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Abstract:    Vibrations inherently generated by on-board disturbance sources degrade the performance of the instruments in an 
on-orbit spacecraft, which have stringent accuracy requirements. The Stewart platform enables both track-positioning and vibra-
tion control. The strut of the Stewart platform is designed as a piezoelectric (PZT) element in series with a voice coil motor (VCM) 
element and a viscoelastic element. The track-positioning system uses a VCM as the main positioning control driver and a PZT as 
the positioning compensator. The vibration control system uses the characteristics of struts including active and passive control 
elements to attenuate the vibration. Simulation results indicate that the Stewart platform with the designed struts has good per-
formance in tracking and vibration attenuation with different interference waves. 
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1  Introduction 

 
Multiple instruments hosted in a satellite use 

gimbals, scanning or articulating components, so 
specific attitude is required to obtain fine pointing, 
such as the space interferometer, the next generation 
space telescope, and the mid-wavelength infrared 
camera on the Space Technology Research Vehicle 2 
(STRV-2). However, the existing dynamic supporting 
equipment brings a micro-vibration environment, 
which degrades the performance of satellite instru-
ments. Developing inexpensive platforms with high 
performance in vibration attenuation isolation and 
track-positioning for space applications is therefore of 
primary interest. Smart structures with vibration 

isolation and attenuation systems for space launch 
and on-orbit applications were used (Sullivan et al., 
2000). Specifically, the Stewart platform, which was 
proposed as a simulator of the flight conditions for 
safe training of helicopter pilots (Stewart, 1965), has 
been receiving much attention. A series of experi-
ments has been carried out using different types of 
struts to validate the feasibility of the Stewart plat-
form in space. For instance, an experiment about 
space-borne optical interferometers has made much 
improvement in vibration control by setting up a 
fringe tracker control system as a feed forward 
through dynamically measuring the displacement 
error. Neat et al. (1998) used piezoelectric (PZT) and 
a voice coil motor (VCM) in parallel to significantly 
attenuate the vibration. Then, the Satellite Ultraquiet 
Isolation Technology Experiment (SUITE) was 
carried out in succession for the PicoSAT spacecraft 
to show that small vibrations of a spacecraft 
instrument can be reduced significantly, in which the 
strut was based on PZT and VCM (Anderson et al., 
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2000). As far as the track-positioning controller is 
concerned, the conventional control method for VCM 
and PZT is the proportional-integral-derivative (PID) 
algorithm. Considering the coupling motion of VCM 
and PZT, however, it is a tricky problem that re-
searchers have been making efforts to explore a sim-
ple way to address this issue. Besides, an algorithm 
was proposed in which the independent components 
of link lengths are used as a medium to analyze the 
forward kinematics of a Stewart platform with six 
degrees-of-freedom (DoFs). Experimental results 
showed that the proposed algorithm achieves better 
performance than the algorithms in the literature 
(Wang et al., 2011). Many methods that use decoup-
led or sequential single input single output (SISO) 
classical frequency shaping design techniques have 
been proposed, including the master-slave method, 
power quality method, and parallel design method. Li 
and Horowitz (2002) discussed two track-following 
controller designs for a dual-stage servo system and 
verified their performance by tests. To achieve high 
stability, Huang et al. (2005) proposed a dual-stage 
servo system with vibration control, and demon-
strated its superiority to the conventional dual-stage 
servo system. Mukherjee et al. (2007) proposed a 
dynamic stability index of the Stewart platform and 
validated its performance through the response 
subjected to base excitations at different frequencies. 
Fraguela et al. (2012) applied output integral sliding 
mode control to a perturbed Stewart platform and 
considerably improved the stabilization of the desired 
position of the platform, even with small errors. 
Zhang et al. (2011) conducted an experiment of a 
real-time Linux based controller for active vibration 
isolation of a Stewart platform and showed that dis-
turbances from the base can be attenuated by more 
than 75%. Mura (2012) converted a Stewart platform 
into a 6-DoF micro-electro-mechanical system 
(MEMS) sensor to measure displacement. The 
measurements were conducted by the optical sensors, 
and the absolute positions and orientations of the 
platform were estimated using a dedicated algorithm. 
Grewal et al. (2012) adopted a linear quadratic 
Gaussian (LQG) controller in the practical application 
of the Stewart platform for vibration control with 
reference tracking.  

In this paper, we introduce integration technol-
ogy to the Stewart platform, of which the strut is an 

integrated system that enables track-positioning and 
vibration attenuation. The primary objective of this 
research is to design a track-positioning controller to 
obtain fine pointing during mission and evaluate the 
vibration control system under the expected distur-
bance source of the reaction wheel. The decoupled 
systems of VCM and PZT are described to design the 
PID controller respectively, together with the re-
sponses of tracking simulation, the predominant dis-
turbance and its simulation process, a specific vibra-
tion control strategy and its dynamic equation, and the 
prediction of the strut performance using the strategy 
implemented by a linear quadratic regulator (LQR) 
algorithm. 

 
 

2 Track-position control for strut of the 
Stewart platform 

2.1  Strut assembly 

The Stewart platform contains six identical struts. 
In this paper, to allow SISO control, the Stewart 
platform has been designed to decouple the action of 
each strut from the others, when the angle between 
two struts is 90°. In this case, a motion sensor and an 
actuator can change only their lengths within each 
strut. Also, each strut is designed to be a single-axis 
member; that is, loads are transmitted along the axis 
of the strut but not in the other five axes. 

Fig. 1 shows the specific architecture of the strut. 
Each strut is a series of active and passive elements. 
From the top of the strut assembly, below the top 
hinge, a preload system ensures that the piezoceramic 
device remains in compression throughout its lifetime. 
The piezoelectric actuator is next in the strut stack, 
driving the macro-positioning stage. This is followed 
by the voice coil stage of the strut, driving the micro- 
positioning stage. The motion sensor makes up half of 
the volume of the strut. The bottom of the strut uses a 
viscoelastic material for passive isolation and the end 
hinge. It is extremely beneficial that the direct drive 
characteristic of the VCM can provide high 
acceleration to maintain the position, and the PZT 
actuator can compensate for the error to achieve 
accurate position. 

2.2  Control decoupling analysis 

The active stage plays a crucial role in 
track-position control. This section focuses on its 
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working behavior. The track-position controller has 
two stages: VCM driving macro-position and PZT 
driving micro-position. It can be simplified to a 
mass-damping system (Fig. 2). Mm, Km, Cm, and Fm 
are the equivalent mass, stiffness, damper, and force 
of PZT, respectively; MM, KM, CM, and FM are the 
equivalent mass, stiffness, damper, and force of VCM, 
respectively. As the micro-position stage is situated 
on the macro-position stage, there will clearly be 
force acting on the micro-position stage when the 
macro-position actuator is moving, and vice versa. 
Liu et al. (2009) analyzed the motion coupling 
characteristics and found that the system can be 
decoupled when the stiffness of micro-position is far 
more than the damping of macro-position. Therefore, 
the controller is designed to treat the macro-micro 
system as two separate positioning stages. Fig. 3 
shows a block diagram for the dual-stage controller 
design using the SISO method. GVCM and GPZT are the 
VCM and PZT model transfer functions, respectively; 
KVCM and KPZT are the VCM and PZT loop controllers, 
respectively; rM represents the motion of the head 
relative to the data track and rm represents the motion 
of the PZT relative to the VCM. The open-loop 
transfer function from r to x in Fig. 3 (without the 
feedback loop being closed) is 

 

VCM VCM PZT PZT VCM VCM PZT PZT.G K G K G K G K G     

     (1) 
An expression is given further: 

 

VCM VCM PZT PZT

VCM VCM PZT PZT

VCM VCM PZT PZT

1 1

 

(1 )(1 ).

G K G K G

K G K G

K G K G

   

 

  
        (2) 

 
Thus, the closed-loop sensitivity transfer function is 
 

VCM VCM PZT PZT

1 1 1
.

1 1 1
S

G K G K G
  

  
     (3) 

 
The total closed-loop transfer function of the 

macro-micro system is the product of the VCM and 
PZT closed loop. Thus, the dual-stage control system 
design can be decoupled into two independent con-
troller designs: the VCM closed loop and the PZT 
closed loop. The VCM closed-loop controller can be 
designed using a PID controller with an LQG filter to 

restrain the vibration caused by the linearity friction 
of VCM. The PZT closed-loop controller is designed 
to provide additional error rejection as the feedback 
system using a PID controller. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3  Macro-position stage of strut 

2.3.1  Model of the macro-position stage 

Based on Kirchhoff’s law, an electrical equiva-
lent model of the VCM can be expressed by the 
voltage balance equation: 

 

B ,R LU U U U                        (4) 

Ym
YM

Km

FmMm

Cm

FM

CM

MM

KM

Fig. 2  Dynamic model of the active part of the strut 
Mm, Km, Cm, and Fm are the equivalent mass, stiffness, 
damper, and force of PZT, respectively; MM, KM, CM, and FM 
are the equivalent mass, stiffness, damper, and force of 
VCM, respectively 

e
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Fig. 3  Block diagram of a dual-stage controller design 
GVCM and GPZT are the VCM and PZT model transfer 
functions, respectively; KVCM and KPZT are the VCM and 
PZT loop controllers, respectively; rM represents the motion 
of the head relative to the data track and rm represents the 
motion of the PZT relative to the VCM 

Fig. 1  Single strut architecture of the Stewart platform 
1: end hinge; 2: capacitance micrometer; 3: voice coil; 4: 
piezoelectric stacks; 5: setup spring; 6: magnetic shielding; 7: 
grating scale; 8: viscous-elastic damper  
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where U is the voltage across the coil, 
d

dL

i
U L

t
  is 

the induction voltage, UB=KBv is the electromotive 
force due to the motion of the coil, and UR=Ri is the 
resistance voltage, while i is the circuit current, ν is 
the speed of movement, and KB is the back electro-
motive force constant. 

In addition, the effect of linearity friction is 
considered and treated as system damping, and the 
model of friction force is written as 

 

f ,F Bv                              (5) 
 

where B is the coefficient of friction. 
Then, the force balance equation is 

 

M M M M M M M ,F M Y C Y K Y                (6) 
 

where M F f ,F K i F   KF is the force sensitivity of the 

VCM. From Eq. (5), f M.F BY   

According to Eqs. (4)–(6), the transfer function 
of the macro-position stage is  

 

LM M

3 2
F M

1
M M F B M

( ) ( ) / ( )

[ ( )

  ( ) ] ,

G s Y s U s

K LMs LC LB RM s

K L RC RB K K s RK 
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   

    

  (7) 

 

where M=MM+Mm is the sum of masses at the macro- 
position stage and micro-position stage. 

The LQG filter is used as feedback to restrain the 
vibration. The state space model of the transfer func-
tion GLM is given as 
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        
 
 
 
 
 

M

and the state vector 
TT

M M M( ) ( ) ( ) .Y t Y t Y t   x    

2.3.2  Simulation of the macro-position stage 

Time domain analysis, frequency domain 
analysis, root locus analysis, and state space analysis 
should be executed in advance to show the control-
lability, stability, and observability of a linear system. 
Fig. 4 shows the step response of the system, result of 
root locus analysis, and bode image of frequency 
domain analysis. The step response is plotted with 
zero overshoot and short rise time (Fig. 4a), which 
explains why the VCM system has a quick response 
and less overshoot. Serious vibration exists during 
movement, which leads to inconsistency between the 
certain degree of flexibility of the component and the 
assumption. A controller with an LQG filter is de-
signed to attenuate the lingering vibration. Fig. 4b 
shows that three poles are distributed in the left com-
plex plane, which confirms the stability of the system 
with a convergence solution. Fig. 4c shows that the 
amplification has a sharp rise across a certain fre-
quency, which is the so-called resonance.  

Fig. 5 shows a block diagram of the controller 
for VCM.  

The method used for controlling the macro- 
position stage is increasing PID, of which the pa-
rameters of proportional plus integral plus derivative 
are tuned by experience (Li et al., 2006). The cost 
function for LQ design in the LQG filter is 

 
1 2 2

M LQG0
( ( ) ( ))d ,J Y t u t t                   (9) 

 
where uLQG is the calculated optimal control force. 

The covariance of disturbance in the stage 
equation and measured noise in the observation 
equation for the Kalman filter model are 100 and 10−4, 
respectively. 

Then, the macro-position stage is simulated in 
MATLAB/SIMULINK. Fig. 6 shows the response of 
the system with the step input under the PID plus 
LQG controller. The tracking signal gradually grows 
from zero to its peak value, then falls back to the step 
value, and then swings around its balance value. After 
about 6 s, the tracking signal and step signal reach 
general agreement.  

Similarly, a sinusoidal signal is adopted to test 
the PID plus LQG controller (Fig. 7). The tracking 
signal follows the input signal with small relative 
errors, and oscillation caused by friction occurs after 
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about 8 s. This indicates that the macro system has 
tracking ability under the macro-positioning con-
troller. Note that the vibration caused by friction still 
exists with small amplitude even if the LQG feed-
back controller is added. But the accuracy is enough 
for engineering applications and the error rejection 
of positioning will be compensated by the PZT  
actuator. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.4  Micro-position stage of strut 

2.4.1  Model of the micro-position stage 

Based on Kirchhoff’s law, an electrical equiva-
lent model of the PZT can be expressed by the electric 
current balance equation: 

 

p p
,

iR R Ci i i                             (10) 
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i
R
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  
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  

p

p
p

d
,

dC

U
i C

t
  and Up 

is the voltage of the PZT. In view of linearity rela-
tionship between voltage and displacement without 
considering the nonlinearity characteristic of PZT, 

 

p ,x aU                                 (11) 

 
where x is the displacement of PZT and a is the line-
arity proportionality coefficient. 

The force balance equation is 

 

t m m m m t m( ) ,K x M Y C Y K K Y             (12) 
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Fig. 5  Block diagram of the controller for the VCM
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where Kt is the stiffness of electric capacity, and 
K=KM+Km is the sum of macro- and micro- position 
stiffness. 

Thus, the transfer function of the micro-position 
stage derived from the Laplace transformation is 

 

m
m p

t p

2
p m m t

( )
( )

( )

.
( 1)[ ( )]

i

i

Y s
G s K

U s

aK K

R C s M s C s K K




   

  (13) 

 

where Kp is the proportion coefficient. 

2.4.2  Simulation of the micro-position stage 

The linear system of PZT is analyzed in the same 
way. Fig. 8 shows the step response of the system, 
result of root locus analysis, and bode image of fre-
quency domain analysis. The step response is perfect 
with zero overshoot and long rise time (Fig. 8a), which 
explains why the PZT system just completes the po-
sitioning with a slower response and more precision. 
The root locus analysis illustrates that the system has a 
stable convergence solution with three poles in the left 
complex plane (Fig. 8b). A resonance occurs around 
the natural frequency and the magnitude is below 0 dB 
across all frequencies (Fig. 8c), which indicates that 
there is no amplification. Thus, the PZT system is 
controllable, stable, and observable.  

Fig. 9 shows the block diagram of the controller 
for PZT. The closed loop of PZT uses the 
macro-positioning error as the input signal of the PID 
controller. Simulation is executed to justify the pro-
portion element, integrating element, and derivative 
element for step response and sinusoidal response. 

Fig. 10 shows the step response of the PZT sys-
tem under PID control. The tracking signal grows 
from zero to its maximum overshoot, falls back to 
negative overshoot, swings around the input step sig-
nal with decreasing overshoot, and finally coincides 
with the input signal. Fig. 11 shows the sinusoidal 
response of the PZT system under PID control. The 
tracking signal starts from the same point as the input 
signal, tracks along the sinusoidal signal with small 
errors at the beginning, and finally matches the input 
signal. The above analysis shows that the micro sys-
tem has good tracking ability under the PID controller. 
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3  Vibration control for strut of the Stewart 
platform 

 
Performance of instruments is evaluated by in-

dices of reliability and pointing stability during the 
operational lifetime. Still, satellite instruments are 
subjected to micro-vibration environments, causing 
problems during on-orbit satellite operation. Much 
work has been done to prove that the Stewart platform 
can be used as a vibration isolator (Preumont et al., 
2007). Zhen et al. (2011) used the Stewart platform 
with non-cubic configuration to address the active 
vibration control problem and developed a vibration 
control system of the strut to attenuate vibration of the 
Stewart platform caused by the existing micro dis-
turbance. The following will introduce the vibration 
control analysis of the strut combining the simulated 
reaction wheel disturbance source. 

3.1  Simulation of reaction wheel disturbance 

To evaluate the performance of the Stewart 
platform, accurate disturbance is necessary for pre-
dicting the effects of vibrations. Experimental statis-
tics show that the reaction wheel disturbance is an-
ticipated to be the largest disturbance source, and its 
detailed data usually is tested by practical applica-
tions. However, the experimental data is difficult to 
acquire. Numerical simulation provides a better way 
to obtain the reaction wheel disturbance. A modified 
Fourier spectrum method is adopted to simulate the 
reaction wheel disturbance based on the power spec-
tral density of the empirical steady-state model pro-
posed in this paper, which provides an inexpensive 

way to obtain the disturbance time curve of the reac-
tion wheel. 

When the wheel speed is a uniform random 
variable over the interval [f1, f2], the simplified power 
spectral density of equation is 

 

F
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i
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 
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
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 (14) 

 
where Ci is an amplitude coefficient of the ith har-
monic, and hi is the ith harmonic number. It has been 
verified that the modified Fourier spectral method 
gives a good simulation result of the random wave. 
The basic principle is that the Fourier amplitude 
spectrum calculated according to the target power 
density spectral with a random phase is used to create 
the artificial random wave through the inverse Fourier 
transform. Then the ratio of the wave spectrum to the 
target spectrum is used to generate an artificial ran-
dom wave by iterative computation until the ratio 
approximately equals one (Xu et al., 2011).  

In Eq. (14) there are two parameters that require 
identification: Ci and hi (Masterson et al., 1999).  
Fig. 12 shows a water plot which consists of 30 wheel 
power spectrum density processed through 30 wheel 
time history data from 500 to 3400 r/min with an 
interval of 100 r/min, where the harmonic numbers 
are ratios of the wheel frequency disturbances. A 
MATLAB function is created to examine all the 
curves of amplitude spectra-normalized frequency 
individually and locate spikes. Numbers at which 
spikes occur in more than a given percentage of pos-
sible wheel speeds are returned as the harmonic 
numbers. Table 1 shows a matrix of spikes-harmonic 
numbers at different wheel speeds. The amplitude 
coefficients are determined by the least-squares 
method assuming parabolic relationship of the dis-
turbance force amplitude and the wheel speed. Note 
that the calculated Ci with a large harmonic number or 
poor degree of fitting should be removed. Moreover, 
the resonance points should be neglected. The am-
plitude coefficient can thus be determined by the data 
in columns of harmonic numbers 1.00, 1.99, and 3.18. 

0 2 4 6 8 10
-1.5

-1.0

-0.5

0

0.5

1.0

1.5

Track time (s)

A
m

p
lit

ud
e

Input Track

Fig. 11  Sinusoidal response of the PZT system under PID 
control 
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As an example, Fig. 13 shows the time history of 

the reaction wheel disturbance forces at 2500 r/min  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

generated by the modified Fourier Spectrum method. 
As can be seen, the forces with small amplitude can 
simulate a micro-vibration environment in the 
spacecraft. Meanwhile, these responses demonstrate a 
degree of regularity; i.e., the amplitude increases as 
the wheel speed increases. With excellent character-
istics of wheel force responses, the strut can be used 
to evaluate the performance of instruments in a satel-
lite affected by small vibration. 
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Fig. 13  Time interval of reaction wheel force at 2500 r/min

Table 1  Matrix of spike-harmonic numbers at different wheel speeds 

Wheel speed (r/min) 1.00 1.99 3.18 3.84 4.56 5.04 6.00 6.60 8.53 9.36 12.48

500 0.006 0.005 0.008 0.022 0.008 0.003 0.002 0.004 0.003 0.004 0.008

600 0.018 0.011 0.014 0.014 0.012 0.004 0.015 0.003 0.005 0.006 0.015

700 0.010 0.006 0.007 0.019 0.010 0.006 0.004 0.005 0.008 0.010 0.010

800 0.025 0.020 0.026 0.015 0.006 0.005 0.011 0.007 0.006 0.008 0.020

900 0.022 0.015 0.008 0.024 0.010 0.004 0.009 0.005 0.008 0.012 0.023

1000 0.038 0.022 0.017 0.018 0.006 0.006 0.018 0.009 0.013 0.016 0.015

1100 0.035 0.011 0.009 0.028 0.014 0.005 0.008 0.006 0.011 0.009 – 

1200 0.027 0.018 0.018 0.020 0.012 0.008 0.015 0.010 0.007 0.012 – 

1300 0.036 0.025 0.020 0.023 0.009 0.009 0.009 0.016 0.016 – – 

1400 0.043 0.085 0.012 0.027 0.015 0.007 0.027 0.011 – – – 

1500 0.140 0.033 0.035 0.019 0.018 0.010 0.022 0.017 – – – 

1600 0.039 0.135 0.013 0.022 0.012 0.012 0.015 0.009 – – – 

1700 0.253 0.027 0.038 0.039 0.007 0.013 0.019 0.010 – – – 

1800 0.055 0.087 0.025 0.025 0.029 0.015 0.025 0.015 – – – 

1900 0.158 0.073 0.042 0.033 0.018 0.018 0.020 – – – – 

2000 0.049 0.047 0.022 0.029 0.012 0.020 0.050 – – – – 

2100 0.136 0.042 0.053 0.018 0.023 0.022 – – – – – 

2200 0.076 0.036 0.042 0.044 0.014 0.025 – – – – – 

2300 0.055 0.045 0.050 0.035 0.020 0.044 – – – – – 

2400 0.098 0.033 0.046 0.052 0.016 – – – – – – 

2500 0.189 0.048 0.067 0.037 0.024 – – – – – – 

2600 0.132 0.056 0.080 0.048 0.038 – – – – – – 

2700 0.158 0.050 0.075 0.028 – – – – – – – 

2800 0.143 0.068 0.064 0.050 – – – – – – – 

2900 0.213 0.072 0.082 0.068 – – – – – – – 

3000 0.192 0.057 0.076 0.056 – – – – – – – 

3100 0.187 0.075 0.094 0.047 – – – – – – – 

3200 0.221 0.074 0.106 – – – – – – – – 

3300 0.216 0.083 0.132 – – – – – – – – 

3400 0.250 0.081 0.112 – – – – – – – – 

 

Fig. 12  Waterfall plot of power spectrum density of re-
action wheel force 
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3.2  Vibration attenuation analysis 

3.2.1  Dynamic model of strut 

The Stewart platform provides vibration at-
tenuation in six axes, three translations and three 
rotations. Each of the six struts is designed to be 
identical to the others, both mechanically and elec-
tromechanically. It has been illustrated that each strut 
can be decoupled if the Stewart platform deliberately 
employs a special geometry or is particularly located, 
for example, in an orthogonal configuration, or if the 
instrument is located in the central axis (Bandyop-
adhyay and Ghosal, 2009). Considering the use of 
PZT and VCM and viscoelastic material in the ar-
chitecture of a single strut, a vibration control meas-
ure of the active-passive series isolation system is 
designed. Fig. 14 describes the dynamic model dia-
gram of this approach. The active elements are below 
the passive element. The active elements are repre-
sented by a stiff spring k1, a damper c1, and a force 
generator U; the passive element is represent by a stiff 
spring k2 and a damper c2. Given the presumption that 
both the base and the actuator are relatively rigid, the 
passive element motion will coincide with the base 
motion once the active elements are turned off. Hence, 
the advantage of the series active-passive system is 
having a sustainable and stable function state. Thus, 
the passive element still works, and then the active 
elements are powered off. In this case, the instrument 
performance could be improved by adding a passive 
damper, which is used to achieve better vibration 
attenuation effect.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Then, the dynamic model of the strut (Fig. 14) is 

established with its dynamical equation being 

1 1 1 1 2 1 1 2
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The equation is rewritten into the following matrix 
form: 
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The state-space equation is 
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3.2.2  Numerical analysis 

The effectiveness of the vibration attenuation 
strategy is evaluated by combining a stochastic model 
of the reaction wheel, as stated above. Therefore, a 
vibration controller should be designed based on 
linear time-invariant control theory to allow predic-
tion of instrument performance in the presence of 
on-orbit disturbances. A methodology called LQR, 
which explicitly addresses this vibration control issue 
of a linear system, is developed from modern control 
theory. In this section, the LQR method is used to 

k2

m2

m1

c2

Uk1 c1

x2

F(t)

x1

0

Fig. 14  Dynamic model of single strut of the Stewart 
platform 
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evaluate the contribution of VCM and PZT to vibra-
tion attenuation. The cost function for LQR design is 
expressed as  

 

0

T T1
[ ( ) ( ) ( ) ( )]d ,

2 t
J t t t t t
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As the amplitude of vibration is very small when 

the Stewart platform is at a specific configuration, we 
assume that the values of the damper and stiffness are 
constant. The following parameters are used: m1= 
25 kg, m2=5 kg, k1=620 N/m, k2=1.2×106 N/m, c1= 
0.5 N·s/m, and c2=1200 N·s/m. 

Then a numerical simulation is carried out in 
MATLAB. Fig. 15 shows the simulation results. 
There are 30 reaction wheel forces corresponding to 
30 reaction wheel speeds. Here, only the responses at 
500, 1500, and 2500 r/min are selected to show the 
vibration attenuation effects. Two cases of responses 
are plotted in the same figure to compare the passive 
control condition with the active-passive control 
condition for the reaction wheel force inputs. This 
visual presentation is effective in showing that the 
system provides significant vibration attenuation 
effect. Meanwhile, the control forces can be obtained 
according to the real-time condition. Table 2 sum-
marizes the results of the vibration control for a single 
strut of the Stewart platform. Note that the peak value 
of displacement is decreased from 18.13 μm to 5.28 
μm with 70.88% attenuation, at a wheel speed of 500 
r/min. The maximum control force obtained is 
0.01232 N. A similar approach is applied to the other 
wheel speeds. The peak value of displacement is 
decreased from 176 μm to 44.48 μm with 74.73% 
attenuation, when the wheel speed is 1500 r/min. Also, 
the peak value of displacement has a 73.45%  
 

 
 
 
 
 
 
 
 

attenuation decreasing from 539.7 μm to 143.3 μm 
when the wheel speed is 2500 r/min. The maximum 
control force is 0.1255 N and 0.2562 N, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
4  Conclusions 
 

A system approach for instruments of an 
on-orbit spacecraft has been proposed, where the 
track-positioning and vibration control systems are 
established based on VCM and PZT technology. The 
effectiveness of track-positioning with a PID con-
troller is evaluated under step signal and sinusoidal 
signal excitations. The results demonstrate that the 
control system is capable of tracking position to meet 
the special position requirement. In addition, the vi-
bration affecting the positioning accuracy is attenu-
ated by the designed active-passive control system, 
 
 
 
 
 
 
 
 
 
 

Fig. 15  Comparison of passive control and active-passive 
control of the displacement response at 500 r/min (a), 
1500 r/min (b), and 2500 r/min (c) 
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Table 2  Results of the vibration control for single strut of the Stewart platform 

Speed (r/min) Strategy Peak displacement (μm) Control effect index (%) Maximum control force (N)

Passive 18.13 – – 500 

Active-passive 5.28 70.88 0.01232 

Passive 176.00 – – 1500 

Active-passive 44.48 74.73 0.1255 

Passive 539.70 – – 2500 

Active-passive 143.30 73.45 0.2562 
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and responses of the passive and active-passive con-
trol cases are compared at different wheel speeds. 
Analysis results show that the active-passive control 
system has remarkable ability in attenuating the effect 
of small vibration on instruments. The strut of the 
Stewart platform with track-positioning and vibration 
control systems satisfies the requirement of instru-
ment fine pointing. 
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