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Abstract: This paper addresses the problem of creating a geometric map with a mobile robot in a dynamic
indoor environment. To form an accurate model of the environment, we present a novel map representation called
the ‘grid vector’, which combines each vector that represents a directed line segment with a slender occupancy grid
map. A modified expectation maximization (EM) based approach is proposed to evaluate the dynamic objects
and simultaneously estimate the robot path and the map of the environment. The probability of each grid vector
is evaluated in the expectation step and then used to distinguish the vector into static and dynamic ones. The
robot path and map are estimated in the maximization step with a graph-based simultaneous localization and
mapping (SLAM) method. The representation we introduce provides advantages on making the SLAM method
strictly statistic, reducing memory cost, identifying the dynamic objects, and improving the accuracy of the data
associations. The SLAM algorithm we present is efficient in computation and convergence. Experiments on three
different kinds of data sets show that our representation and algorithm can generate an accurate static map in a
dynamic indoor environment.
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1 Introduction

Learning maps of unknown environments is gen-
erally regarded as one of the fundamental problems
in the pursuit of building truly autonomous mobile
robots. In previous work, such a task is usually re-
ferred to as a simultaneous localization and map-
ping (SLAM) problem (Thrun, 2002; Frese, 2006).
Under the assumption of static environments, the
SLAM has been formulated and solved as a prob-
abilistic problem in a number of different forms,
such as the extended Kalman filter (EKF) (Williams
et al., 2001), extended information filter (EIF) (Wal-
ter et al., 2007), expectation-maximization (EM)
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(Thrun et al., 1998), particle filter (Hahnel et al.,
2003; Grisetti et al., 2007b), and least-square error
minimization techniques (Lu and Milios, 1997a; Gut-
mann and Konolige, 1999).

However, the real-world environments are usu-
ally not static. They contain various dynamic ob-
jects, such as people that may move freely, doors
that may change the status of open or closed, and
temporary furniture that may alter the location over
time. The representation used for such an environ-
ment should be efficient to model both the static
structures and the dynamic objects, and the corre-
sponding estimation technique should be able to han-
dle moving objects, by either filtering out or track-
ing. Otherwise, the dynamic aspects will lead to false
localization and mapping.

In this paper, a new representation and its cor-
responding SLAM algorithm are presented for map-
ping in dynamic indoor environments with mobile
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robots. The new representation introduces the grid
vector as a basic element to represent the environ-
ment, which combines each vector in the map with
the occupancy grid. The vector in this paper repre-
sents a line segment with a direction to distinguish
the open space and unobserved space divided by the
segment. Using the probability provided by the grid
vector, the associated objects in the environment can
be distinguished into static and dynamic ones. A
modified EM-SLAM (Thrun et al., 1998) algorithm
is applied to iteratively evaluate the dynamic objects
and simultaneously estimate the robot path as well
as the map of the environment. In the expectation-
step (E-step), a statistic method is used to evaluate
the probability of grid vectors considering the most
likely map at that time. In the maximization-step
(M-step), a graphical SLAM algorithm (Olson et al.,
2006; Grisetti et al., 2007a) based on pose network
constructed only by the expected static vectors is
adopted to estimate both the robot path and the
map. The two steps are carried out alternately until
no further improvement can be achieved. The grid
vector map we propose can be regarded as an object-
level model. Separating the vectors into dynamic and
static ones helps us a lot to analyze the objects in the
environments. Experimental results show that our
approach can filter out dynamic aspects like moving
people and model special structures such as doors.

2 Related work

Landmarks (Williams et al., 2001; Walter et al.,
2007), occupancy grid (Hahnel et al., 2003; Grisetti
et al., 2007b), and line segments (Zhang and Ghosh,
2000; Brunskill and Roy, 2005; Connette et al., 2007;
Sohn and Kim, 2009) are popular representations of
a map. They are widely used in generating metric
maps for static environments. Recently, researchers
have applied them in the mapping of dynamic envi-
ronments. Most of the existing estimation techniques
treat dynamic aspects as outliers, which are detected
and filtered during the mapping procedure.

Bailey (2002) maintained a contemporaneous
map by removing landmarks that have become obso-
lete due to changes in the environment. Montesano
et al. (2005) described an algorithm for simultane-
ously tracking moving objects and estimating the
pose of static landmarks. But these approaches re-
quire pre-defined features to model the static envi-

ronments as well as moving objects into landmarks.
Occupancy grid map is the most famous repre-

sentation for both static and dynamic environments
owing to the probabilistic property. It benefits a list
of strictly statistical methods for solving the SLAM
problem or identifying a dynamic object. Yamauchi
and Langley (1997) developed a technique for place
learning and place recognition in a dynamic envi-
ronment by decaying the occupancy probability in a
grid over time. Biswas et al. (2002) proposed an al-
gorithm to learn the models of the dynamic objects
represented by local and object-specific occupancy
grid maps. In general, grid mapping is an inefficient
representation of environments, however, in terms of
memory requirements.

Many researchers have focused on the segment-
based map, which is efficient in view of memory re-
quirement and data association. Moreover, line seg-
ments can be used in object-based modeling. The
static walls and dynamic doors in the environment
can be represented clearly (Anguelov et al., 2002).
But the pure segment-based map lacks probabilistic
information. Some researchers constructed proba-
bilistic models for segment parameters during seg-
mentation by holding the errors of sensor readings
(Zhang and Ghosh, 2000; Sohn and Kim, 2009).
Such methods endow the segments with the prob-
ability feature, thus making the segment-based map
suitable for some probabilistic underlying estimation
methods such as EKF (Connette et al., 2007) and
particle filters (Brunskill and Roy, 2005). However,
these methods are for the static environment. In a
populated environment, the segment-based map is
successfully applied in localization (Siegwart et al.,
2003) by taking advantage of its intrinsic capability
to filter the range measurements that are not on a
line, such as moving people. Little of the literature
applies it to mapping in the dynamic environment.

We present a new map representation called
the ‘grid vector’ in this paper, which has the ad-
vantages of both the occupancy grid and segment
vectors. Each vector in the map is combined with
a slender grid map. This grid map maintains the
existing probability of the vector by recording the
occupied probability of the locations around the vec-
tor. Using such a representation, not only probabilis-
tic mapping algorithms can be adopted conveniently
because of its grid property, but also the data asso-
ciation becomes easier for the vector’s object-based
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property. During the SLAM procedure, where an
EM algorithm is used, the vectors are classified into
dynamic and static ones. Dynamic vectors are then
filtered out in data association and SLAM processes,
so we can obtain more accurate models of the envi-
ronment. Moreover, the filtered vectors provide ev-
idence for analyzing models of the dynamic objects,
and help us detect and model special structures in
the environment such as doors.

3 Grid vector map

The new map representation called the ‘grid vec-
tor’ is introduced in this section. We present how
to form a grid vector by combining a vector with a
grid map, and describe the structures and proper-
ties of the new representation in detail. The grid
vector mapping algorithm is presented to calculate
the posterior probability over maps. A robust vector
merging procedure based on grid vectors is shown in
the end of this section.

3.1 Grid vector extraction

To provide probabilities in a vector map, we
combine each vector with a 2D grid map (Fig. 1).
The width of the grid map is very small, because
only the probabilities of the grids around the vector
need to be recorded. The length of the grid map
is determined by the length of the vector and the
resolution. As mentioned in the literature (Arras and
Siegwart, 1997; Borges and Aldon, 2004; Sohn and
Kim, 2009), a segment extracted with a direction to
specify the observed orientation makes itself a vector.
In this study, we assume the left side of a vector is an
open space and the other side an unobserved space
(Fig. 1). Two vectors pointing to opposite directions
cannot correspond to each other.

For each range scan zt, we can extract several
grid vectors z t � [v1,t, v2,t, . . . , vn,t]. These grid vec-
tors compose a local map Vt.

A grid vector in a local map is defined as

vi,t = [[(xsi , ysi), (xei , yei)], gi, ci, t] , (1)

where [(xsi , ysi), (xei , yei)] are the ith vector’s geome-
try parameters, (xsi , ysi) is the start point, (xei , yei)
is the terminal point, gi is the grid map combined
with the ith vector, ci represents the dynamic prop-
erty generated from the grid, and t is the time when

Open space

Unoberved space Grids(xsi
,ysi

)

(xei
,yei

)

Vector

Fig. 1 An example of a vector grid. The left side is an
open space and the right side is an unobserved space

this vector is extracted according to its observing
robot pose xt.

In the expression of the grid vector, gi plays an
important role in providing various information on
vector’s probabilities, including the dynamic proba-
bility for the grid map and the geometry probability
for the line segment. We suppose each vector has
a binary value ci, which specifies whether a vector
represents a static object or a dynamic object. Us-
ing ‘1’ for static and ‘0’ for dynamic, the notation
p(ci = 1) or p(ci) is used to represent the dynamic
probability, which is the probability that a vector is
static. The geometry probability is the covariance
of the vector’s geometry parameters such as vector’s
direction or endpoints, which can be estimated by
considering all the accumulated sensors contained in
the grid map.

The data structure of each cell in the grid is

e = {(xacc, yacc), nacc, (noccupy, nvisit)}, (2)

where the parameters (xacc, yacc) and nacc are used
to record the laser beams’ endpoints influencing this
cell. xacc and yacc are the accumulations on the x-
and y-axis of all the beams ended in this cell respec-
tively, and nacc records the counts. If nacc > 0, then
(xacc, yacc)/nacc represents the gravity center of all
the points in this cell. Otherwise, it is a blank cell
that no beam ends in. The above parameters are
changed only in the initialization and vector merg-
ing steps, used to represent the probability of the
vector’s geometry property. The last parameters
(noccupy, nvisit) represent the occupancy probability
of the cell and are updated by a counting model.
Considering a laser beam, if its endpoint drops in a
grid cell, then the occupancy count noccupy and vis-
ited count nvisit of this cell both grow up. Otherwise,
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if the beam passes this grid, only nvisit increases.
With a priori probability in the counts, i.e., having
noccupy = 1/2 and nvisit = 1, the occupancy proba-
bilities are computed using the form of noccupy/nvisit.
The essence of this counting technique is to count for
each cell how often beams end in that cell or cover
but not end in it.

We use the split-and-merge method (Borges and
Aldon, 2004) to extract line segments from range
scans. A least-squares approach (Lu and Milios,
1997b) is adopted for line fitting. The line model
in our study is defined as

cos θ · x+ sin θ · y − ρ = 0, (3)

where ρ is the normal distance from the origin to the
vector, and θ is the angle of the normal.

When a line is extracted, its corresponding laser
points are obtained. Calculating the foot of the per-
pendicular from each laser point to the line, the out-
ermost two will be selected to be the endpoints of the
line segment. As shown in Fig. 1, assuming that the
left side of a vector is an open space, the start point
(xsi , ysi) and terminal point (xei , yei) are selected ac-
cording to the range scans’ orientation. Supposing
the segment vector always points from the start point
to the terminal point, we can compute the other ge-
ometry parameters of the vector as the following:

ψi = atan2(yei − ysi , xei − xsi),

xci = (xsi + xei)/2,

yci = (ysi + yei)/2,

li =
√

(xei − xsi)
2 + (yei − ysi)

2.

Here, ψi is the vector’s direction, (xci , yci) is the
gravity center of the vector, and li is the length.

Different from other methods computing param-
eters of probabilistic models during segment extrac-
tion, the way we represent the geometry probability
is applying a counting model to update the parame-
ters of each grid cell after the vector is extracted. The
grid gi keeps the variants of a vector’s parameters as
an underlying way of storing the accumulations of
sensors.

Initialization of the gi in the grid vector model is
straightforward. Transforming the beam endpoints
that belong to a vector into its grid map, we can
compute which cell the point is in. If the point is
inside the predefined 2D grid, then the corresponding
cell is initialized by this point with the calculation
shown in Algorithm 1.

Algorithm 1 Initialize the grid cell in a vector
Input: (xe, ye)’s
1: if (xe, ye) drops in a cell e in the grid g then
2: xacc ⇐ xacc + xe

3: yacc ⇐ yacc + ye
4: nacc ⇐ nacc + 1

5: noccupy ⇐ noccupy + 1

6: nvisit ⇐ nvisit + 1

7: end if

3.2 Grid vector map building

To integrate local maps into a whole global map,
we need to transform each local map Vt into global
coordinates according to the corresponding robot
pose xt. To keep the local map consistent, a vec-
tor merging procedure should be performed after
transmitting. To distinguish grid vectors in differ-
ent coordinates, we use vi,t to represent the vector
in robot coordinates and mi,t in global coordinates,
so we have mi,t = xt ⊕ vi,t, where ⊕ is the pose
compounding operation (Lu and Milios, 1997a).

Eq. (4) shows how to build a global map M by
merging the local maps:

M = {M1,M2, . . . ,Mt}
= {x1 ⊕ V1, x2 ⊕ V2, . . . , xt ⊕ Vt}
= {x1 ⊕ v1,1, x1 ⊕ v2,1, . . . , x1 ⊕ vi,1,

x2 ⊕ v1,2, . . . , xt ⊕ vi,t}
= {m1,1,m2,1, . . . ,mi,t}

merge
= {m1,m2, . . . ,mj}. (4)

Here, Mt = xt ⊕Vt means transforming a local grid
vector map extracted from z t to global coordinates.
mj is the grid vector in the map after vector merging.
Compared to the former structure, the merged grid
vectors do not have the time parameter t, because
they have been part of the global map and no long
belong to any single observation. The vector merging
procedure will be presented in the end of this section.

Building a grid vector map also needs to calcu-
late the posterior probabilities over maps given all
the sensor data and the robot trajectory. In the case
of known zt and xt, the vectors mi,t are independent,
where zt is the sequence of sensor measurements,
zt = {z 1, z 2, . . . , z t}, and xt is the robot trajectory,



578 Wang et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(7):574-588

xt = {x1, x2, . . . , xt}.

p(M|zt, xt) =
∏

i,t

p(mi,t|zt, xt) =
∏

i,t

p(gi,t|zt, xt)

=
∏

i,t

p(g′i,t) =
∏

i,t

∏

ek∈gi,t

p(ek|zt, xt)

=
∏

i,t

∏

e′k∈g′
i,t

p(e′k). (5)

gi,t is the grid map in mi,t; after all sensors update
the probabilities of cells, it turns to be g′i,t.

Eq. (5) shows that, to obtain the posterior prob-
ability of the map, we have to estimate all the prob-
abilities of the grid cells in each grid vector. The
beam model proposed by Thrun et al. (2005) and a
counting model are used to update the grid’s proba-
bility by sensor readings taken at different times. We
can estimate the probability at any place in a grid
vector map using the counting model:

p(mx,y|zt, xt)
= p(mx,y|M, zt, xt)p(M|zt, xt)
� p(mx,y|g′1,1, g′2,1, . . . , g′i,t)

∏

i,t

p(g′i,t)

�
∑

i,t

∑
ek∈g′

i,t
I(ek, x, y) · (ek → noccupy)

∑
i,t

∑
ek∈g′

i,t
I(ek, x, y) · (ek → nvisit)

, (6)

where

I(ek, x, y) =

{
1, if (x, y) ∈ ek,
0, if (x, y) /∈ ek,

(7)

and ek → noccupy and ek → nvisit are the correspond-
ing parameters in ek. The essential of this compu-
tation is that it gathers all the influences of the grid
vectors on the map at position (x, y). The grid vector
map can be transformed easily to a global occupancy
grid map, for which we need only to calculate each
grid cell’s probability by Eq. (6).

p(M|zt, xt) =
t∏

q=1

p(Mp|zq, xq) �
t∏

q=1

p(Mp|Vq, xq)

=

t∏

q=1

∏

mi,p∈Mp

∏

vj∈Vq

p(mi,p|vj , xq). (8)

The posterior probability over map using grid
vectors can be computed by a closed-form solution.
The straightforward method is updating the param-
eters in every grid by a counting model using all

sensor lasers. Eq. (8) offers an optimized way to es-
timate the posterior probability with lower compu-
tation complexity. We employ a geometry method
to simplify the probabilities updating by computing
p(mi,p|vj , xq).

Each grid vector in the global map forms a wipe-
triangle using the corresponding estimated robot po-
sition and the vector’s start and terminal points. The
wipe-triangle updates the probability of the vector
which is intersected with it. Fig. 2 illustrates the
updating procedure. A wipe-triangle is constructed
for the vector of vj with the robot position xq. mi,p

is a vector intersected with this wipe-triangle. Ac-
cording to the intersection, mi,p can be divided into
three kinds of parts denoted by a, b, c. The proba-
bility of each cell in the grid of mi,p is updated by
changing the parameters (noccupy, nvisit) as follows.
For the grid cell in part c, both noccupy and nvisit are
increased. Because the cell in this part is near vj , it
is reasonable to assume that the corresponding laser
beams construct the triangle end in the cell. The
grid cell in part b is far from vj but inside the wipe-
triangle, and then the corresponding laser beams can
be regarded as covering but not ending in the cell, so
only nvisit is updated. The probability of the cell in
part a is not changed, because it locates outside the
triangle. Obviously, this map generation procedure
is more efficient with the updating style of region by
region.

Wipe-triangle

Sq⊕Vj

a

c

b

mi,p

Sq

a

Fig. 2 Changing dynamic probabilities by geome-
try relationship between the wipe-triangle and inter-
sected vector. The wipe-triangle has no effect on a ,
decreases the probability of part b, and increases the
probability of part c

Now, we come to the problem of vector merging
for grid vectors. Before merging, we have to first
decide whether two vectors are corresponding to each
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other. This is taken place in global coordinates. The
correspondence is checked using the following three
criteria:

1. The vectors’ directions ψ are close.
2. The parameters θ and φ in the vectors’ line

model should be close to each other.
3. The distance between their gravities centers

(xc, yc) is smaller than half of these two vectors’ total
length.

When two vectors are considered a match, they
are merged in global coordinates. As illustrated in
Fig. 3, a temporary grid map in the global coordi-
nates is built for the merging process. This map is
large enough to contain both grids of the two vec-
tors. Its probability is updated according to its two-
component grid maps. The parameters of each cell
in the temporary grid map are computed by adding
up the parameters from its corresponding cells in its
components. Be aware that before adding up, the
parameters (xacc, yacc) of each grid cell have to be
transformed into the global coordinates to keep con-
sistency with each other.

grid-vector1

Line computed from weigted least-squares
grid-vector2

(xsm,ysm)

(xem,yem)

Temp grids for merging

grid-vectorm

Fig. 3 Merging process for grid vectors described in
Algorithm 2

From Fig. 3, we can see that, after vector merg-
ing, we use fewer grid vectors to represent the whole
map, and the grids of the new vectors hold the
same occupancy probability as the grid vectors be-
fore merging. That is to say, the vector merging
does not change the posterior probability over the
map but yields a more consistent vector map.

Most of the existing line segment algorithms
take the idea to use all of the corresponding sen-
sor endpoints to compute the segment’s parameters.
However, there are situations where the sensors’ end-

points considered on segments are caused by dy-
namic objects. If we adopt the usual way in which the
impact of other scans is ignored, once such a sensor’s
endpoint is regarded as part of a vector, it will never
be changed. This will cause errors to be brought
into the model for the environment. The grid vec-
tor representation we propose provides a solution to
this kind of problem. As mentioned above, the grid
vector keeps the existing probability distribution in
its grid. After evaluating the dynamic property by
all of the corresponding laser beams, we can use the
occupancy probability in each cell as a weight to ex-
tend the original method of least-squares line fitting.
Therefore, the negative impacts of dynamic objects
can be eliminated.

The whole procedure of the vectors merging is
shown in Algorithm 2.

Algorithm 2 Merging grid vectors
Input: grid-vector1, grid-vector2
Output: grid-vectorm
1: Form a temporary grid map
2: Transform two grid vectors into global coordinates
3: foreach grid cell in grid-vector1 and grid-vector2 do
4: if nacc > 0 then
5: Transform the points accumulation (xacc, yacc)

into global coordinates
6: xaccm ⇐ xacc + xaccm

7: yaccm ⇐ yacc + yaccm
8: naccm ⇐ nacc + naccm

9: noccupym
⇐ noccupy + noccupym

10: nvisitm ⇐ nvisit + nvisitm

11: end if
12: double φ, ρ

13: Efit = 0

14: forall cells in the temporary grid do
15: if naccm > 0 then

16: Efit+ =

(
xaccm

naccm

cosφ+
yaccm
naccm

sinφ− ρ

)2 noccupym

nvisitm

17: end if
18: (φ∗, ρ∗) = argmin

φ,ρ
Efit

19: Compute new vector’s endpoints [(xsm, ysm),

(xem, yem)] from (φ∗, ρ∗) and the temporary grid
20: Form gridm for the new vector
21: return grid-vectorm={[(xsm, ysm), (xem, yem)], gm}

(xaccm/naccm , yaccm/naccm) is the probable cen-
tral point of each grid. Thus, we do not need to
store all the points that constitute individual vectors
for accurate estimation. The memory requirement
for the new vector does not depend on how many
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range sensors or vectors are used in merging but de-
pends only on the final length of the yielded vector.
In addition, each cell participating in the computa-
tion of the least-square fitting error Efit of the new
vector is weighted by their occupancy probabilities
noccupym

/nvisitm . It is efficient even in the dynamic
environment. A cell with a small probability will be
excluded as outliers. In the static environment, the
weights are simply equal to 1. To our finite knowl-
edge, this is the only algorithm that can deal with
the segments merging problem in both static and
dynamic situations.

4 Learning maps in dynamic environ-
ments

The EM algorithm has been proved to be an
efficient approach to the SLAM problem no matter
in a static environment or a dynamic environment.
However, most of the existing algorithms use the
occupancy grid to represent probabilities in order to
solve these problems by strict statistical derivation.

We denote the data available for mapping the
form of dt = {zt, ut}, where ut is the odometry
measurement, ut = {u1, u2, . . . , ut}. In statistical
terms, mapping is the problem of finding the most
likely map given the data dt. It can be formed as a
maximum-likelihood (ML) estimation:

m∗ = argmax
m

p(m|dt). (9)

Because of the huge searching space, directly
finding the map that globally maximizes the likeli-
hood function is difficult. The EM algorithm solves
this problem by treating it as a hidden Markov
model, and performs hill climbing in the likelihood
space. In static environments, Thrun et al. (1998)
set robot’s positions to be the hidden variables. The
expectation over the joint log likelihood of the data
dt and the robot’s path xt is used for maximization:

m[k+1] = argmax
m

Ext [log p(dt, xt|m)|dt,m[k]]. (10)

In a dynamic environment, the problem is more
complex, because not only the best robot’s path and
map have to be estimated but also the dynamic ob-
jects. This problem can be simplified by assuming
that the SLAM problem in static environments is
solved, which means that, if the dynamic property ci
of each grid vector is known, we can use an existing

static SLAM solution to the dynamic SLAM prob-
lem with the grid vector representation. A known ci
means that we have the knowledge of whether a grid
vector represents a static object or a dynamic object.

In this work, we treat the dynamic property cj =
{ci, . . . , cj} of grid vectors as the hidden variable. A
modified EM algorithm is used to solve this hidden
Markov problem. Supposing the map is constructed
by j grid vectors, the probability p(M, xt|dt) can be
written as

p(M, xt|dt) =
∫

· · ·
∫
[p(M, xt|cj , dt)

· p(cj |dt)]dc1dc2 . . . dcj . (11)

Assuming that dt and each ci are independent given
the map M, the EM function can be formed as fol-
lows:

M[k+1] =argmax
M

log

∫
· · ·

∫
{p(M, xt|cj , dt)

· p(cj |dt,M[k])}dc1dc2 . . . dcj
=argmax

M

∫
· · ·

∫
{log p(M, xt|cj , dt)

·
j∏

i+1

p(ci|M[k])}dc1dc2 . . .dcj (12)

=argmax
M

Ecj [log p(M, xt|cj , dt)|cj ]
︸ ︷︷ ︸

M−step

+

j∑

i=1

Eci [log p(ci|M)|M[k]]

︸ ︷︷ ︸
E−step

. (13)

Here, the right side contains the term p(ci|M). It is
the posterior probability of the grid vector’s dynamic
property conditioned on the most likely map M[k].
We calculate the probability in E-step by separating
vectors into dynamic and static ones.

In M-step we maximize Eq. (13) with the fixed
expectations cj obtained in E-step. The M-step is
indeed another ML problem finding the most likely
map M which yields the best interpretation of the
data dt with the knowledge of dynamic information
cj . With treating expected dynamic objects as out-
liers, this is a static SLAM problem, so we solve the
maximization by an existing SLAM solution.
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4.1 Expectation step

In E-step the expectation p(ci|M) for each grid
vector is computed given the current map M[k]. The
current map from last M-step is regarded as an ap-
proximation to the occupancy grid map built by all
the sensor measurements using the beam model. The
only difference is that the grid information around
the vectors that we are interested in is reserved.

Because the dynamic probability ci of a vector
is calculated according to the probabilities of its ac-
companied grids, it is a multi-modal model. It is
hard to represent and evaluate this kind of model
by a parametric form. Therefore, we calculate the
expectations by breaking the vector into pieces with
a simple form of probability distribution.

Summing up the cells’ probabilities in the y-
axis, a probability distribution along this vector is
generated (Fig. 4). If the probabilities are all above
a threshold, this is a static vector. In contrast, it
is a dynamic vector if the probabilities are all below
a certain threshold. In the situations where some
parts of the distribution are above and others below
the threshold, we use a split-and-merge method to
break this vector into static and dynamic ones.

Smallest vector length

x

Split

Merge

Original vector

Threshold

P
ro

ba
bi

lit
y

Fig. 4 Separating a vector into static (solid) and dy-
namic (dotted) by a split-and-merge method in the
expectation step. Split at the points where the den-
sity function meets the threshold; a smallest vector is
used to decide when to merge

p(ci|mi) =

{
1, if m ∈ {ms},
0, if m ∈ {md}. (14)

j∑

i=1

Eci [log p(ci|M)|M[k]]

=
∑

i,t

Eci,t [log p(ci,t|mi,t)]

=
∑

p

log p(cp|ms,p) +
∑

q

log p(cq|md,q)

= const. (15)

After classifying the vectors {mi,t} into static
{ms,p} and dynamic {md,q}, their dynamic prop-
erty ci turns to be a binary variable, which is ei-
ther 1 for the static vector or 0 for the dynamic
one, as shown in Eq. (14). According to Eq. (15),∑j

i=1Eci [log p(ci|M)|M[k]] in Eq. (13) is now a
constant.

4.2 Maximization step

The essential of M-step is a mapping problem in
a dynamic environment where the dynamic objects
are known, which is indeed a static SLAM problem.
Unfortunately, even the static SLAM is complex and
multi-modal, so we do not solve it in a closed form.
The key idea of our approach is to estimate the full
SLAM posterior probability by the following Bayes
filter:

p(M, xt|dt, cj)
= p(M|xt, dt, cj) · p(xt|dt, cj) (16)

= p(M|zt, xt, cj) · p(xt|zt, ut, cj) (17)

� p(M|zt, xt) · p(xt|Vt, ut, cj) (18)

= p(M|zt, xt) · p(xt|vmx , vnd , ut) (19)

=

t∏

q=1

∏

mi,p∈Mp

∏

vj∈Vq

p(mi,p|vj , xq)

︸ ︷︷ ︸
mapping

·p(xt|vmx , ut).

(20)

In Eq. (16), we present the posterior probability in
the same factored form as the Rao-Blackwellized par-
ticle filter. The factorization transforms the original
problem into independent map generation and tra-
jectory estimation. p(M|xt, dt, cj) is the map gener-
ation procedure. Since cj has no effect on the pos-
terior probability given zt and xt, we can use the
method introduced in Eq. (8). Eq. (19) is obtained
by assuming that the E-step separates vectors into
m static vectors and n dynamic vectors. As shown
in Eq. (20), treating dynamic vectors as outliers,
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p(xt|dt, cj) is completely a trajectory estimation in a
static environment. Any trajectory-oriented SLAM
method, such as FastSLAM and consistent pose esti-
mation (CPE), can be used to calculate this posterior
probability.

In this work, a graph-based maximum-
likelihood mapping algorithm introduced by Olson
et al. (2006) and Grisetti et al. (2007a) is used to es-
timate the most likely robot trajectory. The graph-
based SLAM method treats robot poses as nodes in a
graph, and estimates the most likely configuration of
these nodes. Usually, the absolute poses of the poses
xt are not selected to be the estimated nodes state;
instead, another state vector S = (s1, s2, . . . , sn)

T is
used, which is much easier for describing the config-
uration of the nodes. S can be transformed easily
into global coordinates to rebuild xt.

Assuming a Gaussian error, an edge between
two nodes j and i is defined as N (δji, Σji), and the
likelihood of the edge is its negative log probability:

Fji(S) : = − logP (fji(S))

= (fji(S)− δji)
TΣ−1

ji (fji(S)− δji), (21)

where fji(S) is a constraint function estimating the
current configuration of nodes j and i. Then the
graph-based SLAM algorithm uses the next ML ap-
proach to estimating the robot trajectory:

S∗ = argmax
S

∑

<j,i>∈E
Fji(S). (22)

Here, E = {< j1, i1 >,< j2, i2 >, . . . , < jN , iN >} is
a set of pairs of indices for which a constraint exists.

The graph-based method asks for building edges
between robot poses. This building process is usually
called scan registration or scan-matching. We use the
method mentioned in Sohn and Kim (2008) to pro-
cess vector-matching and estimate the constraints
between robot poses. During vector-matching, the
correspondences between vectors can be generated.
In our algorithm, we store these correspondences for
data association, and use them to reduce the com-
putational complexity in EM iterations. This opti-
mization method will be presented in Section 4.3.

A stochastic gradient descent is used to estimate
the robot’s path after edges are built. The solution
of stochastic gradient descent makes a difficult whole
ML problem into many smaller problems by optimiz-

ing the constraints individually:

Sk+1 = Sk + αM−1JT
jiΣ

−1
ji rji︸ ︷︷ ︸

Δsji

, (23)

where rji is the residual between expected constraint
δji and its observation fji(S), Σji is the variance,
Jji is the Jacobian of fji(S), M is the Hessian of the
system, α is a learning rate, and Δsji is the result
of the optimization according to constraint < j, i >.
The total error is decreased by moving the nodes in
the graph.

When the most likely robot trajectory has been
estimated, we can calculate the best map by the
closed-form solution presented in Section 3.

4.3 Optimization of the implementation

In practice, the constraints {< j, i >} selected
to be optimized in the graph-based SLAM are im-
portant for the computation efficiency of the EM
algorithm. In our method, a data association re-
trieval will be performed in each M-step to control
the optimization graph.

We use a tree parameterization for the nodes’
state space representation, which was first intro-
duced by Grisetti et al. (2007a). This parameteri-
zation rebuilds the pose graph into a tree, and can
represent the topology of the environment pretty
well. Searching the tree, we can obtain the min-
imal subgraph Gj,i that is influenced by the con-
straint < j, i >, and a subset of affected constraints
Ej,i. That means, if a constraint < j, i > has been
changed, we need only to iteratively optimize the
constraints in Ej,i to make the whole graph optimal.

The selection of constraints is proven to be an
efficient way to reduce the computational complexity
(Grisetti et al., 2008). At each M-step, we can obtain
a subset of constraints {< j1, i1 >,< j2, i2 >, . . . , <

jn, in >} changed in this iteration, and then we can
obtain the constraints that we have to compute this
time:

E := Ej1,i1 ∪ Ej2,i2 ∪ · · · ∪ Ejn,in . (24)

The changed constraints are decided by the
change of data association, which is also the change
of vector correspondences here. The changes of data
association have two aspects. One is the change of
topology, and the other is the change of grid vector
state. For each M-step, we first retrieve the pose
spanning tree from the current best robot trajectory.
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That is the way we evaluate the topology change of
the environment. This step indeed affects the graph
by adding or reducing edges. If two nodes are far
apart, but their scan ranges cover each other at this
time, a new edge will be built between them. If two
nodes are far apart now, but there is an edge between
them at the last step, the edge will be destroyed.

For the other edges in the pose graph, we evalu-
ate the affectation of the dynamic object. We do this
by adding two parameters to a normal grid vector:

m′
i,t := {{mi,t},Mti,cor,Mti,chd}. (25)

Here, mi,t is a grid vector in global coordinates ac-
cording to the observation of zt at the pose of xt.
We form the extended grid vector by adding two pa-
rameters: Mti,cor are the grid vectors from other
range scans which correspond to mi,t, collected from
the vector merging procedure; Mti,chd, the results of
E-step, are the children of mi,t. After E-step, new
children will be born. Comparing the children from
the last iteration, if they are different, the correspon-
dences between this vector and others have changed.
From Mti,cor we can obtain the pairs of indices that
are affected by the state change of mi,t (Fig. 5).

. . .=

A
ffe

ct
ed

Parent

n corresponding vectors

vector-matching E-step

{<j1,i1>, <j2,i2>,...,<jn,in>}

mi,t

Childrenk

Mti,cor
Mti,chd

Childrenk+1

ed
ge

s

Fig. 5 Selecting affected edges from vector correspon-
dences according to state change of the grid vector

With the knowledge above, we do not need to re-
build all the edges in the graph in the M-step, which
is time expensive. If an edge contains new vector
correspondences or its existing correspondences are
impacted by the changed state of vectors expected
in E-step, it needs to be recomputed. In other cases,
the edges stay the same. The complexity of the
original gradient descent method per iteration de-
pends linearly on the number of constraints. The
algorithm in Olson et al. (2006) has a complexity
of O(MN), while a tree parameterization reduces it
to O(M logN) (Grisetti et al., 2007a), where M is
the number of constraints and N is the number of

nodes. The M-step per iteration in our algorithm
can be computed in O(l logN), where l is the num-
ber of constraints generated from Eq. (24). During
the iterations in the EM algorithm, l will decrease
through iterations because of more and more accu-
rate correspondences.

Recording vector correspondences has another
advantage for vector merging. With known data as-
sociation we can skip the correspondence checking
step mentioned above. Merging the static vectors
corresponding to each other, the most likely map is
generated.

5 Experiments

The algorithm presented in this work has been
tested on both data sets from the Internet and the
data sets gathered by our two mobile robots (Fig. 6).
The experimental results show the efficiency of our
method in the dynamic indoor environment. Here,
we present the results of three different types of data
sets. After the three experiments, the method of
door detection and the cost on memory and compu-
tation of our algorithm are also shown.

(a) (b)

Fig. 6 The two mobile robots used to gather the ex-
periment data: (a) Pioneer2-DX developed by Adept
MobileRobots Inc.; (b) Omnidirectional robot with
a SICK LMS200 laser rangefinder, developed by our
laboratory

5.1 Loop closing for a cyclic indoor environ-
ment

The first data was recorded on the cyclic floor
of the USC SAL building. Fig. 7a gives the raw
sensor data. Obviously, the dead-reckoning errors
are significant to prevent the loop closing. Though
the ‘loop detection’ is not specified in our algorithm
(which means the constraints between the scans that
should be close but do not overlap cannot be built),
a topologically correct map was still obtained after
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(a) (b)

(c) (d)

Fig. 7 (a) Map obtained in an environment of size 38 m×18 m from sensor data using raw odometry; (b) Raw
sensor map after the first iteration; (c) Raw sensor map after the fourth iteration; (d) Final vector map after
vector merging

the first iteration. This benefits from the method we
use in M-step. As marked in Fig. 7b by the dotted
rectangle, the data associations around the closed
loop point can be estimated at this time due to cor-
rect identification of the overlap of the poses’ scans.
New data associations help to obtain more accurate
maps during next iterations. Spurious sensors caused
by moving people were filtered out during vector ex-
traction. After EM procedure and vector merging,
we obtained a consistent static map (Fig. 7d). This
experiment result illustrates that our EM algorithm
succeeds in building a map in the large cyclic as well
as dynamic environment by iteratively improving the
data association.

5.2 Mapping cluttered office

The second data was collected by a pioneer
robot (Fig. 6a), which uses a three-wheeled motion
architecture (two driving wheels and a castor wheel)
in a cluttered office environment. In this environ-
ment, there are many chairs and tables inside, which
causes false vector extraction during the mapping
procedure. The raw sensor data and our result are
shown in Fig. 8.

Take the bottom left part of the map indicated
by the dotted rectangle in Figs. 8b and 8c for ex-
ample. The vector extraction transforms the spuri-

ous measurement into false vectors in the map. As
shown in Fig. 8d, the grid vector map records the
posterior probabilities of vectors by the grids accom-
panied with them. After analyzing the grids’ infor-
mation, we separated the vectors into dynamic and
static ones. Finally, the dynamic objects were picked
out by merging the static vectors, and the static en-
vironment can be modeled precisely (Fig. 8e). Com-
pared with the original occupancy map (Fig. 8f), the
grid vector map has the same probability distribu-
tion around the vectors.

5.3 Mapping in a highly dynamic environ-
ment

The last experiment was carried out in a highly
dynamic corridor with people walking inside and
door state changing, using our four-omnidirectional
mobile robot (Fig. 6b). The dead reckoning of this
four-wheeled robot is a simple speed compounding
with the encoder feedback of each wheel. This
method usually causes large errors, especially for
the translation motion accompanied with a rotation
motion.

The raw odometry gathered by the omnidirec-
tional robot has significant errors (Fig. 9a). Dynamic
objects such as moving people and doors prevent
the scan registration from correcting the robot pose.
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Start point

Endpoint

(a)

Start point
Endpoint

(b)

(c) (d)

(e) (f)

Fig. 8 (a) Map obtained in a 20 m×8 m office environment from sensor data using raw odometry; (b) Raw
sensor map obtained by a corrected robot trajectory; (c) Vector representation of the grid vector map with
the blue lines representing static vectors and red for dynamic; (d) Grid representation of the grid vector map;
(e) Final vector map after vector merging; (f) Original occupancy map

Start point

Endpoint

(a)

Start point

Endpoint

(b)

(c) (d)

Fig. 9 (a) Raw data of a 20 m×6 m corridor gathered by the omnidirectional robot; (b) Raw measurement
sensor map; (c) Vector map extracted from each range scan; (d) Final global vector map
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Benefiting from vector features, the spurious
laser data caused by moving people can be filtered
out during vector extraction. The dynamic doors
can be detected gradually in the EM procedure and
excluded from data associations, so that the scan
registrations can get rid of the effect from various
dynamic objects and build correct constraints in the
graph. Finally, the SLAM method succeeds in gen-
erating an accurate static map of the environment,
even when the odometry error is large.

5.4 Door detection

For filtering dynamic objects, vectors are classi-
fied into dynamic and static ones in this work. More-
over, with this knowledge, the object-level character-
istic of the grid vector provides a method for detect-
ing doors.

Fig. 10 is part of the corridor map indicated by
the dotted rectangle in Fig. 9c. Assuming that the
corner is always built up by a static vector and a
dynamic vector, we can obtain two corners cr1 and
cr2 formed by the vectors a , b, and c. Each cor-
ner has a vertex and two vectors as the borders.
The static vector in the corner is probably the wall,
and the dynamic one is considered as a door candi-
date. As shown in the figure, if two corners share the
same static vector, while their vertices are close to
each other, and their dynamic vectors have the same
length, the vertex can be regarded as the hinge of
a door, and the dynamic vectors represent different
open states of the door.

Door state

Door state

Vertex Walla

b

c

cr1

cr2

Static vector
Dynamic vector

Fig. 10 Door estimation

This door estimation is easy to apply under the
assumption that doors move during data collection.
If a door never changes its state, it will be regarded
as part of the static environment.

5.5 Memory and computation cost

Comparing Figs. 8d and 8e, the grid vector map
can keep the same probabilities at the place around
vectors as the original occupancy grid map. By ig-
noring the probability distribution apart from vec-
tors, the grid vector map can save a lot of memory.
The difference is that the size of the occupancy grid
map is directly related to the area of the environ-
ment, but the grid vector map is influenced only by
the total length of the vectors. We record the mem-
ory requirements between the grid map and the grid
vector map for all the three data sets (Table 1). The
average memory requirement of the grid map is be-
yond 20 times that of the grid vector map.

Table 1 Comparison of the memory requirement be-
tween the grid map and the grid vector map∗

Parameter
Value

Fig. 7 Fig. 8 Fig. 9

Space size (m2) 678.56 174.94 122.68
Vector length (m) 194.73 93.50 47.04
Cell number for the

67 856 17 494 12 268
grid map, ng
Cell number for the

1947 935 471
grid vector map, nv

ng/nv 34.85 18.71 26.05
∗ The grid resolution is 10 cm in all three representations

As mentioned above, our EM algorithm itera-
tively generates better maps by obtaining increas-
ingly precise data association. Another aspect of
this problem is the improvement of the constraints
in the graph. The EM procedure converges when no
constraints need to be changed. Fig. 11 records the
percentage of the constraints changed in different it-
erations. Normally, our method needs only four or
five iterations to obtain an accurate map. Thus, it
has a fast convergence.
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Fig. 11 Convergency of the EM algorithm
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6 Conclusions

A new map representation called the ‘grid vec-
tor’ and an extended EM-SLAM algorithm are pre-
sented in this paper. The experiments illustrate that
our method is suitable for mapping in dynamic in-
door environments. It is efficient to distinguish dy-
namic objects and generate accurate models of the
environment.

The main contributions of this paper are as
follows:

1. The grid vector representation proposed pro-
vides advantages not only on filtering moving people
and reducing memory cost, but also on the data as-
sociation and the ability to model dynamic objects.

2. The SLAM algorithm presented takes full
advantage of the vector’s object-level characteris-
tic and the grid’s probability feature. It improves
the computation efficiency and optimizes the con-
vergence rate of the graph-based SLAM.

3. The SLAM algorithm presented can not only
correct the robot pose, but also estimate dynamic
objects according to recent observations. Thus, it
can be used as a patch scan registration algorithm
to replace the original scan registration step for ap-
plying other SLAM methods such as particle filters
in the dynamic environment.

In the future we will extend our algorithm to se-
quential mode, which allows a robot to incrementally
estimate the dynamic objects and the most likely
map while walking through the environment.
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