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Abstract:    This paper addresses the effect of leakage on the natural frequencies of a large amplitude vibrating panel backed by a 
cavity, which has not been considered in many other related studies. The structural-acoustic governing equations are employed to 
study this nonlinear problem. An elliptical integral method, which was recently developed for the nonlinear panel cavity problem, 
is introduced here to solve for the structural-acoustics responses. The present results agree reasonably well with those obtained 
from the classical harmonic balance method. Modal convergences of the nonlinear solutions are performed to verify the proposed 
method. The effects of vibration amplitude and leakage size are studied and discussed. It is found that (1) the edge leakages in a 
panel cavity system significantly affect the natural frequency properties, and (2) the edge leakages induce a low frequency acoustic 
resonance.   
 
Key words:  Large amplitude vibration; Elliptic integral method; Noise and vibration 
http://dx.doi.org/10.1631/jzus.A1600145                                         CLC number:  TU502 
 
 

1  Introduction 
 

An acoustic cavity is formed by several panels. 
Leakages are usually caused by imperfect connec-
tions between the panels. Fig. 1 shows the schematic 
diagram of a nonlinear panel backed by a cavity with 
edge leakages. However, the leakage effect has not 
been considered in previous panel cavity research. 
Most researchers, including the author (Pretlove, 
1966; Lee and Lee, 2007; Li and Cheng, 2007), 
adopted the assumption of a perfectly rigid acoustic 
boundary (or no leakage). In addition, although the 
related structural acoustic problems or nonlinear 
panel vibration problems have been of considerable 
interest to many researchers (Zhang et al., 2007; Xie 
et al., 2008; Zhu and Bai, 2009), most of them 
adopted the assumption of linear vibration, and there 

are still limited studies for nonlinear structural- 
acoustic problems. That is the motivation in this study 
about the effect of leakage. In the author’s previous 
study (Lee, 2002), the classical harmonic balance 
method was employed to obtain the nonlinear solu-
tions. The main drawback of this solution method was 
the tedious procedures of setting up the full harmonic 
balance equations. Thus, the elliptical integral 
method, which was recently employed by Hui et al. 
(2011), is introduced to the nonlinear problem. In the 
solution procedures of this method, a structural 
acoustic formulation representing the natural fre-
quency of a nonlinear panel cavity system can be 
developed, and the elliptical integral solution is ob-
tained by solving only one residual equation. 
 
 
2  Theory 

 
Fig. 1 shows a nonlinear panel coupled with a 

cavity with edge leakages. a, b, and c are the cavity 
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width, length, and depth, respectively; d is the leakage 
width. In this study, the nonlinear simply supported 
panel governing equation (Hui et al., 2011) is adopted 
and incorporated with the acoustic pressure force 
terms:  
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is the acoustic pressure force acting on the panel (i.e., 

z=c), and ( )h
cP t  is the acoustic pressure force induced 

by the hth order harmonic component of the nonlinear 

panel vibration. 
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, r=a/b is the aspect 

ratio, E is Young’s modulus, ν is Poisson’s ratio,  is 
the panel density per unit thickness, and τ is the panel 
thickness. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The acoustic pressure within the cavity induced 
by the panel is given by the following homogeneous 
wave equation (Lee and Lee, 2007): 
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where Ph(x, y, z, t) is the acoustic pressure within the 
cavity induced by the hth order harmonic component 
of the nonlinear panel vibration, and Ca is the sound 
speed in air. 

The acoustic boundary conditions are given in 
Eq. (3). In Eqs. (3a), (3c), and (3d), the domains 
represent the rigid walls at x=0 or a, y=0 or b, and z=0. 
The air particle velocities on these rigid walls (i.e., 

, , and
h h hP P P
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) are zero. In Eq. (3b), the do-

main represents the four edge leakages (or openings) 
at x=0 or a. The acoustic pressures at the openings 
(i.e., Ph) are zero. In Eq. (3e), the domain represents 
the vibrating panel at z=c. The air particle velocities 
are equal to the corresponding panel velocities.  
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where a is the air density, Wh(x, y, t) is the hth order 
harmonic component of the panel vibration response 

and is equal to cos( ) ( , ),hA h t x y   and (x, y) is  

the double sine panel mode shape, i.e., 
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The acoustic pressure distribution within the x-y 
plane (or cavity mode) is given by (Lee, 2016a) 
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(4) Fig. 1  A panel backed by a cavity with edge leakages 
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where u and v are the acoustic mode numbers, and 
H(y) is given by  
 
H(y)=1,     0yd,                                                 (5a) 
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d<yd+d,                      (5b) 
H(y)=0,     d+d<y<b−d−d,                               (5c) 
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b−d−dy<b−d,                    (5d) 
H(y)=1,     b−dyb.                                             (5e) 

 
Note that in order to have a 2nd order continu-

ously differentiable function, H(y) is of C2 continuity 
at y=d, d+d, b−d−d, and b−d, and d is a very 
small domain, in which the value of H(y) varies from 
0 to 1. In this study, the leakage size concerned is not 
bigger than 2% of the cavity length. Thus, φuv(x, y) is 
almost orthogonal. Fig. 2 shows the orthogonality of 
the acoustic mode function, which is defined in 
Eq. (6), plotted against the leakage size for different 
mode numbers.  
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where OI is the orthogonality index. If the acoustic 
mode function is perfectly orthogonal, the orthogonal 
index is equal to 1 for u≠u′ and v≠v′.  

Theoretically, d can be infinitely small to satisfy 
the boundary conditions. However, in order to avoid a 
numerical singularity, d is set to d/100 which is very 
small when compared with the panel width. In Fig. 2, 
the three curves are very close. It can be seen that the 
function is perfectly orthogonal for leakage size of 0; 
when the leakage is increasing, the index values are 
also reducing but still very close to 1 for a leakage 

size less than 2%. On the other hand, according to Lee 
and Lee (2007), the acoustic pressure solution form in 
Eq. (2) is  
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where h
uvL  and h

uvN  are the coefficients which de-

pend on the boundary conditions at z=0 and z=c, 
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acoustic modes used, ωuv is the acoustic natural fre-
quency in the case without a flexible panel and can be 
obtained using Eq. (9), and ω is the natural frequency 
in the case with flexible panel and leakage (see Ap-
pendix A for more details).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Apply the boundary conditions in Eq. (3) to 
Eq. (7) to obtain  
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Fig. 2  Orthogonality index versus leakage size for various 
acoustic modes 
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d d

b a
x y    . Hence, the acoustic pressure force 

term in Eq. (1) can be obtained using Eq. (8b). 
Consider the modal residual equation by putting 

the acoustic pressure solution in Eq. (7) into Eq. (2): 
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Hence, ωuv can be found using Eq. (9). Note that as 
aforementioned, φuv is almost orthogonal when the 

leakage is small. Thus, 
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According to the solution method of Hui et al. 

(2011), a dummy term KaA is considered in Eq. (1), 
i.e., 
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Then, it is assumed that A  is the elliptical inte-
gral solution to the cubic nonlinear differential  
equation: 
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elliptic cosine, and Ao is the modal displacement or 
the vibration amplitude at t=0. The natural frequency 
of the nonlinear panel cavity system is given by 
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Note that the dummy Ka has not been found, and A  is 
not the exact solution to Eq. (10) and depends on Ka 

 

(i.e., a( )A K ). In addition, h
cP  depends on a( )A K  

(i.e., a( )h
cP K ). If we put A  into Eq. (10), the residual 

is given by  
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Ka is the only one unknown in Eq. (13). Ka can be 
found from the minimization of the residual in 
Eq. (13).  
 
 
3  Results and discussion 

 
In this section, the material properties of the 

panel in the numerical cases are considered as follows: 
Young’s modulus of the beam E=7.1×1010 N/m2, mass 
density ρ=2700 kg/m3, Poisson’s ratio ν=0.3, and panel 
dimensions ab=0.3048 m0.3048 m. In Tables 1–3 
and Figs. 3–7, the panel thickness is 1.2192 mm (ex-
cept Fig. 5c, where the panel thickness is 0.6096 mm). 

Tables 1–3 show the modal convergence of the 
frequency ratio ω/ωo for various vibration amplitude 
ratios, A/τ. It is shown that the approach of four 
acoustic modes is good enough for obtaining con-
verged and accurate solutions. Fig. 3 shows the dif-
ference between the natural frequency results from 
the present method and the classical harmonic bal-
ance method for the panel cavity system without 
leakage. Although when the cavity depth or the am-
plitude ratio is larger, the difference is bigger, gener-
ally the differences in all cases are less than 1%. 
Therefore, it can be considered that the frequency 
ratios for various cavity depths obtained by the ellip-
tical integral method agree reasonably well with those 
obtained from the classical harmonic balance method. 
Fig. 4 shows the comparison between the frequency- 
amplitude results from the proposed method and the 
multi-level residue harmonic balance method of Lee 
(2016b) for various panel lengths (other parameter 
values are the same as those in Fig. 3). The values of 
the cross symbols are abstracted from Lee (2016b), 
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while the values of the diamond symbols are com-
puted using the multi-level residue harmonic balance 
method. The results from the proposed method agree 
well with those from Lee (2016b). In addition, it can 
be seen that when the panel size is bigger, relatively, 
the panel stiffness is weaker or the influence of the 
cavity stiffness on the frequency ratio is bigger. Note 
that if the cavity stiffness has no influence or the 
vibration amplitude is zero, the frequency ratio is 
equal to one.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The vibration amplitude ratio is plotted against 

the frequency ratio for various cavity lengths, panel 
thicknesses, and leakage sizes as shown in Fig. 5. The 
dashed line and vertical line represent the natural 
frequencies in the cases of no leakage and no flexible 
panel, respectively. It can be seen that the edge 
leakages induce one more natural frequency solution 
in all cases. Note that in Figs. 5a and 5b, the wave-
lengths of the acoustic resonances are longer than 3 m 
while the cavity length and width are only 0.3048 m. 
It is because the leakages result in a weaker cavity 
stiffness or lower acoustic resonant frequency. When 

the amplitude ratio is smaller or the leakage size is 
bigger, the difference between the acoustic frequency 
solution and the natural frequency in the case of no 
flexible panel, and the difference between the struc-
tural frequency solution and the natural frequency in 
the case of no leakage are larger. As an example, 
when the amplitude ratio is 0, the differences of 1% 
and 1.5% leakage sizes are 28% and 33%, respec-
tively. When the amplitude ratio is increasing, the 
acoustic and structural frequency solutions converge 
to the natural frequencies in the cases of no flexible 
panel and no leakage, respectively. In Fig. 5c, the 
leakage size is 1%, and the dimensionless natural 
frequency of the no flexible panel case is 1.77, which 
is much higher than those in Figs. 5a and 5b. The 
acoustic and structural resonances are significantly 
affected by each other so that the two natural fre-
quency solution curves are far from the vertical line 
and dashed line, respectively. It can be seen that the  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Modal convergence of frequency ratio for var-
ious amplitude ratios (leakage size, d/a=0%) 

Approach 
Frequency ratio, ω/ωo 

A/τ=0.5 A/τ=1 A/τ=1.5 A/τ=2 

1 mode 1.5353 1.7540 2.0642 2.4304 

4 modes 1.5311 1.7492 2.0585 2.4235 

9 modes 1.5310 1.7491 2.0600 2.4234 

Table 2  Modal convergence of frequency ratio for vari-
ous amplitude ratios (leakage size, d/a=0.5%) 

Approach 
Frequency ratio, ω/ωo 

A/τ=0.5 A/τ=1 A/τ=1.5 A/τ=2 

1 mode 1.6007 1.7985 2.0918 2.4474 
4 modes 1.5967 1.7938 2.0861 2.4406 
9 modes 1.5966 1.7937 2.0900 2.4404 

Table 3  Modal convergence of frequency ratio for var-
ious amplitude ratios (leakage size, d/a=1%) 

Approach 
Frequency ratio, ω/ωo 

A/τ=0.5 A/τ=1 A/τ=1.5 A/τ=2 

1 mode 1.6764 1.8515 2.1249 2.4679 
4 modes 1.6726 1.8468 2.1193 2.4610 
9 modes 1.6726 1.8468 2.1200 2.4610 

Fig. 3  Difference between the natural frequency results
from the elliptic integral and harmonic balance methods
versus vibration amplitude ratio 
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assumption of leakage in the panel cavity problems is 
very important and significantly affects the structural 
vibration and acoustic pressure behaviors.  

In Figs. 6 and 7, the acoustic and structural nat-
ural frequencies are plotted against the leakage size, 
for various amplitude ratios, respectively. In Fig. 6, the 
three curves are convex. It can be seen that the acous-
tic natural frequency is monotonically increasing with 
the leakage size. When the leakage size is smaller, the 

three curves are closer (or the acoustic natural fre-
quency is less sensitive to the vibration amplitude). 
When the leakage size is increasing, their slopes are 
flatter and their differences are larger (or the acoustic 
natural frequency is more sensitive to the vibration 
amplitude). In Fig. 7, the three curves are concave. 
The structural natural frequency is also monotonically 
increasing with the leakage size. Generally, the slopes 
of the curves in Fig. 7 are flatter and the differences 
between the three curves are more significant than 
those in Fig. 6. It is implied that when compared with 
the acoustical natural frequency, the structural natural 
frequency is less sensitive to the leakage size and 
more sensitive to the vibration amplitude.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 

 
 

 
 
 
 

 
4  Conclusions 
 

The natural frequencies of a nonlinear panel 
backed by a cavity with edge leakages have been 

Fig. 5  Vibration amplitude ratio versus frequency ratio
(a) The panel thickness is 1.2192 mm, the cavity depth is 
0.3048 m, and the leakage size is 1%; (b) The panel thickness
is 1.2192 mm, the cavity depth is 0.3048 m, and the leakage 
size is 1.5%; (c) The panel thickness is 0.6096 mm, the cavity 
depth is 0.1524 m, and the leakage size is 1% 
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Fig. 6  Acoustic natural frequency versus leakage size for
various amplitude ratios 
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Fig. 7 Structural natural frequency versus leakage size for
various amplitude ratios 
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studied. The nonlinear structural acoustic formulation 
has been developed and solved by the elliptical inte-
gral method. The effect of cavity leakage, which was 
ignored in much previous structural acoustic research, 
has been investigated. The present elliptic integral 
solution agrees reasonably well with those obtained 
from the classical harmonic balance method. It is 
concluded that: (1) the edge leakages induce one more 
low frequency resonances; (2) the edge leakages can 
significantly affect the structural natural frequency in 
a panel-cavity system and makes it higher; (3) gen-
erally, when the leakage size is larger, its effect on the 
acoustic and structural natural frequencies is also 
higher.  
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Appendix A 
 

From Eq. (7), 
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Then, put the three 2nd derivative terms in 
Eqs. (A1)–(A3) into the left side of Eq. (2): 
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where R is the residual in Eq. (2). The cavity resonant 
frequency of the (u, v) mode, ωuv, can be found by  
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The cavity mode shape is given by (Lee and Lee, 
2007) 
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Note that the cavity modes in Eq. (A6) are orthogonal. 
For u≠u′ and v≠v′,  
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Put Eq. (A6) into Eq. (A5) to setup the following 
equation, and thus the cavity resonant frequency of 
the (u, v) mode can be found.   
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In this study, the cavity mode shapes are given in 
Eq. (4): 
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and the orthogonality index of these mode shapes is 

given in Eq. (6):  
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where if the acoustic mode function is perfectly or-
thogonal, the orthogonal index is equal to 1 for u≠u′ 
and v≠v′. Fig. 2 has shown that the index values are 
very close to 1 for the leakage size less than 2%, 
which is the range considered in this study.  
 
 

中文概要 
 

题 目：与裂缝腔联结的弹性板的大幅自主震动 

目 的：板腔系统中的裂缝会导致共振特性发生变化。本

文旨在探讨裂缝的影响，推导其中的关系与相关

公式，并控制计算精确的程度。 

创新点：1. 通过椭圆积分方法破解控制方程，推导裂缝腔

联结的弹性板的共振频率；2. 建立理论模型，成

功计算不同情况下弹性板的共振频率。 

方 法：1. 通过理论推导，计算裂缝腔大小、震动幅度与

共振频率之间的关系（公式（10）~（12））；

2. 与其它方法得到的数据进行比较，验证所提方

法的可行性和有效性（图 3 和 4）；3. 通过仿真

模拟，推导裂缝腔对弹性板共振频率的影响（图

5a~5c）。 

结 论：1. 板腔系统中的裂缝会导致共振频率出现重大变

化；2. 裂缝会导致一个额外的低频率共振点。 

关键词：大幅自主震动；椭圆积分方法；声音与震动 

 
 
 
 
 


