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Abstract:    The singularities and oscillatory performance of translating-pulsating source Green’s function in Bessho form were 
analyzed. Relative numerical integration methods such as Gaussian quadrature rule, variable substitution method (VSM), and 
steepest descent integration method (SDIM) were used to evaluate this type of Green’s function. For SDIM, the complex domain 
was restricted only on the θ-plane. Meanwhile, the integral along the real axis was computed by use of the VSM to avoid the 
complication of a numerical search of the steepest descent line. Furthermore, the steepest descent line was represented by the 
B-spline function. Based on this representation, a new self-compatible integration method corresponding to parametric t was 
established. The numerical method was validated through comparison with other existing results, and was shown to be efficient 
and reliable in the calculation of the velocity potentials for the 3D seakeeping and hydrodynamic performance of floating struc-
tures moving in waves. 
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1  Introduction 

 
The frequency-domain Green’s function with 

forward speed in 3D deep water was derived by 
Haskind (1953), and its physical meaning is the ve-
locity potential of the field point produced by the unit 
translating and pulsating source. It has been widely 
used in computing wave-induced ship motions and 
loads (Bailey et al., 2001; Chen and Wu, 2001; Fang 
and Chan, 2002; Du et al., 2005; 2012; Zakaria, 2006; 
2009; Zong and Qian, 2012). The advantages of this 
Green’s function are an automatic fulfillment of the 
linearized free surface and radiation conditions, and 
the absence of mesh on the free surface avoiding 

reflection on the boundary. However, it is difficult to 
ensure calculation efficiency and accuracy. The nu-
merical difficulties of the problem can essentially be 
traced to the complexity of the mathematical expres-
sion for the Green’s function, or more precisely of any 
of the three available alternative expressions for this 
fundamental function. Xu and Dong (2011) discussed 
three other forms of this function such as Bessho form 
(Bessho, 1977), Michell form (Miao et al., 1995) and 
Havelock form (Rahman, 1990), which were obtained 
by using elementary mathematics. The Havelock 
form is a single integral. There are some difficulties in 
calculation such as infinite discontinuity when the 
denominator of the integrand equals zero, a jump 
discontinuous node in the exponential integral func-
tion of the local disturbance part, and high-frequency 
oscillatory performance of the far-field wave-like 
part. The Michell form is not suitable for numerical 
analysis because part of the function is a double  
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integral. The Bessho form is considered as the most 
suitable for calculations because it is expressed by a 
single integral of the elementary functions in the 
complex domain. This single integral expression has a 
definite advantage over the others, which are ex-
pressed by using the exponential integral functions E1 

from the point of view of computational accuracy and 
speed (Iwashita and Ohkusu, 1989; 1992; Du and Wu, 
1998; Du et al., 2005). On the other hand, the nu-
merical integration must be performed in the com-
plicated complex domain, and there are still some 
difficulties in calculation as follows: (1) an infinite 
discontinuity exists when the denominator of the 
integrand is zero; (2) high frequency oscillatory per-
formance of the integrand is complicated. 

Some numerical integration methods have been 
studied to dispose of such singularities and high fre-
quency oscillatory performance. Iwashita and Ohkusu 
(1989; 1992) developed a special algorithm, named 
“numerical steepest descent method”, for evaluating 
Bessho form translating-pulsating source Green’s 
function. Originally this method was obtained by 
transforming the complex θ-plane to the complex 
M-plane, where the integration range was mapped to 
the half-infinite region. Following this transforma-
tion, Du (1996) and Du and Wu (1998) established a 
fast algorithm for calculating this form of Green’s 
function by employing the steepest descent path 
method together with a self-adaptive integration 
method. Brument and Delhommeau (1997), Maury 
(2001), and Maury et al. (2003) further studied the 
choice of step, start points, and common use of many 
descent lines for the steepest descent method. The 
steepest descent integration method (SDIM) on the 
M-plane makes the numerical search of the steepest 
descent line easy when θ approaches ±π/2. However, 
the presence of new branch cuts must be taken into 
consideration and this sometimes complicates the 
numerical search of the steepest descent line. To im-
prove this computational method, Iwashita (1997) 
directly performed the integration on the θ-plane 
without any transformation to other complex planes. 
However, to do the calculation, the information about 
the saddle points and the cross points between the real 
axis and the steepest ascent line must be analyzed to 
avoid many wrong paths when the start point is lo-
cated on the real axis. This may be sometimes a waste 
of time. 

In this paper, the singularities, oscillatory per-
formance and their contribution factors of the Bessho 
form Green’s function were analyzed systematically, 
aiming to propose a fast numerical integration method 
based on the SDIM. The efficiency and accuracy of 
these integration methods were validated by numerical 
results. 

 
 

2  Single integral expression of  translating- 
pulsating source Green’s function in Bessho 
form 
 

Assuming the translating-pulsating source is 
traveling at a forward speed U and oscillating at a 
frequency ωe, (ξ, η, ζ) is the source point and (x, y, z) 
is the field point, then the 3D translating-pulsating 
source Green’s function can be expressed as 
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where r and r1 are distances to source point and its 
symmetry with respect to the free surface, respec-
tively; k1 and k2 are non-dimensional wave numbers 
of the propagation waves; τ is Brard parameter; K0 is 
wave number; and g is the gravitational acceleration. 

Integral paths of Bessho form Green’s function 
are shown in Fig. 1, where the symbols are defined as 
shown in Eq. (2). 

Despite the integral limits depending on the co-
ordinates of the field points, differentiation of T with 
respect to x, y, and z is not as complicated as antici-
pated. The derivatives are listed as follows: 
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The integration methods for T presented in the 
following are also suitable for its three partial de-
rivatives as given in Eq. (4), because no other calcu-
lation difficulties are added. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  Characteristics of the integrand of T 

3.1  Characteristics of ki 

ki is the non-dimensional wave number of the 
propagation wave generated by the translating- 
pulsating source whose independent variables are τ 
and θ. ki is an important parameter of the integrands 
which influence performances of the propagation 
parts. Meanwhile, ki is also dependent on the defini-
tion domain of θ, which is defined by the relative 
position of field and source points. Typical function 
images of ki are presented in Fig. 2:   
[ , / 2] [ / 2,0]     if 0.25  and   

1[ , / 2] [ / 2,0]     if 0.25  . 

Some findings for the characteristics of ik can be 

drawn as follows: (1) for / 2,    2
1 /k   presents 

the tendency to infinity; as a result, the integrand 
oscillates with high frequency as θ approaches 

/ 2,  which may be a big obstacle for numerical 

integration. (2) if / 2,    then 2
2 / 1,k    

terms in k2 do not oscillate with high frequency, and 
numerical integration is straightforward. Due to their 
behavior, terms in k1 and k2 are computed differently. 

From the point of numerical calculation, under 

conditions of / 2,    2
2 ,k   and k2 can be  
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Fig. 1  Integral path: (a) corresponds to τ>0.25; (b) cor-
responds to τ<0.25 
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calculated according to Eq. (5), if / 2     (  

is infinitely small), 
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3.2  Singularity and oscillatory behavior of the 
integrand 

The integral limits of Eq. (2a) depend on τ and φ, 
the lower limit θ1 is complex or a real number cor-
responding to τ<0.25 or τ>0.25. When X≥0, φ[0, 
π/2]; when X<0, φ[π/2, π]. 

To investigate the behavior of the integrands, we 
separate the integral over θ into different parts ac-
cording to the sign of terms sgnc. 
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Fig. 3 and Fig. 4 show images of Hj(θ) when 

1 2[ , ],    for τ=0.2, X=−500, Y=1, and Z=−0.2. The 

performance of the integrand in this case can be 
summarized as follows. 

(1) It is certain that θ1 is an infinite discontinuity 
and values of terms in k1 and k2 change violently as θ 
approaches θ1. 
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Fig. 3  Typical images of integrands corresponding to k1 

(τ=0.2) 
(a) [Im(θ1), −π]; (b) [−π, −π/2]; (c) [−π/2, Re(θ2)] 
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(2) When 2[ , / 2] [ / 2, ],       the per-

formance of 
jk  is oscillatory because of the complex 

exponential function e jk   (j=1, 2), which can be 

written as i cos( )e .j jk Z k      The term cos( )jk     

determines the value of the oscillatory frequency and, 
the larger it is, the higher the frequency is. It can also 

be concluded that the value of jk   determines 

whether 
jk  is higher-frequency oscillatory with the 

condition of cos( ) 1.    The other part e jk Z  is an 

attenuation term (kjZ<0) and determines amplitudes 

of Hj. When | |jk Z  is getting larger, the attenuation 

speed of Hj becomes higher. As for H2, the value of k2 
is not as large as shown in Fig. 2, so only when the 
parameter ρ is very large can H2 act as high-frequency 
oscillatory. In addition, attenuation performance of H2 

is not obvious because values of 2| |k Z  are not large 

either. As far as H1 is concerned, k1 is very large when 
/ 2,    so H1 becomes high-frequency oscilla-

tory not only when ρ is very large but also when 
/ 2.    However, H1 attenuates very fast when θ 

approaches / 2  since 1| |k Z  is also very large and 

H1 becomes zero when / 2.    
 
 

4  Numerical integration methods 

4.1  Integration methods for the singularities at 
terminals 

From the analysis above, we can see that θ1 is an 
infinite jump discontinuous node of terms both in k1 
and k2. Gaussian quadrature rule (Abramowitz and 
Stegun, 1964) is used in this study to eliminate such a 
node. However, this rule is not suitable to calculate 
the oscillatory function, so we apply it only within the 
domain [θ1, θd], where θd is defined by  
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The integral may be obtained by using the vari-

able substitution method which will be discussed in 
detail as below, when the interval is d[ , ]   (τ<0.25) 
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It is inefficient and sometimes even impossible 
to calculate integrals in k1 and k2 by using usual in-
tegration methods because oscillation characteristics 
of these integrals are extremely complicated. The 
steepest descent method is often used to compute 
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starts from the real axis, the search algorithm of these 
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a method based on a variable substitution is intro-
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Integrands of Eq. (11) can be written as e ,jA

jf  

where fj is a complex function and can be expressed as 
follows:  
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Assuming that the discrete sequences of [θe, θs] 

are 1 2, , ..., ,m    the relative sequences of Aj are 

Aj(θ1), Aj(θ2), …, Aj(θm). 
If a linear function about Aj is used to approxi-

mate fj between Aj(θn) and Aj(θn+1) (1 1n m   ), the 
integral In between the two points can be expressed as 
Eq. (14) through integration by parts 
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       (14) 

 
Thus, the sum of In approximates to the integral 

of Hj(θ) ([θe, θs]). The accuracy of this integration 
method is determined by the performance of fj and its 
relative interval discrete method. It is not difficult to 
prove that fj is continuous within the integration  
interval.  

The completed variable substitution has trans-
formed the oscillatory function into a formula easy for 
integration. It should be pointed out that values of fj 
vary violently in a narrow zone near relevant θf when 
d equals zero. θf is defined to be the root of equation 
d=0, which can be simplified as Eq. (15) by some 
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mathematical derivations. It can be easily obtained 
that the root number of Eq. (15) is smaller than 2. 

 

1
tan 1 ( 1) tan( ) 0.

1 4 cos
j  

 
 
     

 
   (15) 

 
Fig. 5a gives typical curves of Re[fj] and Im[fj] 

when no root is existing in Eq. (15). The curves are 
smooth and easy to discrete. Typical curves of Re[fj] 
and Im[fj] with one root existing in Eq. (15) are given 
in Fig. 5b and the characteristics of these curves are: 

(1) The curve shape of Im[fj] in the narrow zone 
near θf is leptokurtic； 

(2) Values of Re[fj] change violently in the nar-
row zone around θf, and θf looks like a jump discon-
tinuous node but it is a false appearance here because 
fj is continuous at the point of θf. This false appear-
ance is defined as a false bizarre phenomenon and the 
respective θf is defined as a false singularity. The false 
bizarre phenomenon should be taken into account to 
improve the integration efficiency and accuracy dur-
ing discrete treatment of the integral interval. At this 
point, the local refinement of the integral steps tech-
nique should be applied. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.2  Integration method for [θ1, −π] when τ<0.25 

The Gaussian quadrature rule is applied to 
evaluate the integration within the domain [θ1, θd] (θd 
is defined as above), when τ<0.25. However, within 
the domain of [θd, −π] the integrands of Hj(θ) also 
have complicated oscillatory characteristics when ρ 
has a large value or the locations of source points and 
field points change. At this point, the method based 
on variable substitution is used again. 

If the interval is [θe2, θs2], then the integral of 
Hj(θ) can be calculated according to Eq. (16) by 
performing Aj=kjω. 
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Similar to the method in Section 4.2.1, the fore-

going Eq. (16) can be converted into the following 
expression: 
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wherein  
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The integration method is the same as that dis-

cussed in Section 4.2.1. 

4.3  Integration methods for θ within the domain 
of [−π/2, θ2] 

For this numerical simulation within the domain 
[−π/2, θ2], we divide the complex θ-plane into regions 
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as shown in Fig. 6, which is proposed by Iwashita 
(1997). We consider a different treatment of the inte-
gration path for each case, and choose different inte-
gration methods. In Fig. 6, δ is a relatively small value 
and set as δ=π/16 in actual calculation. 

(a) For the condition of ε≥10 including the case 
of X=Y=0  

The integrand tends to zero as ε tends to infinite. 
We can therefore neglect the integration from θ2 to 
−10i as the order of the integrand is less than O(10−8) 
in the magnitude at θ2=−10i. The integration path is 
taken as straight lines shown in Fig. 6a, because the 
steepest descent line from, i.e., θ=−10i is regarded as 
the imaginary axis and the real axis towards θ=−π/2. 
At this point, we calculate the integration along the 
real axis by the VSM, which is different from Iwa-
shita (1997)’s method and proved to be efficient. 

(b) For the condition of 4≤ε<10  
The path from θ2 is taken to be close to the 

imaginary axis by using the B-spline discussed by 
Yao and Dong (2013). The cross points between the 
dotted line and the imaginary axis are used for the 
control points of the B-spline. Here, the integration 
along the real axis is also calculated by the VSM to 
avoid the complication of numerical search of the 
steepest descent line when the start point is located on 
the real axis. 

(c) For the condition of 2≤ε<4 
If Re(θ2)≤−π/16, the path is toward θ=−π/2; 

otherwise, if Re(θ2)≥π/16, the path is toward θ=π/2; 
meanwhile, if −π/16<Re(θ2)<π/16, an approximate 
integral path is taken, which is similar to Clause (b). 

(d) For the condition of 0≤ε<2  
When the starting point θ2 is located in this re-

gion, the numerical search of the steepest descent line 
becomes necessary near θ=±π/2. However, when 
−δ<Re(θ2)<δ, an approximate integral path is taken 
too, which is similar to Clause (c). 

The numerical search algorithm of the steepest 
descent line has been discussed by Iwashita and Oh-
kusu (1989) and Du and Wu (1998). When |Z| and |Y| 
are close to zero compared to |X|, then the integrands of 
Eq. (2a) are so large at the start point and decrease too 
rapidly for numerical integration to be appropriate. For 
this case, a complementary scheme should be intro-
duced as illustrated in (Iwashita and Ohkusu, 1989; 
1992; Du, 1996; Du and Wu, 1998). 

4.4  Self-adaptive integration method in paramet-
ric domain 

 
The self-adaptive integration method to calculate 

the integral along the steepest descent line was firstly 
established by Du (1996) to evaluate translating- 
pulsating Green’s function in Bessho form. To 
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4≤ε<10; (c) 2≤ε<4; (d) 0≤ε<2 
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improve the efficiency of this method, some modifi-
cations are introduced as follows. 

1. The steepest descent line generally forms a 
curved line of sometimes small curvature, so this line 
can be represented by a typical B-spline curve. The 
knots vectors are established via accumulative chord 
length method so as to acquire a parameter interval  
[0, 1]. The discrete points on the steepest descent line 
are represented by the B-spline, which is expressed by  
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i i k
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                            (18) 

 

where ( 0,1, ..., )iP i n  is a set of control points co-

inciding with the coordinate of the steepest descent 
line. , ( )i kN t  is the basis function of the B-spline, 

which can be defined as follows: 
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where ui is a knot value, 0 1 1[ , , ..., ]n ku u u  U  is a 

knot vector. The accumulative chord length method is 
discussed as follows. 

If ( 1, 2, ..., )jB j s  is a discrete point on the 

steepest descent line, S is the total length of this line, s 
is the total number of discrete points, then: 
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When the steepest descent line is represented by 
the B-spline curve, one-one correspondence exists 
between discrete points and parameter t, where  
t[0, 1]. 

2. As in the self-adaptive algorithm, we first 
subdivide the entire integral domain of t  into several 
equal segments and treat each part separately. The 

length of each segment is 1/l and the total integral is 
the sum of them. Here, the high order trapezoidal 
integration rule is used and, if necessary, repeatedly 
subdivides the range automatically. Details are listed 
by Du (1996) and Du and Wu (1998). 
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            (22) 

 
The self-adaptive integration method presented 

here is an integral method performed one time along 
the steepest descent line represented by the B-Spline 
curve. The refined integration points are just on the 
B-spline curve, without any discretization of the in-
tegration relating to the discrete path. This avoids the 
waste of CPU time for numerical search of the refined 
points on the steepest descent line as obtained by Du 
and Wu (1998). 

4.5  Truncation of numerical integration 

If / 2,    1 ,k    the integrands tend to 

zero, so we truncate the numerical integration 
somewhere on the integral path for high efficiency. It 
can be known from (Du, 1996) that the truncation 
error is lower than 10−5 when choosing a truncation 
point at 1Re( ) 20.k     The finite upper limit of the 

integral is calculated by Eqs. (23a) and (23b) when θ 
is on the real axis. 
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5  Numerical results and analysis 
 

To check the effectiveness of the proposed nu-
merical integration methods, curves G* and Gx

* are 
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plotted in Fig. 7 and Fig. 8. The same cases have been 
presented by Du and Wu (1998) and Du et al. (2005). 
The calculated conditions for Fig. 7 are ωe=1.4 rad/s, 
and U=1.1 m/s, 1.5 m/s, and 2.0 m/s. Fig. 8 shows that 
the source point is located at (0, 0, 0), and the field 
points describe the x-axis, corresponding to Y=0. The 
excellent level of agreement with known results shows 
that the present numerical method is reliable. 

The total average CPU time consumed to cal-
culate G* and its partial derivatives is scattered from  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4×10−3 s to 6×10−3 s, meeting the requirements of 
engineering applications.  
 
 
6  Conclusions 

 
In this paper, the performance of Bessho form 

translating-pulsating source Green’s function is dis-
cussed and a numerical integration method is pro-
posed. Conclusions can be drawn as follows. 
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1. θ1 is an infinite jump discontinuous node and 
can be eliminated by use of the Gaussian quadrature 
rule. For this rule, the end points of the integration 

interval must satisfy 
1 d

Im( ) Im( )j jk k       

/ 10.    

2. The performances of H1 and H2 are influenced 
by ρ and Z. As for H2, only when the parameter ρ is 
very large and the value of |Z| is small, can H2 act as 
high-frequency oscillatory; H1 becomes high- 
frequency oscillatory not only when ρ is very large 
but also when θ→−π/2. However, H1 attenuates very 
fast when θ approaches −π/2 since |k1Z| is also very 
large and H1 becomes zero when θ→−π/2. To effi-
ciently evaluate these terms, the combination of 
SDIM in the θ-plane and VSM can be adopted. 

3. Numerical results have proved the efficiency 
and accuracy of present method, and it can be further 
developed to calculate the diffraction-radiation 
problems of floating structures advancing in waves. 
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中文概要： 
 
本文题目：Bessho 型三维移动脉动源格林函数快速计算方法研究 

A fast integration method for translating-pulsating source Green’s function in Bessho form 
研究目的：实现 Bessho 型三维移动脉动源格林函数的快速数值计算 

创新要点：1.提出了综合采用变量代换和“最速下降法”计算振荡项；2.推导了变量代换后，被积函数

出现“伪奇异性”点的快速数值求解方法；3.建立了参数域内的局部自适应数值积分方法。

研究方法：1.采用“Gaussian quadrature rule”消除被积函数端点处的奇异性；2.结合变量代换和“最速

下降法”的特点，采用分区方法处理振荡积分（见图 6）；3.采用参数域内局部自适应积分方

法实现被积函数沿最速下降线积分的快速计算。 

重要结论：1.采用“Gaussian quadrature rule”能有效消除积分端点的奇异性；2.采用提出方法计算格林

函数及其偏导数的耗时为 4×10−3 s–6×10−3 s，能满足工程应用的需要。 

关键词组：三维移动脉动源格林函数；振荡特性；伪奇异性；最速下降积分方法；变量代换方法 


