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Abstract:    The management of hazardous building materials poses legal and financial challenges for those in the construction, 
real estate, and property management fields. Building surface materials have different spectral responses in the electromagnetic 
energy spectrum. Remote sensors can receive the energy reflection and transmission from such materials. In this study we inves-
tigated the spectral characteristics of building materials in wavelengths ranging from 350 nm to 2500 nm. We explored a new 
method for identifying color steel, clay, glazed tile, and asphalt concrete using hyperspectral remote sensing based on building 
material spectrum characteristics. We discussed methods for extracting information about the construction materials from hy-
perspectral remote sensing images. We described a practical applied model, based on spectrum measurements, for the analysis of 
common building materials, and tested the model using hyperspectral remote sensing data from the EO-1 Hyperion sensor and 
Chinese airborne hyperspectral data from the pushbroom hyperspectral imager (PHI) spectrometer, covering an urban area. Our 
results show that building surface materials can be identified from hyperspectral remote sensing images with a reasonable quality, 
based on the spectral sensitivity of different building materials. For example, concrete and asphalt are more sensitive than other 
materials. We concluded that the proposed method based on hyperspectral remote sensing images and spectral recognition tech-
niques is an efficient way to extract information about building materials. 
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1  Introduction 
 
Rapid access to information about the structure 

of building materials plays a major role in urban 
survey, targeting military strikes, urban planning, 
disaster assessment, and natural disaster compensa-
tion (Vu et al., 2009; Fiumi, 2012; Kotthaus et al., 
2014). Spectral characteristics are one of the physical 

properties of building materials. In theory, the type of 
construction material can be determined through the 
study of its spectral properties. Sadezky et al. (2005) 
defined experimental conditions and analytical fitting 
procedures for collecting and analyzing the spectra of 
samples of carbonaceous materials in wavelengths 
514, 633, and 780 nm. Hyperspectral remote sensing 
(HRS) invented in the 1980s is used to acquire more 
detailed spectral data by using a spectral sensor fixed 
on a remote flying platform. In general, multispectral 
remote sensing uses no more than a dozen bands, 
which makes it difficult to obtain material character-
istics. In contrast, HRS has hundreds of bands in a 
wider range of the spectrum and can be used to  
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capture a material’s composition through its spectral 
response. It has a greater potential ability to identify 
different types of building material, but requires more 
complex data processing methods and experiments. 
Employing a hierarchical approach may enable the 
extraction of information about differentiated mate-
rial composition, allowing mapping at the highest 
possible accuracy and reducing spectral confusion 
between materials (Franke et al., 2009). Twenty years 
ago, HRS was not so common, and researchers used 
multispectral data to explore methods for classifying 
buildings and other things (Martin, 1993; Elnazir et 
al., 2004; Keshava, 2004; Jin and Davis, 2005; 
Shahtahmassebi et al., 2012). Using those applica-
tions, it was difficult to distinguish different kinds of 
materials. However, hyperspectral data provide more 
detailed information and, in theory, could even be 
used to diagnose damage on building surfaces. In-
frared wavelengths allow the detection of moisture, 
salt blooming, and biological coverings, demonstrat-
ing the capabilities of multispectral techniques for the 
detection of damage on building surfaces. As the 
spectral sensitivity of different kinds of building ma-
terial varies, the essence of this study relates to the 
microscopic structure of matter. HRS technology has 
become one of the hottest research topics of remote 
sensing applications in recent years because it can 
quickly obtain sunlight reflection information from 
buildings and spectrum information over large areas 
(Onojeghuo and Blackburn, 2011; Vega et al., 2012). 
A high-level application of remote sensing classifi-
cation technique provides a new approach for testing 
methods for extracting information from materials 
using remote sensing images. Spectral analysis is one 
of the principle techniques of HRS, and its aim is to 
find the spectral characteristics of absorption and 
reflection, such as the absorption valley and the re-
flection peak. Based on these spectral characteristics, 
HRS can be used to extract a significant quantity of 
information in a wide range of applications, such as 
agriculture, hazard management, mineral extraction, 
and forestry. The application of HRS is a very com-
plex process, consisting of basic data processing, 
geometric correction, radiometric correction, and 
reflectance analysis (Tuia et al., 2009; Bajorski, 2011; 
Fauvel et al., 2013; Li et al., 2015; Ran et al., 2015; 
Geng et al., 2016). Some special processes such as 
image filtering, water vapor removal, and spectral 

data compression are needed to improve the image 
quality.  

In recent years, it has been widely agreed that 
spatial features derived from textural and structural 
imagery, and object-based methods are important 
information sources that complement spectral prop-
erties for the accurate classification of high-resolution 
urban imagery (Huang et al., 2014). However, urban 
cover includes water, roads, buildings, and vegeta-
tion. The concept of deep learning, recently applied to 
hyperspectral data classification (Chen et al., 2014), 
has shown that auto encoder (AE)-extracted features 
are useful for classification, and help to increase the 
accuracy of support vector machine (SVM) and lo-
gistic regression in agricultural cultivation regions of 
extensive planting. In this study, we tested and ex-
plored the relationships between spectral characteris-
tics and building materials. The contribution of this 
study is to deliver a method to extract material in-
formation efficiently from urban areas. 
 
 
2  Data and experimental methods 

2.1  Remote sensing data and spectral data 

EO-1 Hyperion images were typical hyperspec-
tral remote sensing images and the EO-1 hyperspec-
tral instrument provides a new class of observation 
data for obtaining earth surface characterizations. The 
Hyperion is capable of providing high resolution of 
surface properties using hundreds of spectral bands 
versus the ten multispectral bands resolved during 
traditional Landsat imaging missions. Through these 
spectral bands, complex land ecosystems can be im-
aged and accurately classified. The Hyperion pro-
vides detailed spectral mapping across all 220 chan-
nels with a high radiometric accuracy. The major 
components of the instrument include a fore-optics 
design system based on the Korea multi-purpose 
satellite (KOMPSAT) electro-optical camera (EOC) 
mission. The telescope provides for two separate 
grating image spectrometers to improve the signal- 
to-noise ratio (SNR). The Chinese pushbroom hy-
perspectral imager (PHI) is an airborne hyper- 
spectrometer scanning in pushing-broom with a 
charge-coupled device (CCD) designed to have 376 
pixels per line. The sampling interval is 1.86 nm and 
there are up to 244 channels. It can take images at 60 
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frames per second, transmitting data at 7.2 Mb/s. 
EO-1 and PHI images covered the study area located 
southwest of Beijing city, China. 

The spectrum data used in this study were from 
two sources: the Johns Hopkins University Spectral 
Library and measurements made by a research group 
in the field. The data consist of surface reflectance 
values and wavelengths ranging from 350 nm to 
2500 nm. The 45 samples gathered from the study 
region were measured in the laboratory. The 12 
building types covered the various kinds of materials 
found in the study area, such as glazed tile, color steel 
tile, clay tile, asphalt concrete, marble, and cement 
concrete. The endmember spectrum was selected 
from hyperspectral images, and filtered or imported 
from the spectrum library. Fig. 1 depicts the flowchart 
of the experimental methods used in this study based 
on HRS data and spectra extraction techniques. Some 
methods drew on previous studies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2  Experimental methods 

To identify the type of material, it is essential to 
extract differences in material spectral curves. In this 
study, spectral angle method (SAM) and spectral 
information divergence (SID) were used, and the 
results were analyzed together. The purpose of SAM 
(Petropoulos et al., 2010; He et al., 2013) in remote 
sensing classification algorithms is to compare one 
material spectrum with another that is measured in the 
field or collected from the spectrum library. It views 
every spectral as a vector space, and the distance 
between two vectors is determined by their similarity 
(Fig. 2). 

The spectral curve is based on remote sensing 
digital number (DN) values (Mitchell and Glenn, 
2009; Hadigheh and Ranjbar, 2013), and every band 
has a DN in-line to a vector curve. Eq. (1) calculates 
the degree of similarity (α) between the reference 
spectral γ and the spectral image τ under Euclid space. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 1  Data processing flowchart (PPI represents the pixel purity index) 
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SID can be used to evaluate the similarity be-
tween an endmember spectral and a reference spectral 
by calculating their spectral information divergence 
(Eq. (2)). The spectral information divergence num-
ber is in the range of [0, 1], and a bigger number in-
dicates a larger gap between two spectra.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  Results and discussion 
 

We selected spectra from six kinds of building 
material (Fig. 3): glazed tile, color steel tile, clay tile, 
asphalt concrete, marble, and cement concrete. Fig. 4 
depicts the images of building materials with a high 
pixel resolution. Objects could be identified as 

buildings using multispectral remote sensing based on 
imagery tone or texture. However, the challenge is to 
identify the type of building material. Fig. 3 shows the 
spectrum effect of CO2, CO, water vapor or bad lines 
that is the straight line portions. The glazed tile is 
similar to the clay tile because they both contain clay 
elements. The difference is that a glazed tile is fired at 
high temperature and covered with glaze, whereas a 
clay tile is not. The wavelength range of 1150 nm to 
1200 nm can be used to distinguish clay absorbed by 
kaolinite and SiO2. Color steel tile had the most dis-
tinct characteristics, having a strong ability to reflect 
electromagnetic energy in the 1100 nm to 2500 nm 
range. Color steel tiles showed strong blue absorption  
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Fig. 2  Use of spectral angle method (SAM) to identify two 
materials 

Wavelength (nm) 

Fig. 3  Spectra from six kinds of building material (the 
straight linear part represents the removal bands affected 
by CO2, CO, water vapor or bad lines) 

Fig. 4  High resolution images of different building mate-
rials: (a) color steel tile; (b) clay tile; (c) glazed tile; (d) 
asphalt concrete 
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in the visible light range, but a strong reflection after 
1100 nm, and there was a weak absorption valley at 
about 1500 nm. Asphalt concrete, cement concrete, 
and marble had the most similar spectra because of 
the marble gravel element. Most differences among 
the materials tested were found within the distribution 
of the visible spectrum. 

We carried out an experiment using HRS Hype-
rion images and Chinese airborne hyperspectral PHI 
data covering Beijing city, China, to extract building 
material information. In this experiment, the angle 
range was changed from 0.1 to 0.25 radians using 
SAM. Fig. 5 depicts the results and the identification 
of color steel tile and cement concrete materials ex-
tracted by the Chinese airborne hyperspectral PHI 
data, SAM, and SID. Figs. 5a and 5b show that SAM 
can provide more reliable information than SID. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The detection accuracy of SAM was 86%, 

compared with 65% for SID. The cement concrete of 
the road near a highway toll house has been identified 
using SAM. Fig. 5c illustrates the color steel identi-
fied by the SAM method. In identifying the color steel 
of the blue building, the accuracy of SAM (91%) was 
much higher than that of SID (41%). The blue 
building is a factory with a sheet steel roof. Fig. 6 
shows the distribution of six building materials based 
on SAM from EO-1 Hyperion imagery. The base map 

of Fig. 6 is the original remote sensing image based 
on true color band combinations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Through spectral analysis and recognition, SAM 

determines building materials accurately based on 
their spectral sensitivity. The results show that 
common building materials can be identified, in-
cluding color steel tile, clay tile, glazed tile, and as-
phalt concrete. In Fig. 6, the red color indicates clay 
tile, the material used in the ancient buildings of Bei-
jing city. Most of the roof materials in the area are red 
glazed tile, and the Imperial Palace shows the most 
concentrated area of this material (area A). The green 
color indicates steel tile, which can be deduced as a 
factory roof (area C) located in the southern suburbs. 
We found that the optimum angle of 0.25 radians to 
the SAM is an appropriate parameter to recognize 
steel tiles. Although asphalt concrete, cement con-
crete, and marble spectrum curves were very similar, 
they could be distinguished by spectral remote sens-
ing based on the visible light bands and near infrared. 

Fig. 6  Recognition results for six kinds of building 
material 

Fig. 5  Identifying materials by SAM ((a) and (c)) and SID 
((b) and (d)) based on PHI imagery ((a) and (b) show 
cement concrete material marked red and (c) and (d) 
show sheet steel material marked green) 
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For example, in Fig. 6, area B is Tiananmen Square in 
Beijing city in which all the ground is covered by 
marble. Area D is the Nanyuan Airport which has a 
cement concrete runway. The main roads in Beijing 
city are paved by asphalt concrete, shown in yellow. 
Fig. 6 shows the main transportation network 
framework in Beijing. These three materials were 
identified by the optimum angle of 0.1 radians to the 
SAM. 

 
 

4  Conclusions 
 

We concluded that the method based on HRS 
and spectral recognition techniques is an efficient 
way to extract building materials. However, the re-
sults of this study suggest an improved method for 
urban surveying that could save costs. We found that 
different materials have different spectral sensitivi-
ties. The angle settings are not the same when using 
SAM, and need to be adjusted according to the spe-
cific applications and objects. Our results show that 
there is a significant spectral correlation between 
building materials with a similar chemical composi-
tion, but they still can be distinguished based on HRS. 
We expect that hyperspectral data will be used more 
often in other applications in the future.  
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中文概要 
 

题 目：基于高光谱遥感影像的建筑物表面材质识别方法 

目 的：建筑物的材质信息是灾害评估和城市调查等领域

的重要信息。本文旨在利用高光谱遥感影像提取

地面建筑物的表面材质信息（包括材质类型和主

要组成成份），并对提取方法进行对比，给出应

用建议。 

创新点：对建筑物材料进行光谱测试，并对其高光谱响应

规律进行分析，找出有诊断意义的光谱位置；基

于实验和验证得出应用方法的适应性，以提高信

息提取精度。 

方 法：1. 设计建筑物材质信息提取流程（图 1），并对高

光谱数据进行基础处理；2. 对建筑物材料进行光

谱测试（波长范围为 350~2500 nm，图 3），并完

成各类建筑物的诊断性光谱分析；3. 利用光谱角

度法（公式（1））和光谱信息散度法（公式（2））

进行材质信息提取（图 5 和 6）；4. 综合分析两种

方法的应用过程与控制参数和准确率的关系。 

结 论：1. 两种方法皆可提取建筑物材质信息，但在应用

过程中需要进行参数的适应性调整，这是提高准

确率的关键；2. 在建筑物材质信息提取方面，光

谱角度法的提取准确率略高于光谱散度法。 

关键词：建筑物材料；高光谱遥感；光谱分析；光谱识别 

 
 
 


