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Abstract: The subsoil contains many evaporites such as limestone, gypsum, and salt. Such rocks are very sensitive to water. 
The deposit of evaporites raises questions because of their dissolution with time and the mechanical-geotechnical impact on the 
neighboring zone. Depending on the configuration of the site and the location of the rocks, the dissolution can lead to surface 
subsidence and, for instance, the formation of sinkholes and landslides. In this study, we present an approach that describes the 
dissolution process and its coupling with geotechnical engineering. In the first part we set the physico-mathematical framework, 
the hypothesis, and the limitations in which the dissolution process is stated. The physical interface between the fluid and the 
rock (porous) is represented by a diffuse interface of finite thickness. We briefly describe, in the framework of porous media, the 
steps needed to upscale the microscopic-scale (pore-scale) model to the macroscopic scale (Darcy scale). Although the constructed 
method has a large range of application, we will restrict it to saline and gypsum rocks. The second part is mainly devoted to the 
geotechnical consequences of the dissolution of gypsum material. We then analyze the effect of dissolution in the vicinity of a 
soil dam or slope and the partial dissolution of a gypsum pillar by a thin layer of water. These theoretical examples show the 
relevance and the potential of the approach in the general framework of geoengineering problems.
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1 Introduction 

Natural or human induced dissolution of soluble 
rocks in contact with water affects many soils and sub‐
soils. These perturbations result in a redistribution of 
the effective or total stress field and thus the deforma‐
tion of the soil and subsoil. The mechanical response 
of the soil and its impact on the surface depend on the 
location and the geometric features of the cavities re‐
sulting from dissolution. This damage is mainly related 
to the “change of phase”, from solid to liquid, of part 
of the domain.

With this change, the stress field can reach criti‐
cal states with plasticity or failure in part of the domain 
in question. Examples of potential effects include 

subsidence, sinkholes, and impacts on geo-structures 
(James and Lupton, 1978; Bell et al., 2000; Swift and 
Reddish, 2002; Waltham et al., 2005; Castellanza et al., 
2008; Gerolymatou and Nova, 2008). Particular atten‐
tion must be paid to the understanding and control of 
this phenomenon, which is very important in geoengi‐
neering contexts.

An intrinsic difficulty in the dissolution of under‐
ground rocks is the time dependency of the geotechni‐
cal problem, but there is a lack of in-situ data concern‐
ing its evolution in space and time. Rock dissolution 
occurs as long as the fluid flow in the subsurface is un‐
dersaturated. In this study we will concentrate mainly 
on the dissolution of gypsum rocks (CaSO4·2H2O), 
even though the numerical approach implemented 
to describe dissolution has a broader scope. There‐
fore, we also include reference to some problems in‐
volving salt (NaCl). A substantial contrast between a 
problem involving salt and one involving gypsum is 
their solubilities and the corresponding physical insta‐
bilities. We note that the solubility, defined as the maxi‐
mum amount of a chemical species that dissolves in a 
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specified amount of solvent (water) at a prescribed tem‐
perature, of evaporites can range over several orders 
of magnitude. For example, the solubilities of salt, 
gypsum, and limestone are 360, 2.50, and 0.013 g/L, 
respectively (Freeze and Cherry, 1979).

Answering the questions posed by the dissolu‐
tion process is a difficult and non-trivial exercise. 
Indeed, the problem exhibits several multi-scale and 
multi-physical features, couplings, and non-linearities. 
One difficulty is related to the precision required in 
the description and quantification of the recession rate 
of the solid-liquid interface at the macroscopic scale. 
To circumvent this scientific drawback, a specific 
mathematical statement of the physico-chemical and 
transport equations at the microscopic or pore scale is 
established. Another difficulty is to tackle dissolution 
phenomena at in-situ or geo-structure scales. Such 
problems are linked to the strong physical coupling 
with other processes, such as the mechanical behav‐
ior of rocks. In contrast to the phenomenological or 
“averaged” approaches to the dissolution process 
(Jeschke et al., 2001; Jeschke and Dreybrodt, 2002), 
our approach begins at the microscopic scale.

In this study we briefly present the approach pro‐
posed to model and solve the dissolution problem. 
The method is built on a strong theoretical basis but is 
also supported by numerical modelling. The mathe‐
matical formalization of the problem of the dissolu‐
tion surface and its kinetics are initially built at the 
pore scale. A possible candidate numerical approach 
to describe dissolution is a method that explicitly fol‐
lows the fluid-solid interface. The arbitrary Lagrangian-
Eulerian (ALE) method proposed by Donea et al. 
(1982) is well suited to that. An alternative approach 
no longer views the interface as a sharp and discon‐
tinuous boundary between solid and liquid but consid‐
ers the interface to have a finite thickness and well-
defined properties (notably continuity); in other terms, 
it is a diffuse interface (Collins and Levine, 1985; 
Anderson and McFadden, 1998). We limit our devel‐
opment to two-phase porous media and we assume 
fluid-saturated porous rocks.

We present the physical and mathematical basis of 
the pore-scale dissolution model and the upscaled dif‐
fuse interface model (DIM) using a volume-averaging 
theory. The part of this study which is dedicated to the 
geomechanical consequences considers only gypsum 
rocks. Whatever the hydrogeological configuration, 

the dissolution of gypsum (lenses, pillars, etc.) in the 
ground raises questions in terms of geomechanical con‐
sequences: subsidence, sinkholes, stability of pillars 
or cavities, etc. (Toulemont, 1981, 1987; Cooper, 1988; 
Bell et al., 2000; Gysel, 2002). The aim of the last sec‐
tion of this paper is to show, by several 2D and 3D 
theoretical examples, the robustness and the potential 
of the proposed numerical dissolution approach.

The geotechnical problems to be addressed are 
elastoplastic ones. The elastoplastic constitutive models 
used to describe the behavior of soil and gypsum are 
relatively simple. The aim is not to develop a precise 
study of a real case but to provide an illustration of the 
ability of the proposed approach. This is valid regard‐
less of the complexity of the constitutive model used. 
We will illustrate these issues in the case of plasticity 
within a soil mass in the vicinity of a dike and in the 
case of partial dissolution of an elastoplastic pillar. In 
all the studied configurations, the soluble gypsum is 
located inside porous domains.

We can see from the numerical modelling that the 
proposed approach has a predictive aspect. Indeed, 
the mechanical and dissolution coupling allows us to 
model the time evolution of all the fields (stresses, 
strains, displacements, etc.) and to determine the criti‐
cal time beyond which severe risks can appear. In this 
study only the DIM method will be used in the differ‐
ent examples.

2 Mathematical formulation of the dissolution

This section is devoted to a brief review of the 
underlying principles of the method used for model‐
ing the dissolution. The reader can find more detailed 
information on the scientific background in (Luo HS 
et al., 2012, 2015; Luo H et al., 2014; Guo et al., 
2015, 2016). At the pore scale, the dissolution problem 
can be posed using the classical initial and boundary-
value problems. To achieve the expression of the 
“macro” DIM model, we start with these “small-scale” 
equations to generate Darcy-scale equations, the cor‐
responding Darcy-scale quantities, and effective coef‐
ficients, using volume-averaging theory (Whitaker, 
1999). After introducing the original model (micro-
scale) for the dissolution problem, we present an up‐
scaling method leading to the “Darcy-scale” equa‐
tions. We provide a quick review of the main ideas 
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and principles on the upscaling of the pore-scale equa‐
tions to the macroscopic scale. The Darcy-scale model 
derived from this upscaling is the one that is used for 
large-scale dissolution modeling. The passage of the 
description of the phenomena from the microscopic to 
the real “geotechnical” scale is depicted in Fig. 1.

Before going further, note that we restrict our 
discussion to porous media composed of two phases, 
a solid skeleton (solid phase) and a liquid phase. The 
porous medium is fully saturated with liquid. More 
general approaches can be found in (Luo HS et al., 
2012; Luo H et al., 2014). To distinguish the phases, 
we will use the subscript “s” to indicate the solid 
phase and the subscript “l” to indicate the liquid phase.

The so called “original dissolution problem” 
includes a solid/liquid sharp interface as depicted in 
Fig. 2. At this interface the fluid concentration C(x̄, t) 
(x̄ belongs to the interface, and t denotes the time) is 
equal to the evaporite or equilibrium concentration Ceq. 
A key feature of the DIM method is the introduction 
of a phase indicator defined over the entire domain 
(solid and liquid). In our approach we use the porosity 
ε(x, t) to describe the state and evolution of the disso‐
lution. In the sharp or original problem, ε(x, t) is dis‐
continuous at the solid-liquid interface (Fig. 2). Solv‐
ing the mathematical problem with this condition 

requires special front tracking and front marching 
numerical techniques (Feng et al., 1994; Tryggvason 
et al., 2001; Ladd et al., 2020). These methods are 
central processor unit (CPU)-time consuming and face 
numerical difficulties in the case of non-smooth geom‐
etries. With the DIM method, we can circumvent such 
difficulties because we do not tackle explicitly the 
interface space and time evolution. More information 
about these two categories of methods can be found 
in recent review papers (Ladd and Szymczak, 2021; 
Molins et al., 2021). The partial differential equations 
are written instead for continuous scalar variables, such 
as the porosity ε(x, t) and the mass fraction ωAl(x, t) 
(mass fraction of species A in the l-phase), which leads 
to a diffuse interface description as illustrated in Fig. 2.

2.1 Pore-scale model

Let us consider a binary liquid phase l contain‐
ing chemical species A and B, and a solid phase s con‐
taining only chemical species A, as depicted in Fig. 3 
(right).

We write the mass balance for two phases and 
the chemical species A. We emphasize that all variables 
are time-dependent. For the sake of readability, we sim‐
plify the notations as, for example, ρ l ≡ ρ l(x, t, ⋯).

Fig. 1  Sketch of the passage from microscopic to real in-situ scales, closure variables, and 2D unit cell. The general 
notations β, γ, ω, σ, and η indicate different phases (fluid, soluble phase, heterogeneities, non-soluble phase, …). bβ and sβ 
are solutions of the boundary value closure problems, and L is the large-scale length. IBVP refers to the initial boundary 
value problems
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¶ρ l

¶t
+Ñ × ( ρ lv l) = 0 (1)

¶ρs

¶t
+Ñ × ( ρsvs) = 0 (2)

¶ ( )ρ lωAl

¶t
+Ñ × ( ρ lωAlv l) =Ñ × ( ρ l DAlÑωAl)  (3)

where ρl, ρs, vl, vs, ωAl, and DAl are the density of l-phase, 
density of s-phase, the l-phase velocity, the s-phase 
velocity, the mass fraction of species A in the liquid, 
and the diffusion tensor, respectively.

In the following analysis, the s-phase is supposed 
immobile (vs=0). The momentum balance for the fluid 
follows the Navier-Stokes equations:

ρ l( ¶v l

¶t
+ v l × Ñv l) =-Ñp l + ρ l g + μ lÑ2v l (4)

where pl represents the water pressure in the l-phase, 
μl is the liquid dynamic viscosity, and g is the gravity 
vector. Under some assumptions (Luo et al., 2012), 
we have the classical equilibrium condition ωeq at the 
fluid/solid interface Als, i.e.,

ωAl =ωeq    at A ls. (5)

The boundary conditions for the mass balance at 
the solid-liquid interface with normal outward vector 
nls can be written as follows (Fig. 3) (at Als):

n ls·( ρ lωAl(v l−w ls) −ρ l DAlÑωAl ) = n ls·( −ρsw ls)  (6)

where wls is the interface or recession velocity. This 
equation may be used for instance to compute explic‐
itly the interface velocity in the ALE method and can 
be expressed as follows:

n ls·w ls =
ρ l

ρs

1
1−ωAl

DAl n ls·ÑωAl. (7)

2.2 Upscaled macro-scale non-equilibrium model

A DIM model can be written in an appropriate 
way in the framework of porous medium theory. In this 
subsection, we describe the macroscopic Darcy-scale 
equations obtained by upscaling the above set of pore-
scale equations, using the volume averaging theory 
(Quintard and Whitaker, 1994a, 1994b, 1999). The 
reader will find the details of this change of scale in 
(Guo et al., 2016). The representative elementary vol‐
umes (Bachmat and Bear, 1987) are illustrated in Fig. 4. 
We define the intrinsic average of the mass fraction 
ΩAl and the superficial average of the velocity Vl as

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

ΩAl = ωAl

l
= ε-1

l ωAl =
1
V l

∫
Vl

ωAl( )r dV    

V l = v l = ε l v l

l
=

1
V ∫

Vl

v l( )r dV
(8)

Fig. 4  Averaging volume at pore-scale level. rβ is the position 
vector locating points in the β-phase, and yβ is the position 
vector locating points in the β-phase relative to the centroid

Fig. 3  Sketch of in-situ cavity and focus near a rock-solid/fluid 
interface. nls is the normal outward vector, wls is the interface 
or recession velocity, and V∞ is the velocity far from the 
interface

Fig. 2  Porosity ε and concentration C space-evolution 
when crossing a sharp and a diffuse interface. Fig. 2 is 
reprinted from (Laouafa et al., 2021), Copyright 2021, with 
permission from Springer Nature
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where V is the averaging volume and r is the position 
vector locating points in the β-phase.

After transformation, the averaged form of the 
balance equation of species A can be expressed as

   

¶ ρ lωAl

¶t
( )a

+      Ñ· ρ lωAlv l

( )b

=

         Ñ· ρ l DAlÑωAl

( )c

−
              

1
V ∫

Als

n ls × ρ lωAl( )vAl−w dA

( )d


 (9)

where (a), (b), (c), and (d) represent the accumulation, 
the convection, the diffusion, and the phase exchange 
terms, respectively. With several assumptions and some 
mathematical manipulations of the various equations, 
we derive the following equations for the DIM model 
(Luo et al., 2012):

ε l ρ
*
l

¶ΩAl

¶t
+ ρ*

l V l·ÑΩAl =

Ñ·( ε l ρ
*
l D*

Al·ÑΩAl) + ρ*
l α (1−ΩAl) (ωeq−ΩAl )  (10)

¶ε l ρ
*
l

¶t
+Ñ·( ρ*

l V l) = ρ*
l α (ωeq−ΩAl )  (11)

−ρs

¶εs

¶t
= ρs

¶ε l

¶t
= ρ*

1α (ωeq−ΩAl )  (12)

where ρ*
l  is the effective density, α=α(εl) is the mass ex‐

change parameter, and D*
Al is the macroscopic diffusion/

dispersion tensor. Recall that εl=Vl/V is the classical 
definition of the porosity; εs=Vs/V is the solid volume 
fraction which can be expressed in term of void ratio 
e, εs=e/(1+e).

The values of the macroscopic effective coeffi‐
cients (values at the Darcy-scale) are obtained thanks 
to the solution of the “closure problems” over a unit 
cell, whose shape and topology are specific to the 
porous medium being considered, as pictured in Fig. 5.

Their expressions according to Luo et al. (2012) 
are:

D*
Al =DAl( )I + ε-1

l

1
V ∫

Als

( )n lsb l dA −ε−1
l b l v͂ l  (13)

α =
1
V ∫

Als

ρ l

( )1−ωeq

DAl(n ls × Ñs l ) dA (14)

ρ*
l =

1
ε l ΩAl

ρ lωAl  (15)

where bl and sl are two variable solutions of the clo‐
sure problems (Luo et al., 2012), and v͂1 is the mean 
fluid velocity. They are solutions of the boundary 
value closure problems. It is noteworthy that these 
physical properties, D*

Al, ρ
*
l , and α at the macroscopic 

scale are not phenomenological nor measured experi‐
mentally. The macroscopic properties are based on 
physical properties established at the pore scale. In 
the case of DIM, the mass exchange coefficient expres‐
sion α=α(ε) as a function of porosity is quite arbitrary. 
In any case α=α(ε) must fulfill the condition shown in 
Fig. 6.

At this scale, the fluid velocity can be described 
either by the classical Darcy model or the Darcy-
Brinkman version (Brinkman, 1949):

μ l( )ΩAl

ε l

DV l− (ÑP l−ρ*
l g) − μ l( )ΩAl

K ( )ε l

·V l = 0 (16)

where K ( ε l) is the permeability tensor and P1 is the 

pore pressure. This model will tend to the Stokes 
equation when K ( ε l) is very large and will tend to 

Darcy’s model when K ( ε l) is very small. Note that 

the inertial terms are supposed negligible.
In the following section, we illustrate the use of 

the methodology in the analyses of some dissolution 
examples.

2.3 Modelling of direct leaching process in a salt 
mass

This section discusses the application of the pro‐
posed approach described in the above section. The first 
application consists in the modeling of a direct leaching 
test performed in a salt mass. We compare the results 
of the modeling to the experimental measures. The 
goal is to illustrate the capacity of the approach to face 
problems with geometrical singularity and important 
density impacts resulting from high salt solubility.

The principles of the experimental in-situ test are 
as follows. Two concentric tubes are driven into the 

Fig. 5  Pictures of unit cells defining the domain of the 
closure problems
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ground to a depth of 280 m (Fig. 7a). Through the 
central tube, water is injected continuously for several 
days. The injection by the central tube is known as the 
direct leaching method. The injection history is given 
in terms of velocity in Fig. 7c and is 3 m3/h for 4 d and 
1.5 m3/h for 8 d. A sonar test of the dissolution void 
was carried out and it was deduced that the final form 
of the cavity obtained was quasi-cylindrical as illus‐
trated in Fig. 7b.

In the numerical modelling of this direct leach‐
ing process, we first suppose that the problem is axi‐
symmetric. Proper initial and boundary conditions 
describing this problem are applied in the numerical 
model, which was solved using the finite element 
method. The liquid (brine) density ρl (kg/m3) has the 
following expression:

ρ l (t x)=1000 + 738.5ωAl (t x) (17)

where ωAl(t, x) is the mass fraction of species A at 
time t and point x. The mass fraction at equilibrium 
ωeq is equal to 0.27. The salt density ρs is equal to 
2165 kg/m3. The liquid dynamic viscosity μl is sup‐
posed constant and equal to 1.0×10−3 Pa·s and the dif‐
fusivity is equal to 1.3×10−9 m2/s. The permeability of 
the salt rock is equal to 1.0×10−20 m2. The numerical 
results of this experimental test are shown hereafter. 
Fig. 8 shows, at different times, the value of the poros‐
ity inside the domain in the axisymmetric plane. We 
observe on this figure the development of a near-
cylindrical cavity, a shape that is maintained over time. 
The gradient of color between the “fluid” part (red) 
and the “solid part” (blue) indicates the existence of a 
diffuse interface of a finite width.

The computed dissolved volumes are around 
12 m3 after 4 d and 38 m3 after 12 d. The experimen‐
tal evaluations of the cavity volume deduced from the 
outlet fluid composition analysis are around 11 m3 and 
40 m3, respectively. This demonstrates the accuracy of 
the numerical model.

Fig. 7  Configuration of the experimental leaching test (a), 
resulting dissolution after 12 d of freshwater injection (b), 
and inlet velocity history (c) (Charmoille and Daupley, 2012)

Fig. 6  Porosity evolution and rate condition in the whole porous media including the diffuse interface. Reprinted from 
(Laouafa et al., 2021), Copyright 2021, with permission from Springer Nature
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The flowlines (Fig. 9) show at different times or 
cavity volumes, the natural convection effect linked 
to concentration (mass fraction) gradients due to the 
strong solubility of salt. Such natural convection ef‐
fects are also reported in (Wang et al., 2021).

In Fig. 10, we have represented the position of 
the liquid/salt interface at six instants. In this point 
tracking, we have considered the interface situated at 
mid-height (segment AA). It is noteworthy that the 
interface is not sharp but has a finite thickness.

With the same boundary conditions as above, we 
consider now, instead of salt, a gypsum domain and 
its associated parameters (Guo et al., 2016). In these 
computations, the liquid density is kept constant (very 
small solubility) and equal to 1000 kg/m3. Fig. 11 
shows the cavity at different times (1, 5, 10, and 30 a). 
We observe the very slow dissolution rate (small cavity 

after a long time) for gypsum material and the dif‐
ferent cavity shapes compared to those obtained with 
salt.

In this case, there is no convection induced by 
the liquid density gradient. We can see that the value 
of solubility is not the only parameter controlling the 
interface recession rate. At a point of the interface, the 
rate of dissolution (recession rate) depends on the 
concentration gradient and the fluid velocity, among 
others. Fig. 12 illustrates these remarks. Let us denote 
τ̄(-x  t) as the value of the recession rate-rate of disso‐
lution (unit: mass per unit surface per time) at the 
point -x of the fluid-solid interface and at time t. Its 
expression is:

τ̄(-x  t)= ρs( )∫
0

L
d
dt
ε(x t)dx . (18)

Fig. 9  Streamlines and fluid vector fields after 2, 4, 8, and 
12 d

Fig. 8  Iso-value of the porosity after 2, 4, 8, and 12 d (void, 
fluid filled cavity, is red). References to color refer to the 
online version of this figure
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We can observe that the recession rate is far from 
being constant in time either for salt or for gypsum. 
So, it does not make sense to use a unique and con‐
stant value for the dissolution rate, as is often done in 
engineering practice, since it evolves according to the 
hydrodynamic conditions and the chemical composi‐
tion of the fluid. We also observe the significant dif‐
ference between the dissolution rates of salt and of 
gypsum.

The proposed approach can be improved and 
extended to problems with more complex chemistry, 
involving multiple components. For instance, by also 
taking into account the presence of non-soluble parti‐
cles within the porous matrix, the accuracy of the 
method can be increased. However, although these 
aspects are of undeniable scientific interest, we are 
often restricted, in-situ, by the lack of information and 
data. At this time, our approach is sufficiently accurate 
for the geoengineering problems that we are dealing 
with and it has been successfully applied in other cases.

3  Applications of dissolution modelling in 
geotechnical fields 

In the following 2D and 3D examples, we con‐
sider several coupled problems involving gypsum. The 

Fig. 13  Time evolution of the recession rate along three 
lines located in the gypsum layer (bottom-L1, middle-L2, 
top-L3) for the case of direct leaching process in salt mass 
(Fig. 7)

Fig. 12  Time evolution of the recession rate along three lines 
located in the salt layer (bottom-L1, middle-L2, top-L3) for 
the case of direct leaching process in salt mass (Fig. 7)

Fig. 11  Shapes of the cavity in gypsum after 1, 5, 10, and 
30 a (void is red). References to color refer to the online 
version of this figure

Fig. 10  Example of diffuse interface shape (bottom) and 
location along the line AA (top)
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first case corresponds to dissolution under an elasto‐
plastic soil. A gypsum rock is located below and in 
the vicinity of a dike (soil slope). In many countries 
there are gypsum layers very close to the surface 
(Toulemont, 1981, 1987).

In the first case, the gypsum domain is contained 
in a porous layer and is located between two layers of 
marl for instance. The flow is induced by a natural hy‐
draulic gradient. We will analyze the time evolution of 
the plasticity in the soil during the dissolution process.

The second case is about the dissolution of the 
bottom part of cubic elastoplastic gypsum pillar with 
geometric singularities (corners) at all edges. We will 
also analyze the time evolution of the plasticity affect‐
ing the pillar during the dissolution process.

These two simple examples show the predictive 
nature of the proposed approach.

3.1 Gypsum lens in the vicinity of a dike

The starting point for this numerical modelling is 
the in-situ observations made in the Val d’Orléans, 
France. Numerous levees exhibit sinkholes that have 
developed at different locations (Fig. 14). The process 
leading to the formation of sinkholes or the failure of 
the slope is linked to the existence of a void at the 
base, which was created by dissolution. To the exis‐
tence of the void the phenomenon of soil internal ero‐
sion (suffusion) is added. This process involves the 
removal of fine particles and modifies the mechanical 
features of the soil. After a period of internal erosion, 
an instability occurs (Yang et al., 2020). The goal of 
our simulation is to quantify the time needed to create 
a critical cavity length.

The problem treated in this section is related 
to the stability of a dike in the presence of a soluble 
saturated gypsum domain which dissolves continu‐
ously in time. This dissolution is caused and sustained 
by a constant flow of freshwater (Fig. 15).

The gypsum layer (G), 4-m thick and 20-m long 
(Fig. 15), is located just below an overburden (L1, 
L2) of (sandy-silty) soil. The gypsum domain (G) is 
situated in a porous medium (L3) saturated with water. 
Pure water thus flows at the inlet with a continuous 
velocity V of 2.5×10−7 m/s. It is supposed that the inlet 
concentration is zero (freshwater). A null flow condi‐
tion is imposed on the lower and upper sides of the 
porous layer (L3) that contains the soluble part. The 
mechanical parameters of the soil and of the layers 
below the soil layer as well as those related to the dis‐
solution are given in Table 1.

Fig. 14  Real case induced by karst existence and the 
geotechnical failure of some dikes in Val d’Orléans, France. 
The failure affects the toe (a), the head (b), and the slope 
face (c and d) behind the dike (Gombert et al., 2015)

Fig. 15  Model meshed of a dike (L1): the gypsum lens (G) is located below and in the vicinity of a dike
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The normal displacement is imposed at all bound‐
aries of the domain. The initial stress state is computed 
with gravity as the only loading. A very fine elastic 
(membrane) and highly deformable layer is located at 
the base of layer L2. The mechanical properties are 
such that they make it possible to dissolve a signifi‐
cant width without numerical instability. Indeed, when 
the cavity is created, the mechanisms linked to the 
effective collapse of the ground bell are not described 
in our approach. The resolution of mechanical and 
dissolution problems is also solved using the finite ele‐
ment method.

In this example, we used a simple associated 
elastic perfectly plastic Mohr-Coulomb model and 
the computation was performed in a 2D plane strain 
condition. In Fig. 16 we show the growth of the 
dissolution-induced cavity and its impacts in terms 
of soil layer plasticity (effective plastic strain ε̄ep =

∫ 2
3 ( )dεp

ijdε
p
ij , where dεp

ij is the increment of ij plas‐

tic strain component) at three times (40, 92, and 106 a), 
where we observe the extension and the distribution 
as a function of the intensity of the lens dissolution.

As expected, when dissolution progresses, plas‐
ticity develops in the covering soil (Figs. 16 and 17). 
The method provides interesting information, espe‐
cially on the reduction of the stability reserve as a 
function of time. The knowledge of this evolution can 
be used for mitigation procedures and to prevent pos‐
sible damage.

The maximum extension of the cavern is about 
16 m at the floor and roof of the gypsum layer after 
132 a. As the dissolution rate is naturally dependent 
on the boundary conditions, a greater flow velocity will 
significantly reduce this time. A rainwater inflow, 
for instance, can naturally create additional preferen‐
tial dissolution locations within the gypsum rocks. A 
thorough approach that integrates the history and peri‐
odicity of soil surface rainfall is feasible with no par‐
ticular problems.

We observe that dissolution of the gypsum layer 
occurs on the boundaries which are gradually reduced. 
The dissolution does not occur inside the porous 

Fig. 17  Growth of the dissolution-induced cavity and the 
impacts in terms of soil layer plasticity (effective plastic 
strain) after 132 a (yellow represents the dissolved gypsum 
cavity). References to color refer to the online version of 
this figure

Fig. 16  Growth of the dissolution-induced cavity and the 
impacts in terms of soil layer plasticity (effective plastic 
strain) at three times: 40, 92, and 106 a (yellow represents 
the dissolved gypsum cavity). References to color refer to 
the online version of this figure

Table 1  Transport, mechanical, and dissolution parameters of the dike model

Layer

L1

L2

L3

G

E (MPa)

95

190

35000

35000

ν

0.35

0.35

0.35

0.30

φ (°)

30

35

–

–

Coh (kPa)

17

37

–

–

K (m2)

–

–

1×10−16

1×10−14

μ (Pa·s)

–

–

1×10−3

1×10−3

ρ (kg/m3)

2000

–

2300

2300

α

–

–

5×10−6

5×10−6

E is Young’s modulus, ν is Poisson’s ratio, φ is the friction angle, Coh is the cohesion, and K is the permeability tensor
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gypsum layer because solubility is so low that an 
equilibrium concentration is reached very fast.

The stability of the soil structure in our analysis 
is carried out with respect to a criterion of plasticity 
or the loss of convergence of the Newton-Raphson 
algorithm. More relevant criteria such as the positivity 
of the second order work (Hill, 1958; Prunier et al., 
2009; Laouafa et al., 2011) could be used to analyze 
the stability.

3.2 Elastoplastic gypsum pillar dissolved at its base

In the Parisian region, the gypsum layers are very 
superficial. The thin overburden is not particularly 
resistant and is highly sensitive to the existence of cav‐
erns (Toulemont, 1987). A further issue relates to the 
flooding (partial or total) of gypsum mines. In certain 
mines, stability is provided by pillars which are left 
in place (Fig. 18). Their design is usually safe against 

many uncertainties. However, gypsum is a soluble 
substance and is therefore very sensitive to water. The 
influx of water in a continuous or periodical manner 
over a long period questions the effectiveness of the 
stability guarantee. In the short or long period of time, 
according to the hydraulic conditions, the pillars will 
lose their strength due to dissolution and the stability 
of the structure will be threatened.

The problem of flooded mines is approached 
from the standpoint of the instability of a gypsum 
pillar that is affected by dissolution at its base by a 
thin layer of water. The gypsum pillar is cubic with 
sides of 5 m (Figs. 19 and 20). A steady flow of fresh 
water with zero concentration of gypsum is applied 
upstream. Its velocity V is equal to 5×10−6 m/s. The 
width of the water domain is 0.30 m. The thin layer 
of water affects only the base of the pillar. Previous 
calculations were performed on a cylindrically shaped 
pillar totally affected by water flooding. An example 
of state of failure is depicted in Fig. 21, showing the 
plasticity, after 20 a, of a cylindrical pillar subjected to 
continuous water flow (fluid velocity is 1×10−6 m/s). 
The pillar is integrally submerged, and the dissolution 
affects all its height (Laouafa et al., 2021).

In the example below, the water dissolves the 
base of the cubic pillar, and computations are per‐
formed in order to analyze the plasticity or damage 
distribution evolving during dissolution. A dead load 
P equal to 450 kPa is applied on the top of the sur‐
face. The transport mechanical parameters are given 
in Table 2. Due to symmetries (geometry and physics), 
the model used in our computation is as shown in 
Fig. 19.

Fig. 22 shows the development of the porosity or 
in other terms the progress of the dissolution at four 

Fig. 18  Photo of pillar in the abandoned quarry with a thin 
layer of water at its base (by courtesy of Watelet JM, INERIS, 
France)

Fig. 19  Half model (left) and mesh (right) considered in computations (unit: m)
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times (5, 20, 50, and 100 a). This is a bottom view of 
the gypsum layer. We observe a progressive loss of 
material and therefore of the support of the pillar with 
time.

The symmetry (with respect to the vertical) is 
preserved owing to the initial conditions. The dissolu‐
tion is more severe upstream than downstream. Fig. 23 
shows a 3D view of the gypsum shape lens after 100 a.

In Fig. 24 we can visualize the variation in space 
and for various times of the concentration of the chem‐
ical species. This description is carried out at mid 
thickness of the water layer. Four times are shown: 5, 
20, 50, and 100 a. The normalized concentration field 
evolves both in intensity and in extension as dissolu‐
tion progresses.

Fig. 25 shows the evolution of the effective plas‐
tic strain with the progression of dissolution. The elas‐
toplastic pillar and the geometric configuration of the 
gypsum lens at different times are shown in this figure.

It is seen that dissolution of the base of the pillar 
leads to a concentration of stress at the boundaries of 

the area concerned in the dissolution. The more pro‐
nounced the dissolution is, the more the stress on the 
pillar increases in intensity and expands into the pil‐
lar. The distribution of plasticity and failure that can 
be expected is not classical.

In Fig. 26 we have only represented the plastic 
zones in the interior of the pillar. It is noteworthy that 
the effect of a thin layer of water, as compared to a 
total flooding, is not so common.

This is also a simple example regarding the elas‐
toplastic model which is used to describe the behavior 
of gypsum material. The dissolution approach has no 
particular limitation on the model complexity used. 

Fig. 21  Final shape and plasticity in the pillar before failure 
(a) and the history of the vertical displacement with time 
of a point located on the top of the pillar (b) (Laouafa et al., 
2021)

Fig. 20  Domain of the model and mechanical loading P 
and flow velocity V. S is a symmetry plane. Only the half 
domain is considered for the analysis

Table 2  Transport, mechanical, and dissolution parameters of the pillar model

Layer

L1

L2

P

Water

E (MPa)

350

35

35

1

ν

0.3

0.3

0.3

0.3

φ (°)

40

Coh (kPa)

4

K (m2)

1×10−14

1×10−14

μ (Pa·s)

1×10−3

1×10−3

ρ (kg/m3)

2300

2300

2300

2300

α

1×10−5

1×10−5
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Fig. 27 shows different views of the pillar deforma‐
tion and the Euclidean norm of the displacement field. 
One can observe the loss of symmetry induced by 
dissolution.

In this case, it is worth noticing that the edges of 
the soluble domain include geometrical singularities 
and the DIM method can easily circumvent them 
thanks to its formulation. In addition, the character of 
the coupling is also notable. For the same reasons as 
mentioned above, the dissolution does not occur in 
the gypsum mass but on the periphery.

Fig. 22  Bottom view of the dissolved gypsum domain after 5, 20, 50, and 100 a (1 is solid gypsum, 0 is liquid)

Fig. 23  Three-dimensional shape (bottom view) of the 
dissolved gypsum domain after 100 a until numerical 
convergence

Fig. 24  Variation in space and for various times (5, 20, 50, and 100 a) of the concentration of the chemical species. 
Description carried out at mid thickness of the water layer
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4 Conclusions 

We have discussed in this study the modeling 
of the dissolution of rock materials and its application 
in geoengineering problems. We have limited the analy‐
sis to a soluble medium that contains two phases, a 
porous solid phase and a liquid phase. The porous 
soluble medium is saturated with liquid. After the 

Fig. 25  Time evolution of 3D spatial distribution of effective plastic strain in 1/2 pillar at different times (0, 5, 20, 50, 70, 
and 100 a)

Fig. 26  Three-dimensional view of part of pillar affected 
by plasticity for three times (three states of dissolution)
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presentation of the method used to model the dis‐
solution built on the basis of microscopic consider‐
ations and upscaling, we have applied this method in 
geotechnical/geomechanical applications. The issue is 
of noteworthy importance and the findings are very 
promising. The question of mid- and long-term mechan‐
ical behaviors will still arise in the presence of water in 
the vicinity of the evaporite present in the subsurface. 
The dissolution leads to a perturbation of the surround‐
ings by the formation of voids, the modification of the 
morphology of structural elements, etc.

By coupling the method that describes dissolu‐
tion to the geotechnical method, we explicitly intro‐
duce time (although the mechanical behavior is inde‐
pendent of time). It is therefore possible to foresee 
possible losses of stability, such as sinkholes, land‐
slides, and failure of structures.

The developed method can be also used in the 
framework of underground structures like tunnels, pipe‐
lines, structures under buildings, and close to railroad 
tracks. Its contributions will be significant in the occur‐
rence of an event (pipe breakage, leakage, and water 
intrusion).

A problem with the phenomenon of dissolution 
is that it is relatively slow (notably for gypsum or 

limestone) and the consequences are visible only in 
the mid or long term. Another problem is that in-situ 
dissolution can be only of natural origin. In such a 
case, we do not control all the factors (hydraulics for 
example). The location of the evaporites at the site 
scale is an additional difficulty.

In the context of such uncertainty, the proposed 
approach can make a meaningful contribution.

The developed approach can be extended by in‐
troducing a third phase (gas) and heterogeneities at 
the microscopic scale. The weak coupling in the math‐
ematical sense can be enhanced by incorporating, for 
example, the evolution of the porosity induced by the 
deformation of the medium and by including it in the 
formulation of the dissolution problem.
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