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Abstract: Background: Circular RNAs (circRNAs) are covalently closed single-stranded RNAs with multiple biological functions.
CircRNA.0007127 is derived from the carbon catabolite repression 4-negative on TATA-less (CCR4-NOT) complex subunit
2 (CNOT2), which was found to regulate tumor cell apoptosis through caspase pathway. Methods: Potential circRNA.0007127 target
microRNAs (miRNAs) were analyzed by miRanda, TargetScan, and RNAhybrid software, and the miRNAs with binding sites
for apoptosis-related genes were screened. The roles of circRNA.0007127 and its downstream target, microRNA (miR)-513a-5p,
were validated by quantitative real-time polymerase chain reaction (qPCR), flow cytometry, mitochondrial membrane potential,
immunofluorescence, western blot, and caspase-8 (CASP8) protein activity in vitro in H2O2-induced K-562 cells. The
circRNA.0007127‒miR-513a-5p and CASP8‒miR-513a-5p interactions were verified by luciferase reporter assays. Results:
Silencing circRNA.0007127 decreased cell apoptosis by inhibiting CASP8 pathway activation in K-562 cells. Compared with
the control group, the expression of CASP8 was reduced by 50% and the 43-kD fragment of CASP8 protein was significantly
reduced (P≤0.05). The luciferase reporting assay showed that circRNA.0007127 combined with miR-513a-5p or CASP8, with
extremely significant differences (P≤0.001). The overexpression of miR-513a-5p inhibited the gene expression level of CASP8
in a human myeloid leukemia cell model (75% change) and the level of a 43-kD fragment of CASP8 protein (P≤0.01). The rescue
experiment showed that cotransfection with circRNA.0007127 small-interfering RNA (siRNA) and the miR-513a-5p inhibitor
increased CASP8 gene expression and the apoptosis rate, suggesting that the miR-513a-5p inhibitor is a circRNA.0007127
siRNA antagonist. Conclusions: CircRNA.0007127 regulates K-562 cell apoptosis through the miR-513a-5p/CASP8 axis,
which can serve as a novel powerful molecular target for K-562 cells.
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1 Introduction

Apoptosis means programmed cell death regulated
by genes via different signaling pathways, such as
the endogenous pathway (mitochondrial pathway) and

the exogenous pathway (death receptor pathway)
(Taylor et al., 2008; Obeng, 2021). In 1972, the word
“apoptosis” was first used to describe different cell
death patterns (Kerr et al., 1972). Apoptosis exhibits
typical morphological characteristics, such as chromatin
hydrolysis into fragments, nuclear pyknosis, hydrolysis
of various organelles, formation of apoptotic bodies,
and cell shrinkage (Taylor et al., 2008). It occurs at
various life stages of human cells. When the regula‐
tion of apoptosis is not controlled, it damages the
stability or defense mechanism of the body, leading to
the occurrence of disease.
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Two protease families are involved in cell apop‐
tosis, namely caspase and B-cell lymphoma-2 (Bcl-2)
(Taylor et al., 2008; Grilo and Mantalaris, 2019).
Caspases are mainly located in the cytoplasm and play
key roles in the amplification of the apoptotic cascade of
cells (Grilo and Mantalaris, 2019). To date, 14 kinds of
caspases have been identified, among which caspase-8
(CASP8) is mainly involved in exogenous apoptotic
pathways and can further induce apoptosis through two
parallel cascades (Mandal et al., 2020). In addition, once
cells receive apoptotic stimulation, reactive oxygen
species (ROS) will induce the activation of CASP8 in
the form of proenzyme, thus leading to the activation
of downstream apoptotic effector molecules (Hung et al.,
2016; Šrámek et al., 2021). Enhanced ROS production
in neutrophils can cleavage CASP8 and CASP3, further
reducing the mitochondrial membrane potential and
ultimately leading to cell apoptosis (Dubey et al., 2016).

Circular RNAs (circRNAs) are loop structures
closed by covalent bonds, which lack terminal 5' caps
and 3' poly-A tails (Memczak et al., 2013). Since there
is no free poly-A end, circRNA has certain resistance
to RNA exonucleases and debranching enzymes, and
it exists stably in the nucleus or cytoplasm (Guarnerio
et al., 2016). CircRNAs have been reported to have
various physiological functions: they can act as
microRNA (miRNA) sponges, interact with proteins,
influence translation, and so on (Kristensen et al., 2019).
CircRNAs regulate cell behavioral phenotypes through
different molecular mechanisms, such as differentia‐
tion and development, proliferation and apoptosis, or
migration and invasion (Panni et al., 2020).

A large number of circRNAs have been observed
to have elevated expression levels in hematologic
tumors, glioma, gastrointestinal tumors, bladder cancer,
and other diseases, and these circRNAs could inhibit
the apoptosis of tumor cells and promote cell prolifer‐
ation and metastasis (Hao et al., 2019; Jamal et al.,
2019; Mei et al., 2019; Yuan et al., 2019). In the regu‐
lation of the apoptosis phenotype, circRNAs can act
as apoptosis-related molecules. Evidence has shown
that circRNAs, such as hsa_circ_0055538, hsa_circ_
0007059, hsa_circ_0002483, hsa_circ_0001588, and
circ-homer scaffold protein 1 (HOMER1), bind to
miRNAs, regulate the expression of caspases, and par‐
ticipate in the regulation of cell apoptosis (Gao et al.,
2019; Su et al., 2019; Du et al., 2020; Xu et al., 2020;
Zhu et al., 2020; Xiao et al., 2021).

Carbon catabolite repression 4-negative on TATA-
less (CCR4-NOT) is a highly conserved multifunc‐
tional complex composed of multiple subunits, that
plays important roles in messenger RNA (mRNA)
degradation, transcriptional inhibition, posttranscrip‐
tional regulation, and other signaling processes. The
CCR4-NOT complex subunit 2 (CNOT2) has been
shown to be involved in the regulation of apoptosis.
The loss of CNOT2 can upregulate C/EBP homolo‐
gous protein (CHOP) mRNA expression in cells and
stimulate the activation of caspase-dependent apopto‐
sis pathways (Ito et al., 2011). Furthermore, the down‐
regulation of CNOT2 expression reduced the protein
expression level of homeodomain-interacting protein
kinase 2 (HIPK2), an intermediate of cellular oxida‐
tive stress (Rodriguez-Gil et al., 2016). The CNOT2
signaling pathway has an essential function in the
caspase-related apoptosis pathway in non-small cell
lung cancer cells and liver cancer cells (Lee et al., 2019;
Jung et al., 2020). CircRNA.0007127 is formed by
the reverse splicing of exon 2 and exon 3 of the host
gene CNOT2. Bioinformatics and functional analyses
predicted that circRNA.0007127 is involved in the
apoptosis regulation pathway. K-562 cells have been
indicated to express circRNA.0007127 at relatively
high levels (Salzman et al., 2013). In this study, a
cell model of H2O2-induced K-562 cell apoptosis
was constructed to explore the regulatory role of
circRNA.0007127 in the apoptosis pathway.

2 Materials and methods

2.1 Culture, H2O2 treatment, and transfection of
K-562 cells

The human myeloid leukemia cell line K-562
was purchased from Procell Life Science & Technology
(Wuhan, China). The cells were cultured in Roswell Park
Memorial Institute (RPMI)-1640 medium (Thermo,
Waltham, USA) supplemented with 10% (volume frac‐
tion) fetal bovine serum (Gibco, California, USA) at
37 ℃ and 5% CO2. Then, cells were washed with
D-Hanks’s buffer (Solarbio, Beijing, China) and incu‐
bated at room temperature at 1.76 mmol/L H2O2 for
15 min. After washing again with D-Hanks’s buffer,
the cells were further cultured or transfected with
small RNAs. Small-interfering RNAs (siRNAs), the
microRNA (miR)-513a-5p mimic and inhibitor, were

733



| J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2022 23(9):732-746

purchased from RIBOBIO (Guangzhou, China) and
transfected into K-562 cells with riboFECTTM CP
(RIBOBIO) reagent.

2.2 RNA extraction

K-562 cells cultured as above were collected for
RNA extraction. Briefly, TRIzol reagent (TaKaRa,
Osaka, Japan) was used to extract RNA from K-562
cells by following the manufacturer’s instructions.
After adding chloroform and centrifuging each sample
at 12 000g for 10 min, the precipitate was discarded,
and 75% (volume fraction) ethanol was further added
to the supernatant, which was gently mixed and incu‐
bated at room temperature for 10 min, followed by
spinning at 7500g for 5 min. The supernatant was
discarded, the precipitate was air-dried, and total RNA
was obtained by resuspending the precipitate in ribo‐
nuclease (RNase)-free water.

2.3 Quantitative real-time polymerase chain
reaction

The reverse transcription of mRNA was performed
using PrimeScript RT Master Mix (TaKaRa), and the
reverse transcription of circRNA or miRNA was
performed using the PrimeScript RT Reagent Kit
(TaKaRa) with random primers or specific stem-loop
primers. The complementary DNA (cDNA) amplifica‐
tion was performed using PowerUpTM SYBRTM Green
Master Mix (Thermo), and glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) and U6 were used as refer‐
ence genes. Each sample was assessed three times.
All operations were performed under sterile RNase-
free conditions. The reverse transcription primer for
U6 was AAAATATGGAACGCTTCACGAATTTG,
and the primers for hsa-miR-513a-5p were purchased
from RIBOBIO. The primer sequences were listed in
Table S1.

2.4 RNase R treatment

Total RNA (10 μg) was incubated at 37 ℃ with
or without 5 U/μg RNase R (Epicenter Technologies,
Missouri, USA) for 30 min, followed by reverse
transcription-polymerase chain reaction (RT-PCR) analy‐
sis and nucleic acid electrophoresis. Subsequently,
3% (0.03 g/mL) agarose gel electrophoresis with
Tris-acetate-ethylenediamine tetraacetic acid (EDTA)
(TAE) running buffer was performed to analyze the
cDNA and genomic DNA (gDNA) PCR products.

The DNA was separated by electrophoresis at 120 V
for 15 min, and the DNA marker used was Marker L
(50‒500 bp; Sango Biotech, Shanghai, China).

2.5 Flow cytometry analysis

K-562 cells were washed with phosphate-buffered
saline (PBS) once and then stained with Annexin V-PE
(BioLegend, California, USA) and 7-amino-actinomycin
(7AAD; BD PharmingenTM, Santiago, USA). The pellets
were resuspended in 0.3 mL PBS, and the percentage
of apoptotic cells was assessed by flow cytometry (BD
FACSCelesta, Santiago, USA). In this assay, apoptotic
cells were 7AAD+ (dead) or 7AAD− (alive) and Annexin
V+ (phosphatidylserine+ ). The data were analyzed by
FlowJo software (FlowJo, Ashland, USA).

2.6 Western blotting

The protein content was measured by western
blot analysis. First, cells were lysed for 1 h at 4 ℃ in
0.5 mmol/L phenylmethylsulfonyl fluoride (PMSF)
buffer, which was disrupted by centrifugation at
12 000g for 20 min at 4 ℃. Equal amounts of the
proteins (30‒50 μg) were applied to sodium dodecyl
sulfate (SDS) polyacrylamide gels for electrophoresis
and then transferred to polyvinylidene difluoride
(PVDF) membranes (Millipore, Merck, USA). After
blocking with 5% (volume fraction) skimmed milk in
Tris-buffered saline with Tween-20 (TBST) buffer for
1 h at room temperature, the membranes were incu‐
bated with antibodies overnight at 4 ℃. Then, the
membranes were treated with the required secondary
antibodies for 1 h at room temperature. Enhanced
chemiluminescence detection reagent (Millipore) was
used for visual signal detection, and GAPDH was
applied as a control for normalization. The primary
antibodies used were as follows: CASP8 (1:1000,
volume ratio, the same below; Bioss, Beijing, China,
bsm-33190M), CASP3 (1:1000; Cell Signaling Tech‐
nology, Boston, USA, #9662), CASP6 (1:1000; Cell
Signaling Technology, #9762), phospho Fas-associated
protein with death domain (FADD) (p-FADD, 1:1000;
Cell Signaling Technology, #2781), and GAPDH
(1:1000; Cell Signaling Technology, #8884). The
experiments were repeated three times.

2.7 Immunofluorescence assay

K-562 cells were fixed with 4% (volume fraction)
paraformaldehyde for 15 min and then permeabilized
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with 0.5% (volume fraction) Triton X-100 (SolarBio,
Beijing, China) for 20 min. After blocking with 3%
(0.03 g/mL) goat serum for 30 min at room tempera‐
ture, the cells were incubated with primary antibodies
against CASP8 and CASP3 at 4 ℃ overnight. After
the sections were washed and incubated with secondary
antibody (Cell Signaling Technology) at 37 ℃ in the
dark for 1 h, the cell nuclei were counterstained with
4,6-diamidinos-2-phenylindole (DAPI; SolarBio).

2.8 JC-1 fluorescence measurement

The mitochondrial membrane potential was
detected with a JC-1 fluorescent probe (Medchem‐
Express, New Jersey, USA). K-562 cells were incu‐
bated with JC-1 solution for 30 min at 37 ℃. After the
cells were washed with PBS buffer, images were taken
immediately using a single-photon confocal microscope
(Nikon, Tokyo, Japan). The decline of mitochondrial
membrane potential is a landmark event of the early
stage of apoptosis. When the mitochondrial membrane
potential is high, JC-1 aggregates in the matrix form a
polymer, which produces red fluorescence. On the
contrary, when the mitochondrial membrane potential
is low, JC-1 exists as a monomer and emits green
fluorescence. Therefore, the ratio of red to green fluor-
escence can indicate early apoptosis (Perelman et al.,
2012; de Biasi et al., 2015; Marcondes et al., 2019).

2.9 Detection of CASP8 protein activity

According to the instructions of the CASP8 pro‐
tein activity assay kit (SolarBio), the cell lysis super‐
natants from different groups were collected, and
detection reagents were added in the recommended
amounts. A blank tube and a standard tube were used
as the negative control (NC) and positive control,
respectively. After the reaction solution was mixed, the
96-well plate was closed with a sealing membrane and
incubated at 37 ℃ for 60‒120 min. When the color
change was obvious, the absorption value was meas-
ured at the 405-nm wavelength. The concentration of
free p-nitroaniline (pNA) in each sample was calculated
according to the standard equation and the measured
wavelength values. pNA is a free fragment produced
by the specific hydrolysis of the CASP8 polypeptide
substrate; thus, the hydrolytic activity of CASP8 can
be measured by the absorption photometric value of
pNA.

2.10 Luciferase reporter assay

The potential binding sites of miR-513a-5p and
circRNA.0007127 or CASP8 were predicted by
TargetScan (https://www.targetscan.org). Then, the se‐
quences were mutated and cloned into a dual-luciferase
(Renilla luciferase (Rluc) and firefly luciferase (Fluc))
vector, psiCHECK-2 (Geneseed, Guangzhou, China),
and the products were termed as circRNA.0007127-
wild type (WT), circRNA.0007127-mutant (MUT),
CASP8-WT, and CASP8-MUT. All of these plasmids
were co-transfected with the miR-513a-5p mimic or
inhibitor into 293T cells. The luciferase values were
normalized to the corresponding Rluc values, and the
fold changes were calculated.

2.11 Quantification and statistical analysis

Each experiment was repeated at least three times
to determine the biological significance. The data were
shown as mean±standard error of the mean (SEM),
and statistical significance was confirmed by a t-test
analysis of the two groups of data. Differences were
considered statistically significant when P<0.05.
GraphPad Prism software (Version 8; GraphPad Soft‐
ware Inc., CA, USA) was used for statistical analysis.

3 Results

3.1 Pathway prediction and identification of
circRNA.0007127

The miRanda (https://www.miranda.org),TargetScan,
and RNAhybrid database (https://bibiserv.cebitec.uni-
bielefeld.de/rnahybrid) were employed to predict the
target miRNAs of circRNA.0007127. The bioinformatics
analysis showed that 26 miRNAs had binding sites
for circRNA.0007127, including miR-513a-5p (Fig. 1a).
Meanwhile, miRNAs with binding sites for apoptotic
genes were screened, and the regulatory pathway of
circRNA. 0007127/miR-513a-5p/CASP8 was identified
(Fig. 1b). The circRNA.0007127 is spliced from the
CNOT2 gene on chr12:70 671 911–70 704 797 (Fig. 1c
and Table S2). Therefore, a set of specific divergent
primers for circRNA.0007127 was designed, and the
back-splice junction of circRNA.0007127 was confirmed
by Sanger sequencing in the cDNA of K-562 cells
(Fig. 1d). To determine whether the head-to-tail splicing
of circRNA.0007127 was generated by trans-splicing
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or genome rearrangement, the convergent primers
were designed to amplify the CNOT2 mRNA. The
nucleic acid electrophoresis results showed that
circRNA.0007127 was amplified from the cDNA only
by the divergent primers (Fig. 1e). Furthermore, we

confirmed the stable expression of circRNA.0007127
in K-562 cells using specific primers. CircRNA.0007127
was resistant to RNase R treatment due to its cova‐
lently closed loop structure, and CNOT2 mRNA was
significantly degraded by RNase R (Fig. 1f). These

Fig. 1 Pathway prediction and identification of circRNA. 0007127. (a) Bioinformatics analysis of the potential target
miRNAs of circRNA.0007127 by miRanda, TargetScan, and RNAhybrid. (b) Network interaction between circRNA.0007127
and target miRNAs, as well as the downstream mRNAs of these miRNAs. (c) CircRNA.0007127 is formed from the human
CNOT2 gene through back-splicing. (d) Schematic diagram of the circularization of exon 2 and exon 3 of CNOT2-forming
circRNA.0007127 (the arrowhead shows the junction), where the back-splice junction site (arrow) of circRNA.0007127 was
detected by Sanger sequencing. (e) The divergent primers detected circRNA.0007127 in cDNA but not in gDNA. (f) The
expression of circRNA.0007127 and CNOT2 mRNAs treated or not treated with RNase R was determined by qPCR. The
circRNA.0007127 was resistant to RNase R. Data were shown as mean±standard error of the mean (SEM), n=3. *** P<
0.001. CircRNA: circular RNA; miRNA: microRNA; mRNA: messenger RNA; CNOT2: carbon catabolite repression
4-negative on TATA-less (CCR4-NOT) complex subunit 2; cDNA: complementary DNA; gDNA: genomic DNA; RNase:
ribonuclease; qPCR: quantitative real-time polymerase chain reaction; miR: microRNA; chr: chromosome; GAPDH:
glyceraldehyde-3-phosphate dehydrogenase; ns: not significant.
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findings indicated that circRNA.0007127 plays a
special role in regulating the apoptosis pathway and
can be amplified by specific divergent primers.

3.2 Inhibition of apoptosis in K-562 cells by knock‐
down of circRNA.0007127

K-562 cells were selected to explore the biological
functions of circRNA.0007127. Next, siRNAs specific
to circRNA.0007127 were used to knock down its
expression (Fig. 2a). As shown in Fig. 2b, the knock‐
down efficiency of three independent siRNAs was
measured by qPCR; siRNA-1 showed high inhibitory
efficiency, and it successfully knocked down the
expression of circRNA.0007127 but did not affect
CNOT2 mRNA expression (Fig. 2c). Furthermore, we
constructed an H2O2-induced apoptosis model involv‐
ing K-562 cells. After treatment with H2O2, the mRNA
expression levels of CASP8, Bcl-2-associated X (Bax),
FADD, CASP3, Bcl-2-associated agonist of cell death
(Bad), and CASP6 increased in K-562 cells (Fig. 2d). All
of these genes are involved in the regulation network
of apoptosis, and their expression is upregulated after
proapoptotic stimulation. When circRNA.0007127 was
silenced by siRNA-1, the percentage of apoptotic
K-562 cells decreased significantly compared with those
in both apoptotic K-562 cells and siRNA control-
transfected cells (Fig. 2e). Apoptotic cells were 7AAD+

(dead) or 7AAD− (alive) and Annexin V+ (phosphati‐
dylserine+). SiRNA-1 attenuated the decrease in the
mitochondrial membrane potential, which indicates
early cell apoptosis (Figs. 2f and 2g). These findings
suggested that siRNA-1 specific to circRNA.0007127
decreases the apoptosis rate of K-562 cells, provid‐
ing a new insight into the biological functions of
circRNA.0007127.

3.3 Effects of circRNA. 0007127 on apoptosis by
affecting the expression of CASP8

In order to further explore the mechanism of
apoptosis regulation by circRNA.0007127, the expres‐
sion of apoptosis-related genes was verified by qPCR
in apoptotic K-562 cells after siRNA-1 transfection.
The knockdown of circRNA.0007127 suppressed
the mRNA expression of CASP8, CASP3, CASP6,
FADD, and Bax (Fig. 3a). However, knocking down
circRNA.0007127 did not affect the mRNA level of
Bad, suggesting that circRNA.0007127 might be
mainly involved in regulating caspase family genes

that encode the central regulatory molecules of apop‐
tosis. Meanwhile, H2O2 treatment significantly in‐
creased the protein levels of CASP8, CASP3, CASP6,
and p-FADD in K-562 cells, and these changes could
be partly reversed by circRNA.0007127 knockdown
(Figs. 3b and 3c). The protein bands showed that
CASP8, CASP3, and p-FADD were the cleaved
fragments of the protein, while CASP6 was the
full-length protein. When siRNA-1 or siRNA NC was
transfected into H2O2-treated K-562 cells, the immuno‐
fluorescence staining results indicated that the num‐
bers of positive cells for CASP8 and CASP3 were sig‐
nificantly decreased in the siRNA-1 group compared
to the NC group (Figs. 3d and 3e), suggesting that
siRNA-1 inhibited the expression of the CASP8, which
further suppressed the splicing and activation of the
downstream effector CASP3, thereby decreasing H2O2-
induced apoptosis. Next, K-562 cells were stimulated
with H2O2 and then transfected with siRNA NC or
siRNA-1. After 48 h of culture, cells were collected to
detect the hydrolytic activity of CASP8. The absor‐
bance value analysis indicated that siRNA-1 decreased
the CASP8 hydrolytic activity induced by H2O2 in
K-562 cells (Fig. 3f). In general, under the stimulation
of pro-apoptotic signals in K-562 cells, the knock‐
down of circRNA.0007127 could protect cells from
apoptosis by inhibiting the expression of CASP8 and
its downstream effector caspases.

3.4 CircRNA.0007127-targeted hsa-miR-513a-5p

Next, the target genes of the predicted miRNAs
were screened by employing online databases, and
the results revealed that there were binding sites for
CASP8 and circRNA.0007127 in the seed region of
hsa-miR-513a-5p (Fig. 4a). Then, the dual luciferase
reporting system was employed to verify whether
circRNA.0007127 could adsorb miR-513a-5p. It
was postulated that, if miR-513a-5p can bind to
circRNA.0007127, the expression of the luciferase
gene will be downregulated, and the expression level
of luciferase will be inversely proportional to the
bond strength. Therefore, we constructed a luciferase
reporter plasmid containing the full length of WT
circRNA.0007127. Subsequently, we mutated the
predicted miR-513a-5p binding site that could not
bind to circRNA.0007127, and constructed MUT
circRNA. 0007127 luciferase reporter plasmid vectors
(Fig. 4b). These vectors were cotransfected with the
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miR-513a-5p mimic or inhibitor into HEK-293T cells.
The luciferase reporter assay results suggested that
miR-513a-5p significantly inhibited the luciferase

activity of the luciferase reporter constructed in
the circRNA.0007127 WT group, but not in the
control groups (Fig. 4c). These results confirmed

Fig. 2 Suppression of apoptosis in K-562 cells by knockdown of circRNA.0007127. (a) Schematic illustration of siRNA
and target sites on circRNA. (b) Expression analyses of three different circRNA-targeting siRNAs in K-562 cells, showing
that siRNA-1 had a high knockdown efficiency. (c) The expression of CNOT2 after siRNA transfection was detected by
RT-qPCR. (d) Quantification of CASP8, Bax, FADD, CASP3, Bad, and CASP6 in K-562 cells treated with 1.76 mmol/L
H2O2. (e) Flow cytometry assay showing the exposure of phosphatidylserine on the cell membrane. (f, g) H2O2-induced
K-562 cells were transfected with siRNA-1, followed by JC-1 fluorescent mitochondrial imaging. The transformation of
JC-1 from red fluorescence to green fluorescence was used as an indicator of early apoptosis (scale bar=40 μm). Data
were shown as mean±standard error of the mean (SEM), n=3. * P<0.05, ** P<0.01, *** P<0.001. CircRNA: circular RNA;
siRNA: small-interfering RNA; CNOT2: carbon catabolite repression 4-negative on TATA-less (CCR4-NOT) complex
subunit 2; RT-qPCR: reverse transcription-quantitative real-time polymerase chain reaction; CASP8: caspase-8; Bax:
Bcl-2-associated X; FADD: Fas-associated protein with death domain; Bad: Bcl-2-associated agonist of cell death; NC:
negative control; ns: not significant; 7AAD: 7-amino-actinomycin.
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Fig. 3 Effects of circRNA.0007127 on apoptosis by suppressing the expression of CASP8. (a) The mRNA expression levels
of CASP8, CASP3, Bad, Bax, CASP6, and FADD after knockdown by circRNA.0007127 were determined by qPCR.
(b) Representative western blot images showing the protein expression of CASP8, CASP3, p-FADD, and CASP6 in K-562
cells treated with H2O2 and siRNA NC or siRNA-1 for 48 h. GAPDH was used as a loading control. (c) The histogram
analysis of the western blot in (b) was performed. (d) Immunofluorescence photomicrographs of CASP8 and CASP3 in
circRNA.0007127 siRNA-1 (or siRNA NC)-transfected K-562 cells followed by treatment with H2O2. Red, green, and blue
represent CASP8, CASP3, and nuclei, respectively (scale bar=40 μm). (e) The integrated optical density of CASP8 or
CASP3 in (d) was quantified. (f) The hydrolytic activity of CASP8 in K-562 cells with different treatments was measured
by absorption value analysis. Data were shown as mean±standard error of the mean (SEM), n=3. * P<0.05, ** P<0.01,
*** P<0.001. CircRNA: circular RNA; qPCR: quantitative real-time polymerase chain reaction; CASP8: caspase-8; Bax:
Bcl-2-associated X; FADD: Fas-associated protein with death domain; Bad: Bcl-2-associated agonist of cell death;
siRNA: small-interfering RNA; NC: negative control; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; p-FADD:
phospho-FADD; ns: not significant; DAPI: 4,6-diamidinos-2-phenylindole; pNA: p-nitroaniline.
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that circRNA.0007127 could efficiently bind to miR-
513a-5p.

3.5 Effects of miR-513a-5p on apoptosis by binding
to the 3' UTR region of CASP8

In order to further confirm that the cellular pheno‐
type was caused by the binding of CASP8 with miR-
513a-5p, luciferase vectors were constructed (Fig. S1).
The bioinformatics analysis showed that the CASP8 3'
untranslated region (UTR) contains a sequence that
is complementary to the miR-513a-5p seed sequence.
Luciferase activity assay was conducted to investigate
the targeting relationship between miR-513a-5p and
CASP8. Compared with the mutant constructs, the
miR-513a-5p mimic significantly downregulated the
luciferase activity of the CASP8-WT constructs (Fig. 5a).
MiR-513a-5p mimic or inhibitor was transfected into
K-562 cells to explore its biological function. First,
the effects of miR-513a-5p on CASP8 expression in
apoptotic K-562 cells transfected with mimic or inhibi‐
tor were analyzed by qPCR (Fig. 5b). Overexpressed
miR-513a-5p downregulated the expression of CASP8,

while the inhibitor promoted the expression of CASP8.
The CASP8 activity was also measured after treatment
with the miR-513a-5p mimic. As shown in Fig. 5c, in
H2O2-stimulated K-562 cells, when the expression of
miR-513a-5p was upregulated, the hydrolysis activity
of CASP8 was reduced. The flow cytometry results
showed substantially increased expression of miR-
513a-5p and fewer apoptotic cells, while apoptosis
was elevated by the miR-513a-5p inhibitor (Fig. 5d).
Moreover, early apoptosis was observed using the
JC-1 probe (Fig. S2). The proportion of early apoptotic
cells in the mimic group decreased, and the propor‐
tion of apoptotic cells in the inhibitor group increased
compared with those in the control group. Subse‐
quently, the protein levels of CASP8 and CASP3
were determined by western blotting. The results
revealed that CASP8 and CASP3 were concurrently
decreased by the mimic and increased by the inhibitor
(Fig. 5e). Immunofluorescent staining assays showed
that the expression level of miR-513a-5p was nega‐
tively associated with the protein levels of CASP8
and CASP3 (Figs. 5f and 5g). Thus, these results

Fig. 4 CircRNA.0007127-targeted hsa-miR-513a-5p. (a) The seed region of miR-513a-5p, the binding sites of circRNA.0007127
with miR-513a-5p, and those of CASP8 with miR-513a-5p. (b) Schematic diagram of the hsa-miR-513a-5p binding sequences
of C7127-WT-psiCHECK2.0 and C7127-MUT-psiCHECK2.0. Here, C7127-WT-psiCHECK2.0 represents the WT vector,
and C7127-MUT-psiCHECK2.0 represents the MUT vector. (c) MiR-513a-5p mimic or NC as well as miR-513a-5p
inhibitor or NC was cotransfected into HEK-293T cells with luciferase reporter containing C7127-WT-psiCHECK2.0 or
C7127-MUT-psiCHECK2.0. The luciferase activity of each group was analyzed. Here, psiCHECK2.0 represents the blank
vector. Data were shown as mean±standard error of the mean (SEM), n=3. ** P<0.01. CircRNA: circular RNA; miRNA:
microRNA; Mimic NC: miRNA mimic negative control; Inhibitor NC: miRNA inhibitor negative control; CASP8: caspase-8;
WT: wild type; MUT: mutant; NC: negative control; UTR: untranslated region; R/F: relative activity of Renilla luciferase/
firefly luciferase.
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Fig. 5 Effects of miR-513a-5p on apoptosis by binding to the 3' UTR region of CASP8. (a) Luciferase reporter assay was
performed after HEK-293T cells were cotransfected with CASP8-WT-psiCHECK2.0 or CASP8-MUT-psiCHECK2.0
and miR-513a-5p mimic or mimic NC. (b) The effects of miR-513a-5p on CASP8 expression in H2O2-induced K-562
cells transfected with mimic or inhibitor were analyzed by qPCR. (c) The absorbance values of K-562 cells in different
treatment groups were detected by enzyme plate analyzer, indicating the hydrolytic activity of CASP8. (d) Flow cytometry
experiments indicated that the miR-513a-5p mimic reduced the apoptosis of K-562 cells, while its inhibitor further promoted
apoptosis. (e) The protein levels of CASP8 and CASP3 were determined by western blotting in apoptotic K-562 cells with
knockdown or overexpression of miR-513a-5p (top panel). Representative corresponding densitometry analyses of protein
expression levels were performed by western blotting (bottom panel). (f, g) CLSM images showing the expression of
CASP8 and CASP3. Red, green, and blue represent CASP8, CASP3, and nuclei, respectively (scale bar=40 μm). Data were
shown as mean±standard error of the mean (SEM), n=3. * P<0.05, ** P<0.01. R/F: relative activity of Renilla luciferase/
firefly luciferase; CASP8: caspase-8; miR: microRNA; WT: wild type; MUT: mutant; qPCR: quantitative real-time
polymerase chain reaction; CLSM: confocal laser scanning microscopy; ns: not significant; 7AAD: 7-amino-actinomycin;
GAPDH: glyceraldehyde-3-phosphate dehydrogenase; DAPI: 4,6-diamidinos-2-phenylindole; Mimic NC: miRNA mimic
negative control; Inhibitor NC: miRNA inhibitor negative control; UTR: untranslated region; NC: negative control.
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demonstrated that miR-513a-5p could significantly
inhibit H2O2-induced apoptosis by targeting CASP8.

3.6 Effects of circRNA.0007127 on apoptosis in H2O2-
treated K-562 cells via the miR-513a-5p/CASP8 axis

We explored whether circRNA.0007127 promoted
apoptosis through the miR-513a-5p/CASP8 axis.
siRNA-1, an interfering RNA specifically targeting
circRNA.0007127, and a miR-513a-5p inhibitor were
co-transfected into K-562 cells after H2O2-induced
apoptosis. Flow cytometry revealed that circRNA.
0007127 knockdown reduced the apoptosis rate of
H2O2-treated K-562 cells, while the miR-513a-5p
inhibitor reversed this effect (Fig. 6a). The above
results implied that siRNA-1 could inhibit the gene
expression of CASP8 and CASP3 in apoptotic K-562
cells. However, the miR-513a-5p inhibitor antagonized
the effect of siRNA-1 (Fig. 6b). Similarly, JC-1 fluor-
escence probe detection revealed that the miR-513a-5p
inhibitor antagonized the effect of siRNA-1 on mito‐
chondrial membrane potential loss, thus promoting
apoptosis (Fig. S3). Then, a rescue experiment was per‐
formed to detect the changes in the activity of CASP8
after siRNA-1 and the inhibitor were co-transfected
into apoptosis-stimulating K-562 cells (Fig. 6c). The
hydrolytic activity of CASP8 was blocked by siRNA-1
but promoted by the miR-513a-5p inhibitor, indicating
that the latter increased the activation of the CASP8
zymogen. After the transfection of H2O2-induced K-562
cells with siRNA-1 or siRNA-1 together with the miR-
513a-5p inhibitor, the expression of the CASP8 pro‐
tein in the siRNA-1 group was decreased, while that
in the rescue group was increased (Fig. 6d). Further‐
more, the immunofluorescence results showed that
the miR-513a-5p inhibitor restored the expression of
CASP8 and CASP3, which was suppressed by the
knockdown of circRNA.0007127 in apoptotic K-562
cells (Figs. 6e and 6f). Taken together, these findings
revealed that circRNA.0007127 acts as a miR-513a-
5p sponge to regulate apoptosis in cells by affecting
CASP8 expression (Fig. 6g).

4 Discussion

Non-coding RNAs (ncRNAs) play important
regulatory roles in the functional activities of normal
or abnormal cells, and can be used as molecular

therapeutic targets of diseases (Slack and Chinnaiyan,
2019). New evidence suggests that miRNAs, long
ncRNAs (lncRNAs), and circRNAs are involved in
the occurrence and development of chronic myeloid
leukemia, treatment resistance, and treatment prognosis
(Litwińska and Machaliński, 2017; Benetatos et al.,
2020; de Acha et al., 2020; Wen et al., 2020; Yu and
Li, 2020). In our previous circRNA sequencing study
of red blood cells (accession to cite for these sequence
read archive (SRA) data: PRJNA698384), we found
a new highly expressed circRNA numbered 0007127,
which arises from the host gene CNOT2; however,
the functional role of circRNA.0007127 has not
been reported. Bioinformatics analysis revealed that
circRNA.0007127 might act as a molecular regulator
of apoptosis, and the apoptosis K-562 cell model through
H2O2-induced oxidative stress was established to assess
the biological significance of circRNA.0007127 in the
process of cell apoptosis caused by oxidative damage.

We used interfering RNA to silence the expres‐
sion of circRNA.0007127 in the K-562 cell apoptosis
model, and the expression of the host gene CNOT2
was unaffected. In the K-562 cell model, the knock‐
down of circRNA.0007127 reduced phosphatidylser‐
ine exposure on the cell membrane and increased the
mitochondrial membrane potential while decreasing
the expression level of oxidative stress-related caspase
genes. Moreover, circRNA.0007127, as a function of
competitive endogenous RNA (ceRNA), competitively
binds to miR-513a-5p and then eliminates the endogen-
ous inhibitory effect of miR-513a-5p targeting the
CASP8 gene. The reduction in CASP8 inhibits the
expression of CASP3 and the activation of mitochon‐
dria. This finding revealed that circRNA.0007127
regulates the apoptosis of K-562 cells via a ceRNA
mechanism.

The expression of apoptosis-related genes is down‐
regulated in most hematological malignancies. Thera‐
peutic agents targeting the apoptotic mechanisms of
hematologic tumor cells can specifically inhibit anti‐
apoptotic molecules that are overexpressed in tumor
cells, such as Bcl-2-associated proteins and inhibitors
of apoptosis proteins (Droin et al., 2013). Studies
have shown that a variety of drugs or genes regulate
the apoptosis of chronic myeloid leukemia cells through
the caspase apoptosis signaling pathway, inhibiting
the proliferation of tumor cells and inducing their
death (Jung et al., 2019; Song et al., 2020). The
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Fig. 6 Effects of circRNA.0007127 on apoptosis in H2O2-treated K-562 cells via the miR-513a-5p/CASP8 axis. (a) The cell
apoptosis in each treatment group was measured by flow cytometry. (b) RT-qPCR showed that the miR-513a-5p inhibitor
antagonized the effects of siRNA-1 on CASP8 and CASP3 in apoptotic K-562 cells. (c) siRNA NC, siRNA-1, or siRNA-1
together with miR-513a-5p inhibitor was transfected into apoptotic K-562 cells. Then, the absorbance of each treatment
group was detected. (d) Western blotting was performed to measure the protein expression of CASP8 in H2O2-induced K-562
cells transfected with siRNA NC, siRNA-1, or siRNA-1 with the miR-513a-5p inhibitor (left panel). Representative
corresponding densitometry analyses of protein expressions were performed by western blotting (right panel). (e) CLSM
images of K-562 cells labeled with CASP8 or CASP3 in each group. The proportion of CASP3-positive cells increased
after transfection with the miR-513a-5p inhibitor. Red, green, and blue represent CASP8, CASP3, and nuclei, respectively
(scale bar=40 μm). (f) The integrated optical density of CASP8 or CASP3 in (e) was quantified. (g) The hypothesis
diagram illustrates the function and mechanism of circRNA.0007127 in the miR-513a-5p/CASP8 axis apoptosis pathway.
Data were shown as mean±standard error of the mean (SEM), n=3. * P<0.05, ** P<0.01, *** P<0.001. CircRNA: circular RNA;
siRNA: small-interfering RNA; miR: microRNA; CASP8: caspase-8; RT-qPCR: reverse transcription-quantitative real-time
polymerase chain reaction; NC: negative control; CLSM: confocal laser scanning microscopy; 7AAD: 7-amino-actinomycin;
GAPDH: glyceraldehyde-3-phosphate dehydrogenase; ns: not significant; mRNA: messenger RNA; DISC: death-inducing
signaling complex; pNA: p-nitroaniline.
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SD-HA fusion protein was found to activate apoptotic
signals by binding to the CASP8 domain and induced
K-562 cell apoptosis (Huang et al., 2018). Moreover, the
inosine phosphate dehydrogenase inhibitor FF-10501
activates CASP8 or induces endoplasmic reticulum
stress in K-562 cells by producing ROS to trigger
K-562 cell apoptosis and necrosis (Matsumoto et al.,
2019).

CASP8 is the key initiating protein of the exogen-
ous activation pathway of apoptosis. Activated CASP8
causes a cascade of caspase proteolysis and further
activates proteins such as CASP6 and CASP3 (Keller
et al., 2018). The activation of CASP8 further initiates
intracellular pathways, induces mitochondria to release
cytochrome c, and effectively amplifies the apoptotic
signal (Tummers and Green, 2017). We found that
decreased circRNA.0007127 expression could inhibit
the activation of CASP8. In addition, luciferase activity
assays revealed that miR-513a-5p has a regulatory
pattern opposite to that of the upstream molecule
circRNA.0007127 and the downstream molecule
CASP8, suggesting that circRNA.0007127 may act as
a ceRNA to regulate CASP8 in apoptotic K-562 cells.

It has been reported that miR-513a-5p stimulates
apoptosis by controlling the DNA damage response
induced by apurinic/apyrimidinic (AP) endonuclease 1
(APE1) irradiation in patients with osteosarcoma (Dai
et al., 2018). LINC01436 can significantly reduce the
expression of miR-513a-5p through the action of
ceRNA, thus promoting the proliferation, metastasis,
and radiation tolerance of gastric cancer cells (Lu
et al., 2020). In addition, miR-513a-5p has carcinogenic
potential and can be used as a long-term biomarker of
breast cancer risk (Muti et al., 2018). In our experi‐
ment, miR-513a-5p significantly reduced the lucifer‐
ase activity of CASP8 luciferase reporter gene and
inhibited the H2O2-induced apoptosis of K-562 cells.
Although this is contrary to the effect of miR-513a-5p
on apoptosis stimulation reported above, it fully con‐
forms to the regulatory characteristics of miRNA, and
thus the same miRNA can regulate multiple different
genes.

Overall, circRNA.0007127 silencing was shown
to reduce phosphatidylserine exposure on the cell mem‐
brane and reduce the mitochondrial membrane poten‐
tial, inhibiting the apoptosis of K-562 cells. Mechanistic
studies revealed that circRNA.0007127 enhances the
expression of CASP8 through competitive binding

of miR-513a-5p. However, the application value of
circRNA.0007127 in clinical diagnostics and treatment
still needs further investigation.
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