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Abstract: Large margin classifiers such as support vector machines (SVM) have been applied successfully in
various classification tasks. However, their performance may be significantly degraded in the presence of outliers. In
this paper, we propose a robust SVM formulation which is shown to be less sensitive to outliers. The key idea is
to employ an adaptively weighted hinge loss that explicitly incorporates outlier filtering in the SVM training, thus
performing outlier filtering and classification simultaneously. The resulting robust SVM formulation is non-convex.
We first relax it into a semi-definite programming which admits a global solution. To improve the efficiency, an
iterative approach is developed. We have performed experiments using both synthetic and real-world data. Results
show that the performance of the standard SVM degrades rapidly when more outliers are included, while the
proposed robust SVM training is more stable in the presence of outliers.
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1 Introduction

The support vector machine (SVM), as a large
margin learning approach, has been widely accepted
to be one of the most effective techniques designed
for classification. The basic procedure is to find
the hyperplane that separates two classes of data
points with the largest margin space. It is in-
tuitive and proven in theory that maximizing the
margin could yield the greatest robustness to noise
and reduce the possibility of future misclassification
(Cortes and Vapnik, 1995; Bousquet and Elisseeff,
2002; Scholkopf and Smola, 2002).

The phenomenon of outliers frequently occurs
in many machine learning applications. It can arise
due to mechanical faults, changes in system behav-
ior, fraudulent behavior, human error, instrument
error, or simply through natural deviations in pop-
ulations. However, the naive large margin principle
yields poor results over the data set contaminated

c©Zhejiang University and Springer-Verlag Berlin Heidelberg 2011

by outliers. This is because outliers tend to have
the largest margin loss, thus playing an important
role in determining the separating hyperplane. In
fact, a single outlier with a relatively large hinge loss
would significantly decrease the accuracy of SVM
classification.

Previous attempts have been made to improve
the robustness of the SVM training for outliers.
Krause and Singer (2004) investigated the robust
margin loss of SVM that ceased to increase the
penalty after a certain point. A robust SVM objec-
tive was proposed by Song et al. (2002) that could
scale the margin space with a heuristic weight. Her-
brich and Weston (2000) formulated a new train-
ing objective based on minimizing a bound on the
leave-one-out cross validation error of the soft mar-
gin SVM. Wu and Liu (2007) incorporated a trun-
cated hinge loss in SVM, which makes the formu-
lation more robust than the standard SVM formu-
lation. Xu et al. (2006) also modified the hinge
loss function of SVM, which improved SVM’s
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classification robustness against outliers. One prop-
erty the above approaches share is that they do not
attempt to identify outliers, but rather try to reduce
the effect of misclassified points with optimization or
heuristic approaches.

On the other hand, outlier detection, as a dif-
ferent research area, has played a more and more
important role in many machine learning applica-
tions. Most previous work focused on the unsuper-
vised case (Brodley and Friedl, 1996; Fawcett and
Provost, 1997; Tax et al., 1999; Steinwart et al.,
2005). More recently, a one-class SVM was proposed
to detect outliers (Ratsch et al., 2002). Tax (2001)
calculated the smallest hyper-sphere to contain all
the normal data points. Similar approaches have
been proposed for different applications (Eskin et
al., 2001; Davy and Godsill, 2002; King et al., 2002).
Manevitz and Yousef (2002) and Laskov et al. (2004)
proposed more variants of this technique. Relevant
work in outlier detection concerning SVM classifi-
cation also includes Tax et al. (1999), which uses
SVMs for outlier detection. Thongkam et al. (2008)
proposed a C-support vector classification filter to
identify and remove the misclassified instances. The
basic idea of these approaches is to handle outlier de-
tection as a classification problem, with pre-labeled
normal and abnormal data (outliers) in isolated
areas. They were designed for outlier detection
rather than classifying labeled data.

In this paper we propose a novel formulation
which integrates outlier detection and removal di-
rectly in the SVM training. Different from previous
work, the outlier filtering task, commonly performed
as a separate preprocessing step, is incorporated in
the SVM training phase. The proposed robust SVM
formulation is non-convex. We first propose a semi-
definite programming (SDP) relaxation, which yields
a global optimal solution. However, the SDP formu-
lation is computationally expensive to solve. To im-
prove the efficiency, we develop a multi-stage relax-
ation of the original formulation, which leads to an
iterative algorithm and involves the standard SVM
training at each iteration.

2 Robust SVM training with outliers

Given a set of n training samples {(xi, yi)}ni=1,
where xi ∈ R

d is drawn from a domain X and each of
the label yi is an integer from Y = {−1, 1}, the goal

of the binary-class classification in SVM is to learn
a model that assigns the correct label to an unseen
test sample. For non-separable data points, the soft
margin SVM employs a hinge loss (Fig. 1a) of the
following form for each training point:

ξi = max(0, 1− yiw
Txi),

where w is the optimization variable. The SVM
minimizes the following regularized loss function in
the training phase:

min
w

(
1

2
‖w‖2 + C

n∑
i=1

max(0, 1− yiw
Txi)

)
. (1)

The separating plane of the SVM is determined by
the support vectors whose hinge loss ξi exceeds zero.
Generally speaking, the larger the hinge loss is, the
more it will affect the resulting separating plane.

Next, we use a synthetic example to explain how
a single outlier could affect the SVM. We consider the
binary classification, where each class consists of 50
Gaussian distributed instances. Let the class mean
be μ1 = (0, 1) and μ−1 = (0,−1). The covariance
matrices of both classes are identity matrices. The
outlier (x,−1) is randomly sampled on the ring of
‖x − μ1‖ = r and added to the training set. The
process is repeated 100 times and the average test
error over 20 test points is calculated and shown in
Fig. 1b. As one can see, the error rate increases when
r increases.

To detect and remove outliers, we incorporate
an adaptive weight βi to the hinge loss as

ξ̃i = βimax(0, 1− yiw
Txi), βi ∈ {1, 0}. (2)

Intuitively, the weight βi equals zero if xi is an out-
lier; otherwise, βi equals one. The resulting robust
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Fig. 1 Comparison of losses as a function of yiwTxi

(a) and the average test error of SVM trained with
a single outlier (b). In (a), the adaptively weighted
hinge loss drops to zero if it is too large, which gives
our approach the ability to detect and remove outliers
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SVM formulation is given below:

min
w

min
β

(
1

2
‖w‖2 + C

n∑
i=1

βimax(0, 1− yiw
Txi)

)
,

(3)
where βi ∈ {0, 1}. The incorporation of variable βi

alone will not work, because the minimum SVM loss
is achieved when all βi’s are zero. Thus, assuming
there are at least M normal points out of n train-
ing points (M can be estimated from the data via
cross-validation), we can add an extra constraint as
follows:

n∑
i=1

βi ≥ M.

By incorporating this constraint, we can remove
n−M potential outliers from the training set. One
challenge of directly minimizing the objective func-
tion in Eq. (3) is its non-convexity in w and β.

There are several methods to handle non-convex
optimizations. One approach is to relax it into a con-
vex problem to obtain a global optimal solution. The
second approach is the alternating method, which
optimizes different variables in turn and yields local
minimal points. The advantage of the first method
is its reproducibility and sound theoretical basis for
convex optimization, while the second approach is in
general more efficient.

3 Semi-definite programming relax-
ation

The proposed robust SVM formulation in
Eq. (3) is non-convex. In this section, we relax it into
a semi-definite programming, which admits a global
solution. Eq. (3) can be equivalently rewritten as

min
w

(
1

2
‖w‖2+C

n∑
i=1

min
βi∈{0,1}

(
βi max(0, 1−yiw

Txi)
))

.

(4)
For the inner minimization in Eq. (3),

min
βi∈{0,1}

(
βi max(0, 1− yiw

Txi)
)
,

we note that the integer constraint on the variables
may be relaxed to 0 ≤ βi ≤ 1 without changing the
optimum. This is true since the minimization is over
a linear function, the optimum will be at the ver-
tices, and is therefore integral. We can equivalently
reformulate the above equation as

min
βi∈[0,1]

(
βimax(0, 1− yiw

Txi)
)
.

Thus, the formulation in Eq. (3) can be reformulated
as

min
w

min
βi∈[0,1]

(
1

2
‖w‖2 + C

n∑
i=1

βimax(0, 1− yiw
Txi)

)

s.t. eTβ ≥ M, (5)

where e ∈ R
n is a column vector of ones. The for-

mulation in Eq. (5) can be further reformulated as
the following constrained optimization:

min
w,ξ

min
β

(
1

2
‖w‖2 + C

n∑
i=1

βiξi

)

s.t. ∀i, yiwTxi ≥ 1− ξi,

ξ ≥ 0, 0 ≤ β ≤ 1, eTβ ≥ M. (6)

The challenge of solving the above formulation
is that it is not jointly convex in w and β. In the
following, we show how to relax it into a convex
problem. To this end, Eq. (6) is first reformulated as
a min-max problem, as summarized in the following
theorem:
Theorem 1 Suppose Y is a diagonal matrix whose
ith diagonal entry is given by Yii = yi. The mini-
mization problem in Eq. (6) is equivalent to

min
β

max
α

(
αTβ − 1

2
αT ((ββT) ◦ (Y XXTY T)

)
α

)
s.t. 0 ≤ α ≤ C, 0 ≤ β ≤ 1, eTβ ≥ M, (7)

where ‘◦’ denotes the point-wise product between
two matrices.
Proof Let ζi = βiξi. For a fixed β satisfying
eTβ ≥ M , the formulation in Eq. (6) is equivalent to

min
w,ζ

(
1

2
‖w‖2 + C

n∑
i=1

ζi

)

s.t. ∀i, βi(1− yiw
Txi) ≤ ζi, ζi ≥ 0. (8)

The Lagrangian of the above formulation can be
written as

L1 =
1

2
‖w‖2 + C

n∑
i=1

ζi

+

n∑
i=1

αi

(
βi(1− yiw

Txi)− ζi
)− μTζ.

Computing its gradient with respect to ζi yields C−
αi − μi = 0, thus αi ≤ C when μi ≥ 0. Then L1 can
be equivalently expressed as

L2 =
1

2
‖w‖2 +

n∑
i=1

αiβi(1− yiw
Txi).
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Finally, taking the gradient with respect to w

yields w =
∑n

i=1 βiyixiαi. This leads to wTw =

αT((ββT)◦(Y XXTY T))α. We substitute wTw back
into L2 and write the dual form of Eq. (8) as

max
α

(
αTβ − 1

2
αT ((ββT) ◦ (Y XXTY T)

)
α

)

s.t. 0 ≤ α ≤ C. (9)

Due to the strong duality, we have

min
w,ξ

(
1

2
‖w‖2 + C

n∑
i=1

ζi

)

=max
α

(
αTβ − 1

2
αT ((ββT) ◦ (Y XXTY T)

)
α

)
.

Substituting the dual form of Eq. (8) into Eq. (6)
yields the result of the theorem. �

Note that we reformulate Eqs. (6) and (7) to
rewrite the inner optimization as a maximum. This
technique allows further convex reformulation of the
outer minimization. The intuitive observation is that
β appears only as β and ββT. Thus, by creating
a matrix variable D = ββT, the problem can be
reformulated as a maximum of the linear combina-
tions of β and D, resulting in the following min-max
problem:

min
0≤β≤1,D=ββT

max
α

(
αTβ − 1

2
αT(D ◦Q)α

)
s.t. 0 ≤ α ≤ C, eTβ ≥ M,

where Q = Y XXTY T. The only problem that re-
mains is that D = ββT is a non-convex quadratic
constraint. A common strategy is to relax the equal-
ity to D � ββT, which leads to the following convex
problem:

min
0≤β≤1

min
D�ββT

max
α

(
αTβ − 1

2
αT(D ◦Q)α

)

s.t. 0 ≤ α ≤ C, eTβ ≥ M. (10)

The above formulation can be equivalently written
as an SDP problem:
Theorem 2 Solving Eq. (10) is equivalent to solv-
ing the following semi-definite programming:

min
t,ν,λ,β,D

t

s.t. D � ββT, eTβ ≥ M,

ν ≥ 0, λ ≥ 0, 0 ≤ β ≤ 1,(
2(D ◦Q) β − ν + λ

βT − νT + λT t− C
∑n

i=1 νi

)
� 0. (11)

Proof The formulation in Eq. (10) is equivalent to

min
β,D,t

t

s.t. t ≥ max
α

(
αTβ − 1

2
αT(D ◦Q)α

)
D � ββT, eTβ ≥ M,

0 ≤ α ≤ C, 0 ≤ β ≤ 1. (12)

We can reformulate the maximization in the first
constraint of the above optimization as

max
α

(
αTβ − 1

2
αTGα

)
s.t. 0 ≤ α ≤ C, (13)

where G = D ◦Q. Let the Lagrangian of the above
maximization be

L = αTβ − 1

2
αTGα+ λTα+ νT(Ce−α).

Assuming G � 0, at the optimum we have

α = G−1(β − ν + λ),

and we can write the dual form of Eq. (13) as

min
ν,λ

(
(β − ν + λ)T(2G)−1(β − ν + λ) + CνTe

)
s.t. ν ≥ 0,λ ≥ 0. (14)

The optimal objectives of the primal-dual problems
are equal due to the strong duality. This implies that
for any t > 0, the first constraint in Eq. (12) holds if
and only if there exist ν ≥ 0,λ ≥ 0 such that

(β − ν + λ)T(2G)−1(β − ν + λ) + CνTe ≤ t,

or, equivalently (by the Schur complement),(
2G β − ν + λ

βT − νT + λT t− CνTe

)
� 0

holds. It follows that Eq. (10) can be expressed as
Eq. (11), which proves the theorem. �

4 Multi-stage relaxation

The SDP based formulation in Section 3 admits
a global optimal solution; however, it is computa-
tionally expensive to solve. In this section, we pro-
pose an iterative method based on the multi-stage
relaxation of Eq. (3). The multi-stage relaxation of
non-convex problems is based on the concave dual-
ity property, which was employed in Zhang (2008) to
solve a sparse learning problem.
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4.1 Concave duality

The multi-stage relaxation considers the follow-
ing optimization formulation:

min
w

(R0(w) + CR1(w)) , (15)

where R0(w) is convex in w and R1(w) is non-
convex. We shall rewrite R1(w) using concave du-
ality. Let h(w) be a vector function with range Ω.
Assume that there exists a function g(u) defined on
Ω so that we can express R1(w) as

R1(w) = g(h(w)).

Assume that we can find h(w) so that the function
g(u) is concave on u ∈ Ω. Under this assumption,
we can rewrite the R1(w) as

R1(w) = inf
v∈Φ

[vTh(w) + g∗(v)] (16)

using concave duality. In this case g∗(v) is the con-
cave dual of g(u):

g∗(v) = inf
u∈Ω

[−vTu+ g(u)], (17)

and the minimum of the right hand side of Eq. (16)
is achieved at

v̂ = ∇ug(u)|u=h(w). (18)

Given the vector function h(w) defined above
and a fixed vector v, a simple convex relaxation of
Eq. (15) becomes

min
w

(
R0(w) + CvTh(w)

)
. (19)

This simple relaxation yields a solution that is differ-
ent from the solution of Eq. (15). However, since the
robust SVM satisfies the condition mentioned in Sec-
tion 3, it is possible to write R1(w) using Eq. (16).
With this new representation, we can write Eq. (15)
as

min
w,v

(
R0(w) + C

(
vTh(w) + g∗(v)

))
. (20)

The above formulation is equivalent to the one in
Eq. (15) because of Eq. (16). If we could find a good
approximation of v, which improves from the initial
choice of v = 1, then the above formulation can lead
to a refined convex problem in w that is expected to
be a better convex relaxation compared with the one
in Eq. (19). In practice, the approximation of v can
be derived by Eq. (18), when the derivative exists.

4.2 Algorithm

For robust SVM training, we consider the opti-
mization in Eq. (3), which is equivalent to

min
w

(
1

2
‖w‖2 + Cmin

β

n∑
i=1

βi max(0, 1− yiw
Txi)

)
,

where β ∈ Δ with Δ = {β|βi ∈ {0, 1}, eTβ ≥ M, i =

1, 2, . . . , n}. To explain the concave duality in robust
SVM training, we introduce the following notations:

Definition 1 Let R0(w), R1(w) be defined as

R0(w) =
1

2
‖w‖2, R1(w) = min

β∈Δ

n∑

i=1

βi max(0, 1− yiw
Txi).

The non-convex function R1(w) can be represented
by g(h(w)), where

g(u) = inf
β∈Δ

(
βTu

)
, hi(w) = max(0, 1− yiw

Txi).

With the above definition, Eq. (3) can be equiv-
alently reformulated as Eq. (15). Moreover, g(u)

is concave in u, because it is the point-wise infi-
mum of a set of linear functions. Therefore, we can
approximate Eq. (3) by the multi-stage relaxation.
Specifically, our iterative method exploits the con-
cave duality to improve the solution. The algorithm
is summarized below:

Initialization: Set v̂ = 1.
1. Fix v = v̂ and calculate ŵ by solving

ŵ=argmin
w

(
1

2
‖w‖2+

n∑
i=1

v̂i max(0, 1−yiw
Txi)

)
.

2. Fix w = ŵ and calculate ûi = max(0, 1 −
yiŵ

Txi). Suppose û1, û2, . . . , ûn are arranged in as-
cending order and we denote the order of ûi by s(i).
Then set v̂i = I(M − s(i)), where I is the indicator
function.

Note that the above algorithm begins with the
standard SVM formulation by initializing v = 1.
Thus, by repeating the above iterations, the multi-
stage robust SVM could converge to a solution better
than the standard SVM. Another point worth noting
is that the function g(u) in Definition 1 is a piece-
wise linear function of u, and its derivative over u

exists when ∀i 
= j ∈ {1, 2, . . . , n}, ûi 
= ûj . In prac-
tice, if ûi = ûj and i < j, we choose xi over xj to
make the result reproducible.
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5 Experiment

A series of experiments were constructed on syn-
thetic and real data sets to verify the effectiveness of
the proposed algorithms. In all the experiments,
different proportions of the training points were se-
lected to generate outliers. Specifically, the labels of
the selected points were changed manually to form
outliers. For binary classification, the label was
changed from −1 to +1 and vice versa. The mod-
ified data points become outliers in synthetic data
sets when the data points of different classes are dis-
tant. For multi-class classification, we applied the
one-against-the-rest strategy, and transformed the
multi-class problem to several binary classification
problems.

The first experiment was conducted on synthetic
data. We assigned one Gaussian for each class, with
the first given by μ = [0.8, 0.8], Σ = I and the sec-
ond by −μ and Σ. The training set contained 60
instances, 30 from each Gaussian. A testing set was
constructed that contained 60 instances drawn from
the same distribution as the training data. Differ-
ent proportions (2.5%–20%) of training points were
randomly selected as outliers, and we changed their
labels. The experiments were repeated 50 times. In
each repetition a training set and corresponding out-
lier set were constructed. The experiment results
were averaged with 95% confidence interval. We
tested the algorithms proposed in this paper: SDP
robust SVM (SDP RSVM) and multi-stage robust
SVM (multi-stage RSVM). We compared the results
with those of standard soft margin SVM and the
adaptive margin SVM (Song et al., 2002). The can-
didate set for the generalization tradeoff parameter
C is {10i}4i=−2. The SDP RSVM was implemented
with the outlier parameter selected from the follow-
ing candidate set: M ∈ {10i}6i=0. For the multi-
stage RSVM, we stopped the iterative process (i.e.,
the algorithm converges) when the change of the ob-
jective values is less than 10−4.

Fig. 2 shows the results for our robust SVM
training methods and related existing algorithms.
We can observe from the figure that the SVM is
sensitive to outliers. The error rate increases signif-
icantly when the proportion of outliers increases. In
contrast, the robust SVM algorithms are less sen-
sitive to outliers. This is illustrated by the mean
test error. The proposed algorithms outperform the
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Fig. 2 Comparison of algorithms in terms of the clas-
sification error rate with different proportions of
outliers

adaptive margin SVM.
We also compared SDP RSVM and multi-stage

RSVM with both a supervised approach (C-SVM)
and an unsupervised approach (consensus filter) for
outlier detection. The results are shown in Fig. 3.
Overall, our methods have better detection accuracy
than C-SVM (Thongkam et al., 2008) and consen-
sus filtering (Brodley and Friedl, 1996). The de-
tection accuracy drops when the proportion of the
outliers increases. This phenomenon is expected
because more ‘normal’ points may be misclassified
when outliers are introduced. Thus, the algorithm
may predict a normal but misclassified point as an
outlier.
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Fig. 3 Comparison of different methods in terms of
outlier detection accuracy

Next, we studied the sensitivity of the proposed
algorithm to the parameter C. We compared SDP
RSVM and multi-stage RSVM with standard SVM.
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Five percent of training points were randomly flipped
as outliers. Seven values of C, from 10−2 to 104, were
tested. The results are shown in Fig. 4. Our results
show that the multi-stage RSVM has similar depen-
dence on C to the standard SVM. On the other hand,
the SDP RSVM is less sensitive to the parameter C.
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Fig. 4 Classification error rate on the synthetic data
set with different values of the generalization tradeoff
parameter C

We also evaluated the sensitivity of SDP RSVM
and multi-stage RSVM to parameter M using the
receiver operating characteristic (ROC) curves of the
classification accuracy. Fig. 5 shows the ROC curve
for the multi-stage RSVM with various values of M .
In this experiment, 90% (54 points) of the training
data were normal points. When M decreases, the
ROC curve becomes worse. This indicates that M

is consistent with the actual number of the normal
points. Similar phenomena can be found for SDP
RSVM, whose figure is omitted here due to lack of
space. Note that M can be automatically estimated
from the data via cross-validation in practice.

In the above experiments, outliers were gener-
ated by changing labels. For comparison, we per-
formed a set of experiments in which outliers were
added in the synthetic data set. The same clean data
points were drawn from Gaussian distributions as in
above experiments. Outliers were uniformly drawn
from a ring whose inner-radius is R and outer-radius
is R + 0.5. The outliers were randomly labeled with
even probability. Results of the experiments are sum-
marized in Table 1.

As one can see, in both the experiments when
outliers were drawn on the ring or generated by
changing labels, the proposed algorithms outperform
the standard SVM in the presence of outliers. SDP
RSVM has higher classification accuracy and outlier

Fig. 5 The receiver operating characteristic (ROC)
curve of multi-stage robust SVM with different num-
bers of normal points (M )

detection rate for the synthetic data set, and is also
less sensitive to the parameter C. Due to higher
computational complexity, SDP RSVM is preferred
for medium size data sets. Specifically, SDP RSVM
can be trained in O(n3) time by using incomplete
Cholesky decomposition of the semi-definite matrix.
Multi-stage RSVM is much faster and can be trained
in O(cd × v) time, where c is a constant (usually
less than 10) and v is the number of support vec-
tors. Note that, multi-stage RSVM acquired better
robustness at the expense of c − 1 times more com-
putational complexity than the standard SVM.

Table 1 Comparison of different methods in terms of
error rate when outliers were added in the synthetic
data set

R Algorithm
Error rate (%)

Nout =5% Nout =10% Nout =15%

2

SSVM 4.6±0.6 9.1±1.2 15.2±1.7
AM SVM 3.0±0.4 7.3±0.5 13.7±1.4
SDP RSVM 1.5±0.2 5.4±0.5 5.6±0.5
MS RSVM 2.2±0.3 6.8±0.7 5.3±0.3

3

SSVM 5.7±0.5 12.3±1.4 25.7±3.7
AM SVM 4.0±0.5 6.0±7.8 11.3±1.8
SDP RSVM 1.6±0.2 4.4±0.5 6.3±0.7
MS RSVM 2.9±0.1 5.4±0.6 7.4±0.9

4

SSVM 11.0±1.9 21.3±3.4 37.5±4.2
AM SVM 7.3±0.8 11.3±1.3 14.2±1.5
SDP RSVM 2.2±0.2 5.3±0.6 5.7±0.6
MS RSVM 3.3±0.4 7.4±0.9 8.9±1.2

5

SSVM 13.2±1.5 35.5±4.4 47.9±7.8
AM SVM 6.2±0.7 18.4±2.3 19.8±2.0
SDP RSVM 3.2±0.4 9.3±1.2 9.4±1.3
MS RSVM 4.4±0.5 13.3±2.2 14.9±2.2

R: inner radius of the ring; Nout: proportion of outliers.
SSVM: standard SVM; AM SVM: adaptive margin SVM; MS
RSVM: multi-stage RSVM
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Table 2 Comparison of different methods in terms of the classification error rate with different proportions of
outliers∗

Data set Algorithm
Detection rate (%) Error rate (%)

No outliers 5% outliers 10% outliers 5% outliers 10% outliers

Standard SVM 5.11±0.41 13.23±0.81 15.78±1.21
Iris∗∗ Adaptive margin SVM 12.21±0.01 12.08±0.72 14.08±0.93

SDP RSVM 5.31±0.22 91.21±4.01 85.05±7.42 5.93±0.35 5.01±0.34
Multi-stage RSVM 5.05±0.21 88.03±5.01 77.74±5.01 10.33±4.01 10.53±0.70

Standard SVM 0.00±0.00 8.13±0.42 10.13±0.21
Lung cancer∗∗ Adaptive margin SVM 0.00±0.00 9.08±0.89 9.91±0.93

SDP RSVM 0.00±0.00 85.35±6.23 81.25±5.42 7.93±0.55 7.42±0.84
Multi-stage RSVM 0.00±0.00 82.56±4.23 72.51±7.21 9.43±5.34 9.12±0.90

Standard SVM 0.00±0.00 20.13±1.81 30.71±2.35
Musk Adaptive margin SVM 9.13±2.01 10.28±1.92 11.08±1.93

Multi-stage RSVM 0.00±0.00 78.22±4.31 69.54±3.01 13.78±1.01 18.77±2.70

Standard SVM 0.00±0.00 13.23±0.81 21.78±1.21
Hill valley Adaptive margin SVM 2.11±0.12 11.31±0.52 14.11±0.78

Multi-stage RSVM 0.00±0.00 80.21±6.04 71.21±6.32 10.76±0.77 18.55±0.65

Standard SVM 3.21±0.34 3.89±0.21 4.98±0.34
Breast cancer Adaptive margin SVM 4.92±0.38 4.03±0.51 4.35±0.75

Multi-stage RSVM 3.34±0.43 79.21±3.78 72.41±6.35 3.22±0.35 3.39±0.42

Standard SVM 0.00±0.00 3.73±0.21 4.95±0.65
Ionosphere Adaptive margin SVM 2.15±0.30 3.78±0.72 5.08±0.51

Multi-stage RSVM 0.00±0.00 75.03±7.33 72.13±6.43 2.13±0.11 4.53±0.20
∗ For efficiency reasons, SDP RSVM was not evaluated for some of these data sets; for all data sets, multi-stage RSVM converges
in less than 10 iterations. The data sets marked with ∗∗ are multi-class data sets, and the rest are binary-class data sets

Finally, we performed experiments on real data.
We compared different robust SVM training algo-
rithms over six classification data sets from UCI
(Frank and Asuncion, 2010). Two of them are multi-
class data sets (Iris and Lung cancer), and four of
them are binary-class data sets. For efficiency rea-
sons, the SDP RSVM was not evaluated for some of
these data sets. For all data sets, the multi-stage
RSVM converges in less than 10 iterations. The re-
sults are summarized in Table 2. We can observe
that the results on real data are consistent with
those for the synthetic data set. The SVM shows
excellent results with small label noises, but the
robust SVM training algorithms outperform SVM
when more outliers (over 5%) are included.

6 Conclusions

In this paper we propose two revised SVM train-
ing algorithms that are robust to the presence of

outliers. The key idea is to employ an adaptively
weighted hinge loss that explicitly incorporates out-
lier filtering in SVM training. To solve the proposed
robust SVM formulation, we develop two algorithms
based on SDP relaxation and multi-stage relaxation.
SDP relaxation can obtain the global optimal point
at the cost of expensive computation; in contrast,
multi-stage relaxation yields a more efficient algo-
rithm for computing a local solution.

We have performed experiments using both syn-
thetic and real-world data. Results demonstrate the
effectiveness of the proposed algorithms. In the fu-
ture, we plan to study the theoretical properties of
the multi-stage robust SVM formulation using ideas
from Zhang (2008). Another interesting extension
of our work is nonlinear generalization. The SDP
formulation proposed here cannot be directly gen-
eralized using kernel trick due to the parameter βi

we introduce. But the multi-stage relaxation algo-
rithm can be generalized to a nonlinear situation.
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Specifically, given vi, the first step of the multi-stage
algorithm is similar to that of the standard SVM.
Thus, it can use the kernel trick to handle nonlin-
early separable data sets.
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