysis for safety 
monitoring of dams. Considering that each new 
analysis updates based on the previous analysis, the 
first analysis should assume its estimating parame-
ters obey a uniform distribution or use maximum 
likelihood algorithm to estimate because of the lack of 
prior information. The following analysis chooses the 
posterior probability distribution fusing results to be 
the prior analysis for the next step, and employs new 
decision variables to fuse and update. Since the be-
havior of dams changes dynamically, it is necessary to 
analyze data from the latest period and gradually 
abandon part of the old information when fusing new 
information. Moreover, when external environmental 
factors (such as weather and water level) change a lot, 
the time period should be relatively short in order to 
reflect the fluctuation of a dam’s behavior. Conversely, 
the time period could be relatively long if a dam’s 
behavior is stable, in order to improve the precision of 
the analysis results. 

3.2  Selection of diagnosis algorithm 

Diagnosis algorithm is used to analyze observed 
data, acquire a dam’s behavior reflected by a single 
point and provide decision variables to check for 
abnormal behavior. Commonly used diagnosis algo-
rithms are gray model, time series model, ANN model, 
wavelet analysis, and combination forecasting models 
(Hecht-Nielsen, 1989; Kim and Melhem, 2004; 
Trivedi and Singh, 2005; Yuen and Lam, 2006; Chen, 
2009). These methods are seldom applied in practical 
projects because of their low calculation efficiency. 
Apart from these algorithms, statistical models have 
been studied in detail and applied to varied types of 
dams and monitoring data analysis (De Sortis and 
Paoliani, 2007; Leger and Leclerc, 2007; Su et al., 
2007). Consequently, a statistical model was chosen 
as the main diagnosis algorithm. Other models can be 
considered when a dam’s behavior has a hysteretic 
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nature and uncertainty, the monitoring data are lim-
ited or the error is too large. 

The method for calculating decision variables 
for the statistical model is described below: 

After acquiring survey points data at a certain 
position in the dam, we conduct a diagnosis at each 
survey point. Taking deformation data as an example, 
the model can be demonstrated as 

 

            0
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where ̂  is the amount of deformation; ˆ( ),H  ˆ( ),T  

and ˆ( )t  are components of hydraulic pressure, 

temperature, and time effects, respectively. The effect 
of external environmental loads on dam structure is 
shown by varied combinations of hydraulic pressure, 
temperature, and time effects. 

The predictive value ̂  of the deformation 
amount can be calculated from Eq. (20), and then to 
calculate the redundancy of relative   (this is an 

observed value): ˆ| | .      Comparing   with 

the standard deviation S of the model, the behavior of 
a dam is divided into normal behavior, suspected- 
abnormal behavior and abnormal behavior. Assuming 
threshold values for suspected-abnormal and abnor-
mal behaviors are Ea=2S and Eb=3S, respectively, 
then the single point diagnosis equation for the i 
survey point is 
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Based on Eq. (21), decision variables ya, yb and 

DFS Ya, Yb are obtained when the behavior of a dam is 
between the suspected-abnormal and abnormal in-
tervals, as follows: 
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Then, the optimal fusion values for decision 

variables can be obtained by Bayesian fusion, sub-

sequently corresponding suspected-abnormal and 
abnormal values a̂  and bˆ ,  respectively. 

3.3  Sorting of comprehensive diagnosis results at 
multi-positions according to their importance 

Decision variables and the unknown uncertainty 
factors of decision and fusion results vary in the 
course of gradual decision fusing. The facticity and 
degree of importance of diagnosis decision results at 
multi-positions differ from each other. Hence, we 
introduce information entropy theory (IET) to esti-
mate and compare the diagnosis and decision results 
to evaluate their relative importance, which will ac-
tualize the decision information entropy analysis 
(DIE). 

If the possible probability distribution of a de-
cision variable is p(μ), then scatter (i.e., uncertainty) 
of its distribution can be calculated as 
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When two possible probability distributions 

pi−1(μ) and pi(μ) of a decision variable at the same 
position are obtained, in order to weigh the relative 
value of uncertainty between them, the relative un-
certainty is defined as 
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where Di-1,i stands for the ratio of the degree of scatter 
between the former and latter decisions. A larger Di-1,i 
represents a relatively high degree of scatter of the 
former decision and its uncertainty. Conversely, it 
represents a decrease in the degree of scatter of the 
latter compared to the former decision and an in-
crease in certainty. Therefore, Di-1,i indicates the 
relative increase trend of certainty for the integer 
decision. With the degree of scatter being gradually 
reduced and the high uncertainty, the decision proc-
ess could be more true and important. If this decision 
process is neglected, there will be a high risk of 
causing loss (Fig. 4). 

Since the fusion value   of the decision result 

represents the overall trend of the decision distribution,  
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a bigger   indicates a more obvious decision trend. 

Consequently, the relative importance can be defined 
by the combination of the fusion value   of the 

decision variables and relative uncertainty. 
The relative importance of a single-step is 
 

1,1

ˆ
.

ˆ

i

i ii
H D


                          (26) 

 
The cumulative relative importance of m-step is  
 

1, 0,1 0
1

ˆ ˆ
.

ˆ ˆ

i mm

i i mi
i

H D D
 
 



              (27) 

 
When diagnosing different positions, different 

degrees of importance of diagnostic decision out-
comes at multi-positions can be obtained by calcu-
lating the cumulative importance of each decision 
change. If behaviors at multi-positions are deter-
mined as abnormal, the most importance position 
should be assigned the most serious early-warning, to 
emphasize its importance and risk. 

 
 

4  Service behavior fusion diagnosis and 
early-warning system for high dams 

 
A flowchart of a high dam service behavior fu-

sion diagnosis (BFD) scheme is shown in Fig. 5. The 
changing process of a dam’s behavior is categorized 
as three states: normal behavior, suspected-abnormal 
behavior and abnormal behavior. When fusing diag-
nosis and analysis, CDM is used to estimate similar 
changes of multi-points at the same position (or sec-

tion) on the dam under the same environmental loads. 
This synergistic effect analysis can eliminate invalid 
survey points. In order to avoid the effect of different 
testing values within the range of survey points on the 
synergistic effect, testing values are first normalized. 
The confidence distance matrix Dm and support ma-
trix Rm are then calculated and the CDS of the survey 
points is acquired to conduct deletion and choice to 
obtain a fusion set of survey point data, which is 
X={x1, x2, ..., xn}. On that basis, the fusion set of data 
for the decision set of diagnosis Y={y1, y2, ..., yn} are 
converted using the current diagnosis model. Judg-
ment of whether this position behaves suspected- 
abnormally can be made according to single-step 
fusion diagnosis. If certain positions behave  
suspected-abnormally, multi-step fusion diagnosis is 
applied and their cumulative importance calculated. 
When abnormal behavior is checked, early-warning 
should be undertaken. When abnormity at multi- 
positions appears simultaneously, we export the 
early-warning outcomes whose cumulative impor-
tance has been sorted. The specific methods of fusion 
diagnosis for single-step and multi-step are explained 
below. 
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4.1  Single-step Bayesian fusion diagnosis (SBFD) 

The first step of SBFD is to conduct single point 
diagnosis and calculation of data to obtain DFS Ya 
including decision variables. After Bayesian fusion, 
the overall suspected-abnormal decision distribution 

pa(μ) and fusion value a̂  of n survey points at this 

position are calculated as 
 

a a a a a1 a2 a

a a1 a2 a

a a1 a2 a

( ) ( | ) ( | , ,..., )
( ; , ,..., )

         ,
( , ,..., )

n

n

n

p p p y y y
p y y y

p y y y

  


 



Y
    (28) 

a aˆ ( ) d .p                                             (29) 

 

Equations for calculating the abnormal decision 

distribution pb(μ) and fusion value b̂  are similar to 

Eqs. (28) and (29). In daily monitoring, if the fusion 
value aˆ 0,   it means that there is a suspected- 

abnormity at this position, and therefore multi-step 
bayesian fusion diagnoses (MBFD) are applied to this 
position. 

4.2  Multi-step Bayesian fusion diagnoses (MBFD) 

When conducting MBFD to suspected-abnormal 
positions, the real-time decision distribution and fu-
sion values are calculated by upgrading diagnosis 
decision variables. It is a Bayesian learning process. 

Assuming a ( )mp   and aˆ m  are the suspected- 

abnormal decision distribution and fusion value re-

spectively of m fusion, and a
mY  is its suspected- 

abnormal decision set, then 
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  (30) 

a aˆ ( ) d ,m mp                                              (31) 

 

where 1
a ( )mp   is the posterior probability distribu-

tion of the former fusion diagnosis and prior distri-
bution of this time. Corresponding equations for ab-

normal diagnosis decision distribution b ( )p   and 

fusion value bˆ m  are defined by substituting b for a in 

Eqs. (30) and (31). 

In m diagnosis process, MBFD can stop and 
return to SBFD of this position when the primary  
suspected-abnormity falls into the normal range, i.e., 

when aˆ 0m  .  When the primary suspected- 

abnormity falls into the abnormal state, bˆ 0,m   its 

cumulative importance is calculated. If k positions 
appear abnormal simultaneously, the relative sizes of 
their cumulative importance are compared and 
sorted early-warning results at the positions are 
exported:  
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   (32) 

 
 
5  Case study 

 
The case study aims to employ the information 

fusion diagnosis and early-warning method to diag-
nose and analyze the observed data from multi- 
positions of an arch dam in order to obtain their di-
agnosis results. 

5.1  Description of the project  

A hydropower station is located in the upstream 
of the Yellow River in Qinghai Province, China. It 
serves mainly power generation, with consideration 
of water supply, flood control, and irrigation. The 
water retaining structure is composed of a concrete 
hyperbolic arch dam and a gravity buttress on the left 
bank. The height of the arch dam is 155 m and its 
installed capacity is 1200 MW from 20 dam sections. 
The hydropower was used for impoundment in 1996 
and for power generation the following year. The 
project investigation indicated that the geological 
structure of the dam foundation developed well. 
There are a number of weak crushed zones along the 
river, which result in a crashing structure and low 
deformation modulus of rock body in this region. 
The rock body of the riverbed foundation in this 
region is deformed. After ten years of operation, the 
behavior of the dam has suffered a great change. For 
this study, we have chosen the radial displacement 
data from November, 2005 to November, 2009 of a 
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dam section of riverbed to diagnose and analyze the 
service behavior of the dam. 

5.2  Acquisition of a fusion set of the survey points 

We chose the radial displacement data of the 
dam body, which are observed from the vertical ele-
vation survey points of dam sections No. 6, No. 9 and 
No. 11 located in the riverbed. Twelve survey points 
were analyzed and diagnosed with four survey points 
at each dam section. According to the differences 
among dam sections, the survey points were catego-
rized to three groups, recorded as: p6-1–p6-4, 
p9-1–p9-4, and p11-1–p11-4. After normalizing the 
data between 0 and 1, mean values x and the degree of 
scatter  were obtained (Table 1).  

CDM of survey points in each group were cal-
culated using Eqs. (8) and (9), and then their support 
relationship matrix Rm was obtained. Relationship 
matrixes of sections No. 6, No. 9 and No. 11 were 

denoted 1
4R , 2

4R , and 3
4R , respectively. 
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Subsequently, CDS (Table 2) for each survey 
point was calculated using the maximum modulus 
eigenvalue λ and the corresponding eigenvector Y. 
Comparison of the CDS values for survey points in 
each group (Fig. 6) showed that the degree of support 
for most survey points was below 1.6. The degrees of 
support for p6-1 and p9-2 in their own groups were 
below 0.6, and thus they were eliminated. The re-
maining 10 points formed three groups of survey 
points DFS: {p6-2, p6-3, p6-4}, {p9-1, p9-3, p9-4} 
and {p11-1, p11-2, p11-3, p11-4}. 

5.3  Single-step diagnosis 

The statistical models were established for the 
10 points using data from November, 2005 to Octo-
ber, 2009 based on Eq. (20). For an arch dam, the 
hydraulic pressure component is multinomial with a 
maximum power of 4. The multiple correlation coef-
ficient R and standard deviation S of the survey points 
data were then computed (Table 3). 

The SBFD began in November of the same year 
for these three dam sections. Relatively large radial 
displacements were found when analyzing data on 
Nov. 10, 2009. Observed and simulated values for 
each point were obtained and the difference between  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Mean values and degree of scatter of survey points 

Point No. x (mm) σ Point No. x (mm) σ 
p6-1 0.449 0.072 p9-3 0.405 0.058 

p6-2 0.389 0.055 p9-4 0.428 0.068 

p6-3 0.396 0.054 p11-1 0.396 0.057 

p6-4 0.389 0.056 p11-2 0.389 0.054 

p9-1 0.400 0.055 p11-3 0.402 0.059 

p9-2 0.365 0.052 p11-4 0.386 0.056 

Table 2  Comprehensive degree of support of survey points 

Point No. CDS Point No. CDS 

p6-1 0.578 p9-3 1.746 

p6-2 1.705 p9-4 1.676 

p6-3 1.715 p11-1 1.898 

p6-4 1.707 p11-2 1.679 

p9-1 1.735 p11-3 1.690 

p9-2 0.596 p11-4 1.951 
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them and the suspected-abnormity limitation Ea were 
calculated. Then the suspected-abnormity decision 
set Ya was defined to conduct fusion diagnosis. The 
analysis results are listed in Table 4. The suspected- 
abnormity fusion values a̂  for dam sections No. 6, 

No. 9 and No. 11 were −0.247 mm, 0.078 mm and 
0.084 mm, respectively, and corresponding vari-
ances σa were 0.114, 0.167 and 0.157, respectively. 
Eq. (21) and Fig. 7 indicate that the fusion diagnosis 
results of dam section No. 6 were normal, and  
those of dam sections No. 9 and No. 11 were  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4  Suspected-abnormal data diagnosed by SBFD 

Point No. δ (mm) ̂  (mm) Δδ (mm) Ea (mm) Ya (mm) 

p6-2 20.053 18.933 1.120 1.256 −0.136 

p6-3 16.321 14.951 1.370 1.714 −0.344 

p6-4 12.244 11.199 1.045 1.306 −0.261 

p9-1 22.205 20.965 1.240 1.050   0.900 

p9-3 18.237 17.783 0.454 0.568 −0.114 

p9-4 15.189 13.969 1.220 1.062   0.158 

p11-1 25.064 24.114 0.950 0.758   0.192 

p11-2 19.454 18.454 1.000 0.894   0.106 

p11-3 18.521 17.431 1.090 0.922   0.168 

p11-4 13.260 14.282 1.022 1.152 −0.130 

 

Table 3  Multiple correlation coefficient and standard deviation of survey point data 

No. Point No. R S No. Point No. R S 

1 p6-2 0.904 0.628 6 p9-4 0.954 0.531 

2 p6-3 0.905 0.857 7 p11-1 0.977 0.379 

3 p6-4 0.909 0.653 8 p11-2 0.949 0.447 

4 p9-1 0.914 0.525 9 p11-3 0.940 0.461 

5 p9-3 0.958 0.284 10 p11-4 0.956 0.576 

Fig. 6  Comparison of CDS for each survey point 
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suspected-abnormal with their fusion values a̂ >0, 

meaning that these positions are suspected- 
abnormal. 

5.4  Multi-step diagnosis 

The fusion diagnosis of Nov. 10, 2009 is 
regarded as the first step in conducting MBFD for 

dam sections No. 9 and No. 11. The fusion values a̂  

b̂  and variances σa, σb of suspected-abnormal and 

abnormal diagnosis distributions are listed in Table 5, 
and their development trends are depicted in Fig. 8. 

The fusion values a̂  peak at step 3. The degrees of  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

scatter σa are relatively small and the development 
trends come to a maximum. Fusion diagnosis results 
of the following steps 4 and 5 gradually return to the 
normal range. In the whole diagnosis process, ab-

normal fusion values b̂  remain lower than 0, which 

indicates that these two sections do not show abnormal 
behavior. Consequently, it is unnecessary to release an 
early-warning. These sections can return to SBFD. 

In MBFD, steps from 1 to 4 fall within the  
suspected-abnormity range. Calculating the single- 
step and multi-step cumulative relative importance 
of sections No. 9 and No. 11 for the first step of No. 9 
is convenient for comparison. Table 6 demonstrates  
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Table 6  Relative importance of single-step and multi-step 

No. 9 section No. 11 section 
Step Date 

H (single-step)a H (multi-step)b H (single-step)a H (multi-step)b 

Step 1 Dec. 11, 2009 2.33 2.33 2.71 2.71 

Step 2 Dec. 12, 2009 1.34 3.11 1.36 3.42 

Step 3 Dec. 13, 2009 1.17 3.65 1.34 4.26 

Step 4 Dec. 14, 2009 0.98 3.58 0.95 3.77 
a According to Eq. (26); b According to Eq. (27) 

Table 5  Suspected-abnormal data of MBFD 

No. 9 section No. 11 section 
Step Date 

a̂  (mm) a  b̂  (mm) b a̂  (mm) a  b̂  (mm) b  

Step 1 Dec. 11, 2009   0.187 0.163 −0.260 0.258   0.220 0.151 −0.245 0.239

Step 2 Dec. 12, 2009   0.271 0.151 −0.176 0.239   0.310 0.135 −0.151 0.213

Step 3 Dec. 13, 2009   0.410 0.114 −0.037 0.180   0.453 0.108 −0.013 0.177

Step 4 Dec. 14, 2009   0.276 0.173 −0.171 0.274   0.313 0.148 −0.152 0.234

Step 5 Dec. 15, 2009 −0.037 0.164 −0.483 0.259 −0.013 0.162 −0.478 0.256
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that the cumulative relative importance of each dam 
section peaks at step 3 and the importance of section 
No. 11 is bigger than that of No. 9. Examination of 
Fig. 8 leads to the same conclusion, that the diag-
nosis distribution of No. 11 has a relatively clear 
trend and a small degree of scatter. 

 
 

6  Conclusions 
 

In this paper, we propose a new method to con-
duct a comprehensive analysis of the dense prototype 
monitoring data of high dams based on a combination 
of information fusion theory and existing analysis 
models. It has been applied to a project case and ob-
tained satisfactory results: 

1. Considering the cooperating effect of changes 
among multi-points at the same position, CDM is 
employed to measure and select the survey points. It 
can eliminate invalid points, reduce data metric and 
acquire DFS. This process can realize the acquisition 
of effective information. 

2. For the DFS of multi-points at the same posi-
tion, BFD is undertaken to capture the overall trend 
and acquire the overall fusion diagnosis results of that 
position. Thus, comprehensive fusion of varied re-
sults is actualized. 

3. SBFD is used to distinguish suspected- 
abnormal behavior of multi-positions at the dam 
body. For the few positions diagnosed as abnormal, 
MBFD is conducted expressly. This procedure grad-
ually narrows the monitoring diagnosis range and 
improves the speed and efficiency of diagnosis. 

4. In MBFD, the latest diagnosis information is 
fused into the primary decision continually when 
suspected-abnormal positions are being monitored 
and analyzed. This can greatly improve the real-time 
character and precision of diagnosis. 

5. The analysis of the development trend and the 
degree of scatter of the diagnosis decision distribution 
imports uncertainty into the final diagnosis results. 
Thus, different degrees of importance of diagnosis 
and early-warning at multi-positions can be acquired. 
These results are helpful to the function and mainte-
nance of subsequent projects. 
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