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Abstract: The weak form quadrature element method is a high-order algorithm which has been applied successfully to consoli-
dation analysis of saturated and unsaturated soils. Its superiority over the conventional finite element method has been verified. 
However, in consolidation analysis, pore pressure oscillations will appear when small time increments are used due to the very 
small permeability and near-incompressibility of the pore water. This can produce almost zero values of main diagonal elements in 
the coefficient matrix. To overcome the pressure oscillations, we propose a coupled composite quadrature element in which 
different orders of integration are employed for the pore pressure and the displacement. Its performance is evaluated and compared 
with that of the standard element through 1D and 2D numerical tests. Our results show that pressure oscillations can be effectively 
alleviated and stability and accuracy can be significantly enhanced by using the proposed element. 
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1  Introduction 

 
The deformation of soils when loaded by exter-

nal forces is time dependent. This has been studied 
broadly by scholars and engineers and many models 
have been proposed to describe the complicated be-
havior of soil consolidation. The theory put forward 
by Biot (1941) for 3D problems remains one of the 
most applied models for saturated soils in practice. 
Biot’s model consists of continuity of pore fluid flow 
and differential equilibrium equations of soil taking 
into account the coupling of the dissipation of pore 
fluid pressure and the deformation of the soil skele-

ton. As for unsaturated soils, one of the most well- 
known models was proposed by Darkshanamurthy et 
al. (1984). Based on those models, a number of ana-
lytical and numerical solutions have been obtained 
(Samimi and Pak, 2012; Yuan and Zhong, 2014, 
2016b; Azari et al., 2015; Ho and Fatahi, 2015; Ho et 
al., 2016).  

Biot’s model is frequently solved by the finite 
element method (FEM). Satisfactory results can be 
obtained when the approximated variable is smooth. 
However, if equal order interpolation is used for the 
displacement and the pore pressure, pore pressure 
oscillations will appear when small time increments 
are used due to the very small permeability and near- 
incompressibility of the pore water. This can produce 
almost zero values of the main diagonal elements in 
the coefficient matrix. Some stabilization procedures 
have been presented to allow for the use of equal 
order interpolation. Errors in the initial stage of 
consolidation were studied by Reed (1984) and a 
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Gauss point smoothing technique was developed to 
smooth the initial pressure. A stabilized formulation 
was developed by Mira et al. (2003) through the  
introduction of an additional strain based on the en-
hanced strain element of Simo-Rifai (Simo and Rifai, 
1990). Other stabilization approaches add a stability 
term into the continuity equation of Biot’s model. 
The formulations derived by Aguilar et al. (2008), 
Rodrigo et al. (2016), and Preisig and Prévost (2011) 
fall into this group. Different stabilizations were 
reviewed and investigated by Preisig and Prévost 
(2011) and the effectiveness of those stabilizations 
was confirmed by 1D and 2D consolidation prob-
lems. The parameters of these procedures must be 
properly chosen otherwise the stabilizations fail to 
work.  

An alternative is to use Taylor-Hood elements or 
composite elements with interpolation of the dis-
placement one order higher than that of the pore 
pressure. Performance of different elements for con-
solidation was evaluated by Sandhu et al. (1977) who 
concluded that pressure oscillations produced by 
composite elements would disappear with the evo-
lution of time if the Crank-Nicolson scheme is used 
for time integration, whereas those produced by 
standard elements would not. However, the accuracy 
of initial settlement obtained by composite elements 
is low compared with that obtained by standard 
elements.  

The idea of composite elements has also been 
applied to other methods. Hua (2011) developed an 
element-free Galerkin (EFG) numerical model for 
consolidation in which the singularity of the system 
matrix was avoided by arranging fewer pressure 
points than displacement points. A radial interpola-
tion meshless method with approximation of the dis-
placement one order higher than that of the pore 
pressure was proposed by Wang et al. (2007) to 
overcome the spurious oscillations that occur when 
using the Crank-Nicholson time discretization 
scheme. Their method uses identical node distribu-
tions for the pore pressure and the displacement. Fi-
nite difference methods (FDMs) based on staggered 
grids have been established by Gaspar et al. (2003, 
2006, 2016) and Boal et al. (2011) for 1D and 2D 
quasi-static consolidation, dynamic consolidation, 
and nonlinear consolidation, respectively. Using these 
methods, non-physical pressure oscillations can be 

removed completely by using different points for the 
displacement and the pore pressure. 

The weak form quadrature element method 
(QEM) is a high order algorithm (Zhong and Yu, 
2009) characterized by global approximation and 
rapid convergence. Numerical implementation of the 
quadrature element formulation is more straightfor-
ward because it requires less upfront data preparation. 
The integration points and the nodes are located at the 
same places and the post processing is very simple. 
The QEM has been applied successfully in seepage 
and consolidation analysis of soils (Yuan and Zhong, 
2014, 2016a, 2016b, 2017). 

The aim of the present study was to improve the 
stability of the QEM for consolidation analysis, es-
pecially in the initial stage of consolidation, by pro-
posing a composite quadrature element. Unlike the 
standard quadrature element used in previous studies, 
in the composite element the integration of the dis-
placement is taken as one order higher than that of the 
pore pressure to meet the necessary conditions for 
stability of consolidation problems. Consequently, 
different sampling points are employed for the pore 
pressure and the displacement. However, loss of ac-
curacy of the pore pressure is negligible because of 
the characteristic of high order approximation. To our 
knowledge, research on high order composite ele-
ments has not previously been published. Numerical 
examples are given and the performance of the pro-
posed element is compared with that of the standard 
element.  

In this study, governing equations for consoli-
dation are introduced first and the formulations of the 
composite quadrature element are derived in detail. 
Then, some key modifications are introduced about 
the QEM. At last, numerical tests are conducted. 
 
 
2  Biot’s model of consolidation 

 
In this paper, boldfaced letters indicate matrices 

and vectors and boldfaced letters with subscripts i, j, l 
stand for their values at nodes (i, j, l). The pore 
pressure p, the stress σ, and the strain ε are all positive 
for compression. The body force and the compressi-
bility of pore fluid and solid grains are neglected for 
simplicity. The weak form description of Biot’s the-
ory is given as 
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where V and S denote the volume and the area of the 
domain, δ means the variation of variables, E is the 
elasticity matrix of the soil skeleton, u is the dis-
placement vector, T is the prescribed surface force on 
boundary St, γw is the unit weight of the pore fluid, K 
is the permeability matrix, vn is the prescribed normal 
filtration velocity on Sn, and the identity vector is 
M=[1 1 1 0 0 0]T. Eq. (1) indicates the equilibrium of 
the soil skeleton and Eq. (2) the continuity of the pore 
fluid flow. 
 
 
3  Formulations of the composite element 
 

In the weak form quadrature element formula-
tion, the solution domain is first discretized into 
subdomains (elements), and integrals in the weak 
form description of a problem in a given element are 
then evaluated by numerical integration. In the 
composite quadrature element, integrals correspond-
ing to the displacement and the pore pressure are 
integrated individually using different integration 
points (Fig. 1). Integration of the displacement is one 
order higher than that of the pore pressure. Introduc-
tion of numerical integration into the equilibrium 
equation yields  
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where Wi, Wj, and Wk are the weighting coefficients of 
the integration scheme, |J| is the Jacobian between the 
physical domain and the normalized domain,

 
NS is the 

number of prescribed surface forces, Nk1 and Nk2 are 
the numbers of integration points in the kth surface, 

J  is the Jacobian for the surface, N, N, and N are 

the numbers of integration points for the displacement, 
and N′, Nη′, and N′ are the numbers of integration 
points for the pore pressure. The relation between the 
number of integration points for the displacement and 
that for the pore pressure is 
 

1, 1, 1.N N N N N N                   (4) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The Legendre-Gauss-Lobatto integration rule is 
adopted here. Denoting u, v, and w as the three 
components of the displacement vector, the strain can 
be expressed in terms of the nominal strain ε  in the 
normalized domain as Eq. (5), where x, y and z are the 
coordinates in the physical domain, and ξ, η, and ζ are 
the coordinates in the normalized domain, and D is a 
transformation matrix defined as Eq. (6). 

Fig. 1  Standard quadrature element (a) and composite 
quadrature element (b) 

 Displacement point       Pressure point

(a) 

(b) 
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where 1
ijJ   indicates the components of the inverse of 

the Jacobian matrix. Then the differential quadrature 
analogue is introduced and the strain at some inte-
gration point can be expressed in terms of the element 
displacement vector de as 
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where Bijk is the strain matrix in the QEM, and imC  is 

the weighting coefficient for the differential quadra-
ture analogue. The essence of the differential quad-
rature analogue is the expression of a function deriv-
ative in terms of weighted linear summation of func-
tion values at all grid points. For details on the dif-
ferential quadrature analogue, one may refer to 

(Bellman and Casti, 1971; Wang and Gu, 1997; Chen 

et al., 2005). Note that the strain i j k  ε  in the second 

term of Eq. (3) is defined on the pressure points, 
which should be expressed in terms of the displace-
ments on displacement points. A strategy based on 
Lagrange interpolation is proposed. The strain on a 
pressure point is firstly interpolated by all the strains 
on displacement points: 
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where Li, Lj, and Lk are the Lagrange basis functions. 
The introduction of Eq. (7) into Eq. (8) yields 
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where i j k  B  is the interpolation strain matrix. Intro-

ducing the connectivity matrices of F
ijD  and i j k  G  so 

that T eT F
ij ij  u d D  and eT ,i j k i j kp      p G=  where pe is 

the element vector of pore pressure, the equilibrium 
equation can then be written as 
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where e
sK  is the stiffness matrix, e

cK  is the coupling 

matrix, and e
FR  is the loading vector corresponding 

to the surface loads.  
Similarly, the continuity equation can be nu-

merically integrated as 
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where Nv′ is the number of prescribed normal veloci-
ties. Then the differential quadrature analogue is in-
troduced and the gradient of the pore pressure is  
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where i j k  Z  is the gradient matrix of the pore pressure. 

The pore pressure on some displacement node is in-
terpolated by the pore pressures on pressure nodes: 
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Introducing the connectivity matrix of v
i j D  so 
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where e
ctK  is the coupling matrix, e

LK  is the element 

permeability matrix, and e
vR  is the loading vector 

corresponding to the prescribed normal velocity. The 
two-point marching scheme is used for time  
integration: 
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where tn and tn+1 denote the respective time at the nth 
and (n+1)th steps, and θ is a weighting parameter. θ=0 
indicates forward interpolation, θ=0.5 represents the 
Crank-Nicolson method, θ=2/3 corresponds to the 
Galerkin method, and θ=1 indicates backward Euler 
interpolation, which will be employed in the follow-
ing examples unless noted otherwise. Applying 
Eq. (15) into Eqs. (10) and (14), we obtain the final 
algebraic equations as 
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where the subscript n denotes the number of time 
increments. After the assemblage of Eq. (16) for 
every element in the global system, the coupled 
consolidation behavior of soils can be modeled pro-
gressively with given initial and boundary conditions. 

Note that if the integration of the pore water 
pressure and the pore air pressure is taken as one order 
higher than that of the displacement, the composite 
element for unsaturated consolidation can be estab-
lished using the same procedure. On the other hand, it 
is well known that soil creep occurs concurrently with 
consolidation after external loading. To describe 
creep behavior accurately, it is necessary to develop 
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realistic creep models and appropriate ways for de-
termining the corresponding parameters. Recently, 
some developments have been made regarding the 
determination of creep parameters using optimization 
procedures (Le and Fatahi, 2016; Le et al., 2016). 
However, the scope of the present study was confined 
to saturated soils, and for conciseness soil, creep was 
not considered. 
 
 
4  Numerical examples 

 
In the following examples, quadrilateral quad-

rature elements are used for 1D and 2D consolidation 
problems. Note that if equal order integration is used 
for the displacement and the pore pressure, i.e. 

 

, , ,N N N N N N                       (17) 

 
the formulations derived above turn into those of the 
standard element. 

4.1  One-dimensional consolidation 

The 1D problem shown in Fig. 2 was analyzed 
using the proposed element. For convenience, some 
non-dimensional quantities are introduced: 
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where 


 and   are the Lamé coefficients, t is the 

time, kw is the permeability, and the definitions of 
other parameters are shown in Fig. 2. The analytical 
solution for this specific case is 
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One standard element with 15 nodes and one 

composite element with 15 pressure nodes were em-
ployed and the non-dimensional time increment was 
taken as 10−5, 10−6, and 10−7 to study the effect of the 
time increment. The pore pressures obtained at t=10−5 
are given in Fig. 3. Obviously, oscillations caused by 

the standard element of the QEM were significant, but 
were greatly reduced by the composite element. The 
influence of the time increment was not significant for 
the case considered. Moreover, the time increment 
had less impact on the results of the composite ele-
ment than on the results of the standard element. The 
results obtained by multiple elements using the time 
increment of 10−6 are shown in Fig. 4, where five 
standard elements and five composite elements with 
seven pressure nodes in each element were used and 
the stabilization effect was reflected once again. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
As concluded by Sandhu et al. (1977), low ac-

curacy of the initial settlement would be achieved if a 
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composite element was used. This will be investi-
gated in the framework of the QEM. The settlement 
was calculated by one standard element and one 
composite element. To make sure the comparison was 
made under the same conditions, 15 displacement 
nodes were used in each of the two kinds of element, 
which means that the approximation of pore pressure 
of the composite element was one order lower than 
that of the standard element. The settlement and the 
relative errors are given in Fig. 5, where u and uexa 
denote the non-dimensional vertical displacement and 
the corresponding analytical solution, respectively. 
Note that in the initial stage of consolidation, i.e. 
t<10−3, the accuracy of the composite element was 
low compared with that of the standard element, but 
the accuracy of the two elements was otherwise  
similar.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is well known that second-order accuracy can 

be reached if the Crank-Nicolson scheme is used for 
time integration. Nevertheless, the pressure oscilla-
tions discussed above will not disappear with time 
and another type of oscillation will arise at some point 
in the time evolution curve of the pore pressure. The 
Crank-Nicolson scheme was adopted and examined 
in the QEM. Fifteen pressure nodes were chosen for 
the standard and composite elements and the time 
increments were taken as Δtn+1=1.4Δtn, Δt1=10−4. The 
time history of the pore pressure at x=0.1969 is given 
in Fig. 6. Note that oscillations produced in the evo-
lution curve of pore pressure when the Crank- 

Nicolson scheme is applied could be eliminated by 
the use of the composite element, which also im-
proved accuracy to a large extent. 
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The soil column was then assumed to be sub-
jected to a fixed pumping rate of 10−6 m/s at the top 
surface. The parameters for the problem were re-

spectively taken as H=10 m, 


=5.77 MPa,  = 

3.85 MPa, kw=10−4 m/s, and Δt=0.001 d. Pore pres-
sure profiles at different times are given in Fig. 7, 
where the reference values were obtained by the 
standard quadrature elements with 45 integration 
points. It can be clearly seen that the proposed ele-
ment also performed very well for problems with 
given flux boundary conditions. On the other hand, 
the results were in close agreement when the pore 
pressure became smooth.  

4.2  Two-dimensional consolidation 

In this example, a 2D problem was studied 
(Fig. 8). A foundation was suddenly loaded by a 
uniform pressure p0. The material properties of the 

foundation were: kw=10−3 m/s, 


=0,  =5 MPa, and  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the time increment is taken as 10−6 s. Four elements 
were meshed with 8×8 pressure nodes in each stand-
ard and composite element. The pore pressures along 
the centerline of the foundation at 10−5 s are shown in 
Fig. 9, and the contours of the pore pressure at 10−5 s 
obtained by standard elements and composite ele-
ments are given in Fig. 10. It can be seen that the pore 
pressure was stabilized effectively by the proposed 
element for the 2D consolidation problem. 

4.3  Consolidation of a cylinder 

In this example, the consolidation of a cylinder 
internally loaded by a uniform pressure of 100 kPa 
was analyzed (Fig. 11). The internal radius R1 was 
taken as 0.1 m, 0.25 m, 0.5 m, and 1 m and the ex-
ternal radius R2 was 2 m, with all the material prop-
erties described in Section 4.2. It was pervious at the 
internal surface and impervious at the external surface. 
For the symmetry of the problem, one fourth of the 
cylinder was considered. One standard and one 
composite quadrature elements were employed with  
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15×15 integration points. To describe the cylinder 
more precisely, the blending functions were adopted 
to transform the cylinder into the normalized domain, 
which can be expressed as 
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where R and θ are the polar coordinates as shown in 
Fig. 11. The contours of the pore pressure at 10−5 s are 

shown in Figs. 12 and 13, which show that stabilized 
results can be obtained for all cases considered. With 
the decrease of the internal radius, the oscillations 
produced by the standard elements tended to concen-
trate around the cavity. However, this had little effect 
on the numerical performance of the composite  
elements. 

4.4  Undrained triaxial test 

An undrained saturated triaxial test was simu-
lated in this example. To evaluate the performance of 
the proposed element for elasto-plastic consolidation 
analysis, the bounding surface model (Manzari and 
Dafalias, 1997; Fei and Liu, 2009) is introduced. Five 
material parameters are required: Poisson’s ratio μ0, 
the slope of the critical state line (CSL) M, the slope 
of the normal consolidation line (NCL) λ, the slope of 
the unloading-rebound line (URL) κ, and a model 
constant H0, which were respectively taken as 0.3, 1.1, 
0.017, 0.034, and 20. The pre-consolidation pressure 
was 300 kPa and the initial mean effective stress σm′ 
was taken as 300 kPa or 75 kPa to give an over  
consolidation ratio (OCR) of 1 or 4, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 11  Internally pressurized cylinder 

 
R1 

R
2
 

y 

x 
p

   

R 

Fig. 10  Pore pressure contours of the foundation ob-
tained using composite elements (a) and standard ele-
ments (b) 

x (m) 

y 
(m

) 

p/p0

(b) 

x (m) 

y 
(m

) 

p/p0
(a) 



Yuan and Zhong / J Zhejiang Univ-Sci A (Appl Phys & Eng)   2018 19(7):521-533 530

  
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12  Pore pressures of the cylinder obtained using
standard elements 
(a) R1=1 m; (b) R1=0.5 m; (c) R1=0.25 m; (d) R1=0.1 m 
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Fig. 13  Pore pressures of the cylinder obtained using 
composite elements 
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Both the standard and composite elements were used. 
The stress paths obtained and the variation of the pore 
pressures are given in Fig. 14, where q=σ1–σ3 is the 
deviatoric stress and εa is the axial strain. It can be 
seen that positive pore pressures were generated 
during the test for normal consolidated soils, whereas 
negative pressures were induced for over consoli-
dated soils. As a result, the stresses of normal and  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

over consolidated soils reached CSL from the wet and 
dry sides, respectively. The deviatoric stress of over 
consolidated soils reached a peak value and subse-
quently decreased to the corresponding maximum 
value of normal consolidated soils. The results con-
firm that typical mechanical behaviors of normal 
consolidated and over consolidated soils can be rep-
resented effectively and the performance of the two 
elements is similar when the distribution of the pore 
pressure is smooth. 

 
 

5  Conclusions 
 
A composite quadrature element is proposed for 

consolidation analysis to overcome the oscillations 
produced when small time increments are chosen. 
The element involves integration of the displacement 
one order higher than that of the pore pressure. Dif-
ferent nodes are employed for the displacement and 
the pore pressure, except those on the corner of the 
element. Strains at the pressure nodes and pore 
pressures at the displacement nodes are approxi-
mated through Lagrange interpolation. Performance 
of the composite element was investigated and 
compared with that of the standard element through 
numerical tests of 1D and 2D consolidation. The 
results show that oscillations generated when small 
time steps are used and those induced by the Crank- 
Nicolson scheme are greatly reduced by the proposed 
element, and the accuracy is also greatly improved. 
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中文概要 
 

题 目：一种非等阶积分的求积元孔压单元 

目 的：在对土体固结问题进行求解时，如果对孔压和位

移采用等阶积分，当时间步长取值很小时，得到

的孔压结果会出现数值振荡，导致精度降低。本

文提出一种非等阶积分的求积元孔压单元，致力

于减小孔压振荡，提高单元稳定性和计算精度。 

创新点：1. 建立了一种对于孔压和位移采用不同阶积分的

求积元复合单元；2. 有效降低了小时间步长引起

的孔压振荡。 

方 法：1. 通过求积元法对弱形式控制方程进行数值积

分，并对比奥固结方程中的位移项和孔压项采用

不等阶积分；2. 通过拉格朗日插值获得位移点上

的孔压和孔压点上的位移值；3. 通过一维及二维

问题的数值算例，验证所建立方法的有效性。 

结 论：1. 通过采用复合求积元单元，大大降低了孔压的

数值振荡；2. 应用复合求积单元时，采用二阶精

度的 Crank-Nicolson 积分格式不会产生随时间的

孔压振荡；3. 本文所建立的单元可以大大提高固

结问题求解的数值计算精度和计算效率。 

关键词：弱形式求积元法；不等阶积分；孔压振荡；固结

分析 

 
 


