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Abstract: A general procedure is proposed to estimate the reliability of a dual-span rotor based on nonparametric modeling on 
random uncertainty. First, the vibration equation of the rotor with random uncertainty is constructed based on random matrices 
through the nonparametric modeling approach. Second, the reliability estimation is then performed by response spectral analysis 
and the moment method. By making full use of the advantages of nonparametric method and response spectral analysis, not only is 
the requirement on probability density function (PDF) avoided, but also the first and second moments are no longer needed to be 
estimated or assumed for calculating the reliability. Finally, the statistical index Z*-value based on short-term predictability is 
introduced to investigate the influence of random uncertainties on the reliability of the dual-span rotor. Illustrating examples show 
that the results obtained from the proposed procedure are consistent with those from short-term predictability, such that dangerous 
ranges can be well identified during the start-up process of the rotor. 
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1  Introduction 

 
Recently, more and more research has focused 

on the dynamical characteristics of the multi-span 
rotor with strong nonlinearity. This usually requires 
substantial modifications of the analysis of the rotor 
with single span, and a low computational efficiency 
is often produced due to the large dimension of the 
system (Shiau et al., 2009). Most of the contributions 
on the multi-span rotor are based on a deterministic 

model, which means the dynamical equation can fully 
reflect the structure of system and the parameters are 
all accurately measured.  

In practical application, there are inevitably 
many uncertain factors, and this means that an un-
certain model is more reasonable. Narendra and Par-
thasarathy (1990) established the dynamical model of 
a 500 MW supercritical steam turbine and pointed out 
that there was a significant gap between the theoret-
ical predictions and the actual measured unit data. 
The Siemens Corporation also found that the key 
problem in the calculation of complex valve flow is 
that the pressure loss cannot be calculated accurately 
(Deckers and Doerwald, 1997). Murugan et al. (2008a, 
2008b) used the test data to determine the strength of 
uncertainty in studying the effect of uncertainty of 
composite material properties on the rotor blade of  
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helicopters. Rinehart and Simon (2014) collected 
aircraft engine data and verified that the uncertainties 
of actuators, sensors, and other factors caused inac-
curate monitoring of the operating status. Beck (2015) 
proposed a new 3D coupled model to analyze the 
dynamical response characteristics of a hydraulic 
turbine to investigate the increase of the hydraulic 
transmission coefficient during mining or liquid 
transportation. Pichler et al. (2015) proposed a novel 
detection method to analyze the vibration phenome-
non caused by the changing environment and dy-
namic load in the study of an air compressor.  

Most previous work is based on the assumption 
that the probability density function (PDF) of the data 
may be precisely obtained and different data com-
ponents are independent, which is almost impossible 
in practice (Song et al., 2006). Spinato et al. (2008) 
investigated more than 6000 modern rotating ma-
chines and used industry data to calculate their relia-
bility, and suggested that the existing methods cannot 
make accurate assessments and more rigorous relia-
bility measures should be developed. Au et al. (1999) 
proposed an asymptotic expansion technique in reli-
ability analysis for uncertain dynamical systems to 
achieve any desired level of accuracy provided by a 
sufficiently large number of samples. Some alterna-
tive techniques have also been proposed to solve the 
reliability problem of structure systems with random 
uncertainties, such as the ensemble crossing (Beck 
and Melchers, 2004), the probability density evolu-
tion (Li and Chen, 2005), and the statistical fourth 
moment (Zhang et al., 2003). Nevertheless, these 
methods generally have two disadvantages in ana-
lyzing uncertainties. One is that the PDF or lots of 
statistical data should be provided, and the other is 
that the probabilistic reliability assessment or the 
Monte Carlo simulation usually encounters the 
problem of a large amount of calculation. 

In general, there are two typical situations in 
dynamical modeling on uncertain systems, i.e. data 
uncertainty and model uncertainty (Soize, 2000), and 
most previous studies were concerned with the for-
mer. The nonparametric approach proposed by Soize 
(2000) can carry out the calculations and simulations 
without identifying the type and number of uncer-
tainties and what is needed is only the basic mean 
model which can be established by some customary 

methods. Recently, this method has been applied to 
analyze the vibration characteristics of a Jeffcott rotor 
with single span affected by disc offset, unbalanced 
force, and bounded noise excitation (Gan et al., 2014). 
To the best of our knowledge, the nonparametric ap-
proach has not been used in the field of reliability. 

Here, a general procedure is proposed for relia-
bility estimation on a dual-span Jeffcott rotor with 
random uncertainties. The method is based on the 
results of a nonparametric approach, and the variance 
value of system response is deduced by solving the 
response spectral density. Here, an important goal is 
to carry out the reliability analysis of a multiple span 
rotor system containing both parameter and model 
uncertainties without knowing the first several mo-
ments. Another aim is to avoid solving complicated 
equations, especially several sets of multivariate 
equations. The proposed method makes full use of the 
advantages of the nonparametric method and the 
response spectral analysis, to ensure that the calcula-
tion of reliability can be performed without enough 
information of the uncertain system, quickly and 
efficiently determining the probability of failure. 
 
 
2  Nonparametric modeling 

 
The dual-span rotor system is shown in Fig. 1. It 

consists of two identical shafts rigidly coupled to-
gether and connected by a flexible coupling in the 
middle. Each individual shaft has a disc, midway 
between two hydro-dynamic bearing supports where 
balance masses can be applied (Fig. 1). The parame-
ters involved are explained in Table 1. There will be a 
slight angle displacement which varies between the 
two shafts formed at the beginning and determined by 
the torsion stiffness of the coupling. This angle does 
not change during the operation, so the damping of 
the coupling is generally ignored and only the stiff-
ness is taken into consideration. 
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Fig. 1  A schematic of the dual-span rotor
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The hydrodynamic bearings forces can be 

evaluated from the pressure distribution applying the 
finite difference solution of Reynolds equation and 
can be linearized by the finite difference method (Liu 
and Noyak, 1995), i.e. 

 

,ix xx i xy i xx i xy iF k x k y c x c y                   (1a) 

,iy yx i yy i yx i yy iF k x k y c x c y                   (1b) 

 
where xi and yi denote the corresponding displace-
ment components of the shaft at the ith bearing, kxx, 
kxy, kyx, kyy, cxx, cxy, cyx, and cyy are the eight stiffness 
and damping coefficients, and Fi is the hydrody-
namic bearing force.  

As for the Jeffcott rotor, it can be simply seen as 
composed of three parts: the rotating discs, the elastic 
but massless shaft, and the supporting bearings. 
Since only the most important and fundamental 
movement forms are the objective of this study, the 
torsion and longitudinal vibrations (Lal and Tiwari, 
2012) are not considered here. Thus, by introducing a 

generalized coordinate vector  T1 2 6u u uU   

(ul=xl+jyl, l=1, 2, …, 6) in the complex domain, 
where “j” is used to indicate an imaginary term, the 
finite element model of the dual-span rotor can be 
expressed as 

 

,  MU CU KU F                        (2) 

where  
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K

  
K is the stiffness matrix, where kl (l=1, 2, …, 6) is the 
equivalent stiffness of the rotor and kii (i=1, 2, , 6) is 
the stiffness coefficient of the bearings. Moreover, 

,i  F Q G F   T1 2 6j ,g m m m G   Q  

2 2
1 1 2 2[ (cos( ) jsin( )) (cos( ) jsin( ))m e t t m e t t      

T0 0 0 0] ,  g is the acceleration of gravity, t is 

the time, and ω is the rotating speed of shaft. 
M, F, and C are all symmetric matrices. The 

dynamical model given by Eq. (2) is just a determin-
istic one in which the mass, stiffness, and damping 
matrices are all assumed to be accurately measured, 
i.e. the system is assumed to have no approximation 
nor simplification, and the material properties are also 
assumed to have no change during the running of the 
system. Therefore, this can be seen as the mean model 
of the rotor. 

As C and K are positive-definite matrices, we use 
α and β (α, β=1, 2, …, 6) to express the eigenvec-
tors of the system. Then we can obtain Mαβ=δαβ, Cαβ= 
<Cψα, ψβ>, Kαβ=ωα

2δαβ, and Fαβ=<Fψα, ψβ>, where δ 
is the Dirac function, <y, x>=y1x1+y2x2+…+ymxm, and 
α is the eigenfrequency of structural mode α 
(Ohayon and Soize, 1998). Thus, the reduced matrix 
model of this system can be expressed as  

 

,  MZ CZ KZ F                         (3) 

Table 1  Parameters involved in the dual-span rotor 
model 

Parameter Description 

o1, o2 Geometric centers of disc 1 and disc 
2, respectively 

o3, o4, o5, o6 Geometric centers of bearings 

m3, m4, m5, m6 Equivalent lump masses at bearings

k1, k2 Stiffnesses of shafts 

c1, c2 Damping coefficients of discs 

L Length of bearing 

C Bearing clearance 

Fix, Fiy  
(i=1, 2, …, 6) 

Nonlinear oil film forces on shaft 
from the bearing 

(x1, y1), (x2, y2) Disc positions in the coordinate 
system 

O1e, O2e Centroids of disc 1 and disc 2, 
respectively 

m1, m2 Masses of disc 1 and disc 2,  
respectively 

e1, e2 Eccentricities of disc 1 and disc 2, 
respectively 

k3 Stiffness of the coupling 

c3, c4, c5, c6 Damping coefficients of bearings 

R Radius of bearing 

(x3, y3), (x4, y4), 
(x5, y5), (x6, y6) 

Positions of bearings in the coordi-
nate system 
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where Z=ψα
−1U.  

In reality, errors always exist between the design 
parameters and real working conditions. For example, 
some parameters will alter in some operational pro-
cesses, such as creep and differential expansion, and 
they cannot be obtained with an accurate value except 
for the empirical data, such as Young’s modulus. All 
these imply that the mean model is not an accurate 
reflection of the actual situation. To represent the real 
operational state, uncertain factors must be taken into 
account, and consequently, the random matrix model 
is of more practical significance, which can be ex-
pressed as 

 

r r r r ,  M Z C Z K Z F                       (4) 

 
where Mr, Cr, and Kr are the random matrices of mass, 
damping, and stiffness in the reduced model, respec-
tively. Fr=Qr+Gr has also been randomized due to the 
relationship of the mass matrix. 

In the following, several key equations are 
briefly introduced from Soize (2000)’s work to derive 
the dispersion control parameter and explain the 
simulation process for a random matrix. Here, they 
will be applied to investigate the reliability of a dual- 
span rotor in Section 3. Assuming A is a n×n random 
matrix of mass, damping, or stiffness, it can be easily 
deduced that the PDF pA(A) of A must fulfill the fol-
lowing three basic constraints according to the statis-
tical properties of a random matrix: 

 

( )

( )d 1,

n
M R

p


 A A A                          (5a) 

( )

( )d ( ),

n

n

M R

p M R


  AA A A A                 (5b) 

( )

ln(det ) ( )d , ,

n
M R

p  


   AA A A          (5c) 

 
where Mn

+(R) is constituted by positive definite 
symmetric matrices. 

There are many methods for obtaining the PDF 
provided that there is enough information, but the 
information one can obtain here is just the constraints. 
In the circumstances, the entropy is usually used to 
represent the degree of uncertainty of the system, 

while the maximum entropy principle can permit the 
function to be constructed with the available infor-
mation simultaneously ensuring physical signifi-
cance, and the PDF can be deduced by constructing 
the Lagrangian and expressed as 

 
1

A

1 T

( ) (det )
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        (6) 

 
where A is the mathematical expectation of the ran-

dom matrix A, 
1

tr ,
n

jj
j

 A A  and cA is a positive 

constant calculated by 
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        (7) 

 
where (x) is the gamma function defined by 

1

0
( ) e dx xΓ x t t

     ( 0).x   The variance of A can 

be expressed as 
 

21
{ }, 0 .

1 2 jk jj kkjk j k n
n




    
 

A A A     (8) 

 
The Frobenius norm of matrix A is defined by ||A||F= 

{tr(A·A*)}1/2. Since 
2 2

F
1

{ } ,
n n

jk
j k j

E 
 

 A A  if we 

define a dispersion control parameter δA as 
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A

A

A

                 (9) 

 
then the parameter λ in Eqs. (6)–(9) can be deduced as  
 

2
2
A2 2

A

1 (tr )
1 ( 1) .

2 tr( )
n 


 

    
 

A

A
            (10) 
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It should be noted that for n fixed, λ increases as 
δA decreases. If λ→+∞, then δA→0 and therefore 
A→A in probability. For each δA, the random matrix 
A can be obtained by the Monte Carlo simulation of 
A.  

For any positive symmetric matrix A, applying 
the Cholesky factorization yields 

 
T
A A ,A L L                                (11) 

 
where LA is an upper triangular real matrix. Assuming 
λ is a positive integer, let mA=n−1+2λ, and the random 
matrix A can be written by  
 

A
T T T
A A

1A

1
( )( ) ,

m

j j
jm 

 A L U L U                   (12) 

 
where Uj (j=1, 2, …., mA) with the size of 1×n is the 
vector consisting of the Gaussian random variables 
with zero mean and unit variance. Thus, the samples 
of the random matrix A are yielded by Eq. (12) and 
the random matrix model Eq. (4) can then be con-
structed (Soize, 2000). The PDF of random matrix A 
is consistent with Eq. (6). Eq. (12) is deduced from 
Eq. (6) in the nonparametric method.  
 
 
3  Reliability analysis 

 
Reliability is defined as the ability of complet-

ing the predetermined function under the given time 
and conditions, and there are many numerical quan-
tities, usually called reliability indices, such as the 
Cornell index and the H-L index (Mbarka et al., 
2010). The statistical index based on short-term 
prediction is usually used to monitor the performance 
of machines. Both the reliability and statistical indi-
ces are employed to assess the operational state, the 
former mainly from the macro point of view while 
the latter is from the micro point of view. Therefore, 
they not only can verify the effectiveness but also, in 
some ways, complement each other. 

3.1  Reliability based on the response spectral 
analysis 

The first- and second-order reliability methods 
have been the most popular for several decades since 

they can be used when just the former two moments 
are given. However, because of the disturbance 
caused by uncertainties, the reliability calculation is 
difficult unless there is a comprehensive under-
standing of random parameters. Fortunately, the re-
sponse spectral analysis can effectively deduce the 
former two moments without solving the equations, 
and the calculation speed is higher than that of solving 
the equations. Therefore, the proposed method in this 
study makes full use of the advantages of the non-
parametric method and the response spectral analysis. 

In practice, usually only a prior few order modes 
play a leading role. Therefore, only these modes are 
considered in the calculation of responses. The com-
plex frequency response function matrix is given by 

 
2 1

r r r r( ) ( j ) ,     H K M C               (13) 
 

and the mean response of Eq. (4) can be given by 
 

j
r r
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2
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 U ψH F             (14) 

 

The correlation matrix is usually used to indicate the 
relationship between the variables. For the mean re-
sponse U(t), its correlation matrix is defined as  
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*
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*
*

T2

2

T T2

2

1
( ) lim ( ) ( )d

1
lim ( ) ( )d ,

T

u TT

T

TT

t t t
T

Z t Z t t
T

 





 



 

 

 





R U U
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       (15) 

 

where τ is the time interval, and T* is the observation 
time. While in the complex frequency domain, from 
previous study (Wan et al., 2008), we have 
 

* j
r r r

1
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2πz
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
 R H S H        (16) 

 

where Hr
*(ω) is the complex conjugate matrix of 

Hr(ω), Sr(ω) is the Fourier transform of the correla-
tion matrix of the excitation Rr(τ) and  
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Consequently, the correlation matrix of the response 
of the original system is expressed as 
 

* j T
r r r

1
( ) ( ) ( ) ( )e d .

2u
    






 R ψ H S H ψ     (18) 

 
For the reliability analysis in this study, we focus on 
the deviation distance of the shaft and not the coor-
dinate values of vibration, so the object variable U 
changes with time but is not a periodic variation. 
Therefore, it can be deduced that when the time T 
tends to infinity, as τ=0, Ru(0) tends to the square 
value of the object variable. Thus, 
 

2 * T
r r r

1
( ) ( ) ( )d .

2π
   




 U ψ H S H ψ        (19) 

 
Hence, the variance of the response of the system is 
deduced as 
 

2 2 2[ ] [ ].E E  U U                       (20) 

 
Here, the uncertain factors involved have no re-

lationship with time, and will not change once pro-
duced in the subsequent numerical simulation. Thus, 
it will belong to the stationary random process. The 
intermediate variables in the process of calculating 
response make computing variance easier and faster 
with the above equations. 

Statistical characteristics are usually not enough 
for determining the operating status and trend in many 
engineering structural problems. In a normal state, 
only the first two moments can be roughly estimated, 
and accordingly, the first-order second-moment 
method is generally adopted to calculate the proba-
bility of failure in reliability analysis (Liu and Peng, 
2012). We define γ and Θ as two variables of the 
randomly uncertain systems, and g(Θ, γ) as the 
working state structure function or structure perfor-
mance function, which can express the three statuses 
of the system as 

 
0, failure,

( , ) 0, critical,

0, safe.

g  




                     (21) 

Here, we define the first-time destruction function 
g(Θ, γ) as 
 

( , )g                                (22) 

 
for the dual-span rotor system with random uncer-
tainties, where γ is defined as the examining objective 
and Θ the threshold, and usually the target and 
threshold variables are assumed to be mutually  
independent. 

According to probability theory, the first two 
moments of the state function g(Θ, γ) can be deduced 
as 

 

2 2 2

[ ( , )] ( ) ( ) ,

Var[ ( , )] .

E g E E

g

 

 
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    

    


  
      (23) 

 
Then, the Cornell index β is calculated by (Liu 

and Peng, 2012) 
 

,



                                 (24) 

 
which represents the minimum distance between the 
surface of the critical state performance function and 
the origin in the state space. The probability of failure 
is generally an inverse function of the minimum dis-
tance, and a large distance indicates that the system 
has a small failure probability or a high reliability. As 
the arbitrary distribution function of the standard 
random variable can be approximately expressed by 
the standard normal distribution function using the 
Edgeworth series, the reliability degree Rd can be 
expressed as (Zhang et al., 1998) 
 

2
(3) (4) (6)

d

3 10
( ) ( ) ( ) ( )

3! 4! 6!
R

         
   

            (25) 
 

by a normalization processing for easier analysis, 
where ρ(β) is the standard normal distribution func-
tion, ς is the slanting peak coefficient to describe the 
distribution of the deviation degree from the sym-
metry, ζ is the kurtosis coefficient reflecting the rela-
tive degree of the variables distributed around the 
mean values, and ρ(i)(β) is the ith differentiation of 
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ρ(β). The Edgeworth series method can approximate 
the real distribution of the random variable with any 
level of precision, and typically the first fourth-order 
of results can meet the accuracy requirement to some 
extent. The reliability degree represents the probabil-
ity of operating safely and Eq. (32) can help us get the 
probability. 

As mentioned in the previous section, some re-
searchers began their calculation with a given ap-
proximation of the PDF for each uncertain parameter, 
while others simulated the PDF with measured or 
empirical data. However, the approximation cannot 
meet the demands of engineering, and is tedious to 
calculate. Reliability analysis based on response 
spectrum analysis not only avoids the demand for 
much information but also simplifies the tedious 
calculations. Only the calculation of the eigenvectors 
and correlation matrix is involved in the process of 
deducing the variance and mean value. This greatly 
reduces the time on calculations and releases com-
puter resources, bringing considerable convenience to 
solving engineering problems. 

We then conclude the process by carrying out the 
reliability analysis as follows: 

1. Analyze the uncertainties and construct the 
reduced finite mean model from the structure model 
expressed in matrix form. 

2. Define a dispersion control parameter ac-
cording to the actual situation, and then produce a 
sufficient number of samples to construct the uncer-
tain dynamical model according to the nonparametric 
technology. 

3. Calculate the complex frequency response 
function, the Fourier transform of excitation, the 
correlation coefficient matrix, and the spectral density 
function. 

4. Calculate the mean value of response. Let τ=0, 
and deduce the mean square value. Then, get the 
variance of the uncertain system, and calculate the 
reliability of the uncertain structure system by use of 
Eq. (25). 

From the above procedure, both data and model 
uncertainties are included, the requirement of un-
known information is avoided, and the computation 
workload is clearly reduced. It should be noted that all 
the processes involved can avoid the demand for 
statistical data and prior information. We believe that 

the present procedure is instructive for designing this 
kind of rotating machine, and fault diagnosis can also 
be conducted based on the variation of the reliability 
index of the rotor system. 

3.2  Z*-value based on short-term predictability 

To adequately illustrate the effect of uncertain-
ties, the next task of this study is to further assess the 
operating status by short-term predictability based on 
the Monte Carlo simulation, as a supplement and 
verification to the proposed procedure in Section 3.1. 

In nonlinear theory, performance evaluation 
methods are usually based on the reconstruction 
technology of the state space. The quality of the dy-
namics can be clearly displayed in the state space of 
the original time series or measured data, quantified 
with the short-term predictability and expressed as the 
final evaluation by the statistical index Z*-value. The 
principle of this evaluation is as follows. First, for-
mulate a null hypothesis that the original time series 
and the measured data are produced by the same 
mechanism, namely they are from the same underly-
ing distribution function. Then, determine the statistic 
of the variation of the distance between two close 
points in the state space during a short period of time, 
denoted by Z*-value. Generally, a larger value of |Z*| 
than 2.33 signifies that the null hypothesis does not 
hold at the 99% confidence level (Kennel and Isabelle, 
1992). If the calculated |Z*| is beyond this limit, one 
can confirm that the original and measured time series 
are not produced by the same mechanism and the 
essence of the system has been varied.  

Under the influence of uncertainties to the rotor 
system, it can be confirmed that the performance of 
the system has been varied if the above mentioned 
null hypothesis does not hold. Therefore, this statis-
tical index can also be used to evaluate the reliability 
of the present rotor. 

We first express the time series of shaft vibration 
of the design model without uncertainties as {xi} (i=1, 
2, …, N), where N is the number of points in the series. 
Next, the most important step is the state space re-
construction to intuitively represent the dynamic 
properties which are hardly seen just from the time- 
domain waveform, in which two crucial parameters 
are involved, i.e. the embedding dimension m0 and the 
delay interval ξ, both playing an important role in 
unfolding the attractor in the state space. Too small a 
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result of the two parameters will result in an incom-
plete presentation of the attractor, while too large a 
result may bring much redundant information to re-
construct vectors making some properties overesti-
mated and the computation being significantly in-
creased. We adopt two acknowledged reasonable 
methods, i.e. the G-P algorithm (Grassberger and 
Procaccia, 1983) and the C-C method (Kim et al., 
1999), to obtain the two parameters. Then the vectors 
in the state space can be expressed as Xi=[xi, xi+ξ, 

xi+2ξ, …, 
0

T
( 1) ] ,i mx    where i=1, 2, …, M and M= 

N−(m0−1)ξ is the number of vectors. Xi can also be 
seen as the points in the state space.  

Commonly, two points are considered to be ini-
tially close together if the distance between them is 
smaller than the average absolute deviation, which is 
defined as 

 

0
1

1
,

N

i
i

d x x
N 

                           (26) 

 
where x  is the average of the time series obtained 
from 
 

1

1
.

N

i
i

x x
N 

                                (27) 

 
If two vectors or points in the state space are close 
together, then the distance between them must meet 
the following formula expressed in supremum norm 
as 
 

0
0

0 1
max .i s j s
s m

x x d   
                        (28) 

 
Then, we consider the fluctuation of the distance 
during a short period of time, say 10% of the average 
cycle P (generally m0 is big enough to take place of P) 
as only the initial growth of the distance between the 
points considered in short-term predictability. Thus, 
the distance is changed to 
 

0 d
,

0 1
max ,i j i s j s

s m m
d x x    

                    (29) 

 
where md=0.1m0. The interval between the points is 
required to be larger than one average circle to avoid 

the spurious effects of dynamic correlations, reflected 
in the coordination as |i−j|>m0.  

To obtain the statistical index, the distances di,j of 
the theoretical and actual series are compared during 
the short period of evolution of the trajectory. The set 
of distances obtained from the theoretical time series 
is denoted as A, formed by di,j with the number of NA. 
Likewise, a set B is formed by NB distances from the 
actual series. Now the Mann-Whitney U test is de-
fined as 

 

1 1

( ),
A BN N

i j
i j

U H A B 
 

                       (30) 

 
where Hε(·) is the Heaviside step function. Finally, the 
statistical index Z*-value is defined as 
 

* / 2
.

1
( 1)

12

A B
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Z
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 

               (31) 

 
This index will have a distribution with zero 

mean and unit variance as long as the hypothesis is 
tenable that the two series are generated by the same 
mechanism (van Ommen et al., 1999). In this study, 
the actual time series come from the system with 
random uncertainties and are compared with the ideal 
series from the mean model, which is used to assess 
the influence of uncertainties. Normally, a larger 
value for |Z*| than 2.33 will help one confirm that the 
hypothesis does not hold at the 99% confidence level. 
It should be noted that this process has no concern 
with any information about the uncertainty influence, 
but it signifies that the system is experiencing changes 
in the essence of its performance. 

The calculation process of the statistical index 
Z*-value is concluded in detail as follows: 

1. Perform numerical simulation with the Monte 
Carlo method to generate the time series of the mean 
and uncertain models. M denotes the time series from 
the mean model and R denotes that from the random 
model. 

2. Choose proper parameters m0, ξ, and P of M 
and R, and reconstruct the state space. 

3. Determine the mean value x  and the average 
absolute variance d0, and find the points initially 
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closed with Eq. (28) between which the intervals are 
larger than P. 

4. Calculate the variation of distance within a 
short time period with Eq. (29) to form the set A ob-
tained from M and B from R. 

5. Carry out the Mann-Whitney U test with 
Eq. (30) and calculate the statistical index Z*-value 
with Eq. (31).  

 
 

4  Numerical examples 
 
To illustrate the application and verify the effi-

ciency of the present analysis, numerical simulation is 
employed, and the result is discussed in detail. First, 
the reliability index is calculated by the proposed 
method, and then the assessment is done by the sta-
tistical index based on short-term predication at each 
given time. It is very important that the degree of 
uncertainties should be selected according to the ac-
tual circumstances. 

Indeed, as stated in the introduction, there are 
many uncertain factors involved in a rotor system, 
such as external interference and the physical struc-
ture of the system. In most cases, some parameters in 
the model cannot be directly measured, and even the 
mathematical model may be uncertain since it de-
pends on the system’s physical structure and the 
modeling approach. Therefore, the levels of the un-
certainty involved in the system are usually difficult 
to determine. Here, we choose three different values 
of the divergence control parameter shown in Eq. (9) 
as in (Soize, 2000), i.e. δ=0.02, 0.05, and 0.08, to 
investigate the fluctuations of the vibration response 
of the rotor system and further perform the reliability 
estimation on the rotor system. For other uncertainty 
levels, a similar analysis can be performed. 

4.1  Cornell index 

The rotor system is an asymmetric damped 
system, and the design values of each part are set as 
given in Table 2. Thirty two samples are produced in 
the simulation process of random uncertainties to 
ensure the ergodicity by the nonparametric approach 
introduced in Section 3. In order to illustrate the 
operational states in detail, we firstly resort to the 
fourth-order Runge Kutta method to obtain the nu-

merical solution of Eq. (4), setting the time step as 
0.01 s. To guarantee the veracity of the results, the 
transient response is abandoned and 3000 points are 
adopted in the stability status of each sample at each 
rotating speed, and the results obtained are shown in 
Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2a shows the sample responses for three 

different dispersion parameters, i.e. δ=0.02, 0.05, and 
0.08, at a speed of 1000 rad/s, while Figs. 2b–2d are 
the vibration amplitude fluctuations of disc 1 during 
the speed-up process for the three cases. From 
Figs. 2b–2d, it can be seen that the rotor is rising to 
the second vibration peak range at 1000 rad/s caused 
by oil whip. Three cases of vibration in Fig. 2a are 
mostly different in general, so different uncertainties 
can lead to different sample responses. 

Moreover, the vibration response contains two 
peaks in the speed range of 200–1500 rad/s, and the 
average curves of amplitude in the three cases are 
almost the same, while large differences exist in the 
range of response amplitude. The increase of the 
dispersion parameter will extend the amplitude dis-
tribution intervals. Therefore, considering that the 
response of the actual system is certainly one of these 
uncertain samples, instead of the mean model, large 
differences exist between the reliability of the actual 
system and the design value. It should be pointed out 
that although there is a big gap between the vibration 
amplitudes in the resonance region, the values of the 
critical speed remain essentially constant. Thus, it can 
be concluded that the random uncertainty has little 
influence on the critical speed, and the uncertainties 
can be ignored in determining the critical speed value 
but not in examining the reliability. 

Table 2  Some parameter values in the mean model of 
the dual-span rotor 

Parameter Value Parameter Value 

m1, m2 (kg) 32.1 c1, c2 (N·s/m) 2100 

m3, m4, m5,  
m6 (kg) 

4 c3, c4 (N·s/m) 1050 

R (mm) 25 c5, c6 (N·s/m) 1150 

L (mm) 12 e1, e2 (mm) 0.05 

k1, k2 (N/m) 2.5×107 k3 (N/m) 2.5×105 

C (mm) 0.11 Θ 1.3 
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The vibration amplitude of the dual-span rotor is 
about 0.9 mm in the non-resonance region (Fig. 2). In 
actual situations, 30% outside the normal range is 
seen as the boundary, so we use 1.15 as the threshold 
in the following reliability analysis. In Fig. 3, the 
reliability degree Rd calculated by the proposed 
method denoted by δr and by the Monte Carlo method 
denoted by δ0 in the above three cases are compared. 
As can be seen from the figure, the results of the two 
methods are quite close, indicating that the proposed 
method can effectively be used to calculate reliability. 
Special attention should be paid to the fact that the 
reliability in the case of δ=0.08 is very low but higher 
than others when the system speeds up to the first and 
second critical speeds. That is because in regions of 
vibration exceeding the threshold, the samples of 
small uncertainties mostly exceed the threshold while 
the samples with large uncertainties may be more 
under the threshold reducing the probability of system 
failure. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Only 32 samples are simulated in this paper, and 

the error between the two methods will be gradually 
reduced with the increase of sample number. Even so, 
the maximum deviation of the three cases is only 0.10 
at 650 rad/s, and in most cases the error is very small. 
The reliability indices of the three cases are almost the 
same, being low near the first or the second critical 
speed. At this point, the uncertainties do not afford a 
critical role but the inherent nature of the system does. 
Thus, the resonance region should be quickly crossed 

Fig. 3  Reliability degrees Rd of the two methods for the
three different dispersion parameters, i.e. δ=0.02, 0.05,
and 0.08 
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Fig. 2  Response of disc 1 of the dual-span rotor system
with random uncertainties: (a) time series of vibration;
(b), (c), and (d): vibration amplitude fluctuations with
δ=0.02, 0.05, and 0.08, respectively 
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over in any case to avoid deformation, fracture, or 
other accidents caused by excessive vibration. 

4.2  Z*-value 

Although there has been much research inves-
tigating the influence of uncertainties, no evaluation 
method has yet been accepted extensively. In the 
following, the Z*-value based on short-term predict-
ability is employed to assess the influence of uncer-
tainties on the present rotor. In this subsection, 32 
samples for each case, i.e. δ=0.02, 0.05, or 0.08, are 
generated with the help of the Monte Carlo simula-
tion, and 4000 data points are taken at each time in-
stant to ensure sufficient evaluation. For large NA and 
NB, which in practice mean several tens (here we use 
100), the statistical approach will result in a more 
precise result.  

As described above, the Z*-value has a distribu-
tion with a zero mean and a unit variance as long as 
the two sets of series are from the same mechanism, 
while a larger Z*-value, greater than 2.33, will ensure 
that the essential differences have been generated due 
to random uncertainties with a 99% confidence level. 
Usually, this threshold value is extended to 3.0 in 
practice with no particular requirements, while a 
smaller one may be adopted for precision instruments 
or early warning. 

The results form four curves as shown in Fig. 4. 
The solid line labeled ‘sample’ represents a random 
sample of |Z*|, the dashed line and dash-dotted line 
indicate the maximum and minimum values of the 32 
samples, respectively, and the area between them is 
the distribution range of |Z*|, while the dotted line 
denotes the average value. When δ=0.02, the average 
value fluctuates in the region [2.23, 3.01], implying 
that the influence of random uncertainties is not large 
enough to deteriorate the performance of the rotor. 
When δ=0.05 and δ=0.08, the ranges are about [3.06, 
3.85] and [3.43, 4.10]. This says that the two cases 
have exceeded their desired ranges of working states 
and also means the system has a great possibility of 
the fault occurrence.  

It should be noted that about 90% of the samples 
fall down below the safe limit of 3.0 when δ=0.02, 
indicating that the reliability can meet the production 
requirement in general with random uncertainties in 
this case. This proportion decreases to 50% and 30%  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

when δ=0.05 and δ=0.08, respectively, suggesting 
that most samples have deviated from the predeter-
mined operating state. These proportions can help us 
estimate the safety of the system in different cases of 
uncertainties which are consistent with the results of 
reliability in Fig. 3, validating the efficiency of the 
proposed method and the predictions in the previous 
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Fig. 4  Statistical indices in three cases: (a) δ=0.02, (b)
δ=0.05, and (c) δ=0.08 
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sections. In addition, the samples are set to be deter-
ministic before calculation in this study, but actually, 
they may be changing all the time due to the wear of 
components, immunity decrease of the disturbance, or 
the creep of material. Thus, the tendency of the curves 
may not be approximately horizontal but rather 
oblique, and constant observations are usually re-
quired even for rotors with initially high reliability 
index. 

From the above analysis, it can be concluded that 
the procedure proposed here can be employed to ob-
tain a relatively accurate reliability estimation for the 
present uncertain rotor system. The Cornell index can 
clearly exhibit the change of reliability as the rotating 
speed increases in an integrative manner, and the 
comparisons between the results for several randomly 
uncertain situations can also be observed at any speed 
of the shaft. The statistical index builds its analysis on 
the output data only at some given time, but can pre-
cisely identify the differences of reliability under 
various situations. Moreover, fluctuation ranges of 
the system’s vibration response are directly related to 
the strengths of randomly uncertain perturbations and 
usually increase in proportion to the strengths of such 
perturbations. This will make the vibration amplitude 
exceed the predetermined threshold and result in 
system instability and even failure. Thus, the previous 
deterministic models under ideal conditions cannot 
accurately reveal the running status of the rotor. It is 
necessary to take the uncertain factors into consider-
ation to grasp and control the system, and a sufficient 
margin of safety should be made to effectively avoid 
the low reliability area of the system. 

 
 

5  Conclusions 
 
A reliability estimation procedure combining a 

nonparametric model with response spectrum analy-
sis is proposed in this study. The mean vibration 
equation of a dual-span rotor with 12 degrees of 
freedom (DOFs) is first established, and then the 
random matrix model is presented by the nonpara-
metric approach containing both data and model un-
certainties. Thereafter, reliability analysis is carried 
out by the proposed procedure to gauge the short-term 
predictability. From this the reliability indices such as 

the Cornell index and Z*-value are then given to make 
a reliability estimation on the dual-span rotor.  

Numerical examples are employed to verify the 
proposed method. This validates the fact that the re-
liability calculation can be carried out without know-
ing discrete movements. Moreover, a large amount of 
information needed for determining the PDF is 
avoided in the reliability analysis. Furthermore, 
solving tedious and consuming equations is avoided 
using this method. From the simulation results, the 
safe or failure ranges of the dual-span rotor system 
can be clearly found from the reliability curves.  

Random uncertainties are essentially unavoida-
ble, and existing deterministic dynamic models can-
not accurately represent the operational states of 
machines due to the incompleteness and inaccuracy 
of data and the simplification of the machine struc-
ture. All the calculations involved in the present study 
can avoid the demands of statistical data and prior 
information, and have the advantages of simplicity 
and low computational complexity. 
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中文概要 
 

题 目：双跨转子的随机不确定性非参数建模与可靠性分

析 

目 的：旋转机械由于工作环境复杂，在运行过程中会不

可避免地受到各种不确定性因素的影响，从而引

发转子系统的异常振动。因此，迫切需要对系统

工作状态开展可靠性分析。本文将外部扰动不确

定性与模型不确定性考虑在内，旨在建立转子系

统运行状态的可靠性评估指标，丰富转子动力学

理论体系，为工程应用提供参考。 

创新点：1. 采用非参数法进行建模，能够将外部扰动不确

定性与模型不确定性同时包含在内；2. 在非参数

建模基础上，结合响应谱分析法进行可靠性计

算，可避免对系统先验知识的需求并降低计算过
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程的复杂性；3. 将短周期预测理论扩展应用于可

靠性分析验证。 

方 法：1. 借助非参数法建立转子系统的随机不确定性模

型；2. 结合响应谱分析法推导出系统可靠性指标

计算式；3. 采用短周期预测方法对模拟数据统计

指标进行计算与验证。 

结 论：1. 本方法可用于评估大型复杂旋转机械系统的可

靠性，尤其对于服役时间较长导致系统参数出现

不确定性变化的情形；2. 本研究结果可为大型复

杂旋转机械的设计、运行和控制提供理论基础，

同时也可以为其他类型机械设备的可靠性分析

和预测方法提供参考。 

关键词：随机不确定性；非参数建模；可靠性；响应谱分

析 

 


