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Abstract:    An adaptive predictive pinning control is proposed to suppress the cascade in coupled map lattices (CMLs). Two 
monitoring strategies are applied: (1) A specific fraction of nodes with the highest degree or betweenness are chosen to constitute 
the set of monitored nodes; (2) During the cascade, an adaptive pinning control is implemented, in which only the nodes in the 
monitored set whose current state is normal but whose predictive state is abnormal, are pinned with the predictive controller. 
Simulations show that for the scale-free (SF) CML the degree-based monitoring strategy is advantageous over the betweenness- 
based strategy, while for the small-world (SW) CML the situation is the opposite. With the adaptive predictive pinning control, the 
fewer local controllers can effectively suppress the cascade throughout the whole network. 
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1  Introduction 
 

Cascading failures triggered by initial shocks are 
common in many real large-scale complex systems, 
such as the electrical power grid, the Internet, the 
transportation networks, and the human society 
(Crucitti et al., 2004; Wang and Chen, 2008). For 
instance, on August 14, 2003, an initial disturbance in 
Ohio triggered the largest blackout in U.S. history in 
which millions of people remained without electricity 
for as long as 15 hours (Ash and Newth, 2007). In 
another example, the ILOVEYOU computer virus, 
first detected in Hong Kong in May 2000, spread over 
the Internet and caused a loss of nearly seven billion 
dollars in facility damage and computer down-time 
(Wang and Chen, 2003). In light of the wide occur-
rence and catastrophic impact of the cascade in many 
real large infrastructures, the cascading failures in 

complex networks have become one of the most 
concerned issues today (Motter and Lai, 2002; Motter, 
2004; Lai et al., 2005; Li and Wang, 2006; 2007; 
Zheng et al., 2007; Bao et al., 2008a; 2008b; Huang et 
al., 2008). 

Coupled map lattices (CMLs) have been widely 
investigated over the past decades to model the rich 
space-time dynamic behaviors of complex systems 
(Gade and Hu, 2000; Jost and Joy, 2001). In com-
parison to partial differential equations (PDEs), 
CMLs are more suitable for computational studies 
because of the discrete nature of time and space. In 
CML, the dynamic elements are situated at discrete 
points in space, and time is discrete. Each spatial unit 
is coupled to its neighbors by various coupling 
schemes, including random coupling, global coupling, 
nearest neighbor coupling, small-world (SW) cou-
pling proposed by Watts and Strogatz (1998), and 
scale-free (SF) coupling proposed by Barabási and 
Albert (1999), each of which is motivated by different 
physical systems and achieves varying degree of 
success in modeling those systems. Recently, studies 
on dynamics of CML with different connections have 
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been performed. Some researchers have studied the 
synchronization in CML. Wang et al. have made great 
achievements in the cascading failure model based on 
CML and the mechanism of the cascading failure in 
the model (Wang and Xu, 2004; Xu and Wang, 2005), 
and they found that a sufficiently large perturbation 
on a single node can lead to cascading failures of all 
the other nodes in the network. Bao et al. (2008b) 
further pointed out that the macroscopic properties of 
SF CML during the failure propagation are governed 
by the general laws of synergetics.  

The existing research on the cascading failures 
in CML focused only on the mechanism and charac-
teristics of cascade, and the relationship between the 
cascade and the coupling topology. In this paper, we 
investigate how to suppress the cascading failures in 
CML with SW and SF coupling topologies based on 
the adaptive predictive pinning control. The control 
strategy is illustrated as follows: choose a fraction of 
nodes with the highest degree or betweenness to 
constitute the monitored node set; during the cascade, 
only the nodes in the monitored node set, whose 
current state is normal but whose predictive state is 
abnormal, are adaptively pinned with the predictive 
control. The adaptive pinning strategy is different 
from the random and specific pinning scheme previ-
ously investigated in terms of the stabilization of 
complex networks (Li and Chen, 2004; Li et al., 2004; 
Xiang et al., 2007). 
 
 

2 Formulation of the predictive control  
algorithm 
 

Predictive control is the advanced control tech-
nique with a significant and widespread impact on 
industrial process control, which now can be found in 
a wide variety of manufacturing environments in-
cluding chemicals, power plants, and aerospace 
(Raimondo et al., 2007; Rawlings and Mayne, 2009). 
The basic concept of predictive control is to solve an 
optimization problem for a finite future interval at the 
current time (Raimondo et al., 2007; Rawlings and 
Mayne, 2009). The index to be optimized is normally 
the expectation of a function measuring the discrep-
ancy between the predicted output and the desired 
output of the system over the prediction horizon plus 
a function measuring the control increment over the 
control horizon. Only the first calculated control input 

in the control horizon is actually implemented. The 
horizons are moved by one sample period towards the 
future and the optimization process is repeated at each 
subsequent instant.  

Consider a single-input-single-output system 
governed by 
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where parameters m and n are the delay in input and 
output, respectively. At time t, the future system 
outputs yp(t+i|t) for i=1,2,…,Hp, can be predicted by 
using Eq. (1). These predicted values depend on the 
previous outputs and inputs, the current system output 
y(t), and the future control inputs u(t+i) for i=0, 
1,…,Hu, where Hu≤Hp is the control horizon. The 
control variable is manipulated only within the con-
trol horizon and remains constant afterwards, i.e., 
u(t+i)=u(t+Hu−1) for i=Hu,…,Hp. The sequence of 
future control inputs u(t+i) for i=0,1,…,Hu−1 is 
computed by optimizing a given objective function. A 
general objective function is defined as the following 
quadratic form (Rawlings and Mayne, 2009): 
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where pk and qk are the weighting values. In the ex-
pression of J, the first term accounts for minimizing 
the variance between the predictive output and the 
desired output of the system, while the second  
term, in which Δu(t+k)=u(t+k)−u(t+k−1), represents a  
penalty on the control cost (related, for instance, to 
energy). 
 
 
3  Scale-free and small-world network models 
 

This study mainly investigates how to suppress 
the cascading failures in CML with SF and SW cou-
pling topologies. In this section, we briefly describe 
the generation algorithm of SF and SW network 
models used in this work. 

The SF network model proposed by Barabási 
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and Albert (1999) is adopted, in which two basic 
features of most real-life complex networks, growth 
and preferential attachment, are represented. The SF 
model starts with m0 nodes. At every time step, a new 
node is introduced until the desired number of nodes 
N is reached. The new node connects to m already- 
existing nodes by a preferential attachment with 
probability Π(k(i))=k(i)/∑jk(j), where k(i) is the de-
gree of node i. The SF model develops the power-law 
degree distribution. 

The SW topology is generated using the famous 
Watts-Strogatz model (Watts and Strogatz, 1998). 
Starting from a nearest-neighbor coupled network 
with N nodes arranged on a ring and K edges per node, 
each edge is rewired at random with a probability 
0<p<1. The SW model exhibits large clustering as in 
the regular network and small average path between 
nodes as in the random network. Because the SW 
model may lead to the formulation of isolated clusters, 
we hold the assumption in the whole paper that the 
SW network before the attack is always connected 
without any isolated clusters. 
 
 
4  Cascading failure model based on CML 
 

We consider a CML consisting of N nodes, de-
scribed as follows (Wang and Xu, 2004): 
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where xi(t) (i=1,2,…,N) is the state variable of node i 
at time t. The connection information among the N 
nodes is given by the adjacency matrix A=(aij)N×N. If 
there is an edge between node i and node j, then 
aij=aji=1; otherwise, aij=aji=0. It is assumed that no 
two different nodes can have more than one edge in 
between, and no node can have an edge with itself. 
Parameter k(i) is the degree of node i, and ε(0, 1) 
represents the coupling strength. The function f, 
which defines the local dynamics, is chosen in this 
work as the chaotic logistic map f(x)=4x(1−x). 

Node i is said to be in a normal state at time m if 
0<xi(t)<1 when t≤m. On the other hand, if 0<xi(t)<1 
when t<m and xi(m)≥1, node i is said to fail at time m 
and it is assumed in this case that xi(t)≡0 when t>m. If 
the initial states of the nodes in a CML described in 

Eq. (3) all lie in the interval (0, 1) and there is not any 
external perturbation, then N nodes in the network 
will be in normal states forever. 

To trigger the cascading failure by attacking a 
single node, an external perturbation R≥1 is added to 
node c at time m, 
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In this case, node c will fail at time m and we 
have xc(t)≡0 for all t>m. At time m+1, the states of 
these nodes that are directly connected with node c 
will be affected by xc(m)≥1 according to Eq. (4), and 
the states of these nodes may also be larger than 1 and 
thus may lead to a new round of node failures. The 
evolution of cascade is represented by the parameter 
I(t), which is the cumulative proportion of the nodes 
that fail in the network at time t. 
 

 
5  Suppression of the cascading failure in 
CML based on adaptive predictive pinning 
control 
 

A strategy, integrating the advanced predictive 
control into the adaptive pinning scheme, is proposed 
to greatly suppress the cascade in CML with the SW 
and SF coupling topologies. In the following simula-
tions, we take N=2000, m0=m=3 for SF CML, and 
K=6, p=0.1 for SW CML. Then, the CML contains 
2000 nodes and about 6000 connections. 

Firstly, we explore which nodes play an impor-
tant role in accelerating the propagation. For the SF 
and SW CML with different parameters, simulations 
are implemented to find the key nodes. Figs. 1a and 
1b illustrate the dynamics of cascade in SF and SW 
CML caused by a deliberate attack and a random 
attack occurring at time 10, respectively. In the de-
liberate attack, the attacked node has the largest de-
gree, and in the random attack, the attacked node is 
randomly selected. 

Figs. 2a and 2b present the degree and be-
tweenness of the nodes that fail during the cascade in 
SF CML, respectively. From Figs. 1a and 2 we find 
that, once the nodes with the highest degree or be-
tweeness fail (for example, at time 12 for deliberate 
attack caused cascade and at time 13 for random  
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attack caused cascade), the proportion of the nodes 
that fail immediately increases sharply at the follow-
ing time. Therefore, in SF CML, the nodes with the 
largest degree or betweenness can significantly speed 
up the cascade.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figs. 3a and 3b present the degree and be-
tweenness of the nodes that fail during the cascade in 
SW CML under random and deliberate attacks,  
respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
As shown in Figs. 2 and 3, the distribution of the 

nodes with the highest degree across the course of 
propagation in SW CML is more even than that in SF 
CML, and then the influence of those nodes on the 
propagation is not obvious; however, the impact of 
the nodes with the highest betweenness on the 
propagation is distinct because the nodes with the 
higher degree, which fail in the early stage of cascade, 
usually have the smaller betweenness. Consequently, 
in SW CML the nodes with the highest betweenness 
are important to the propagation. We consider that 
fewer local intelligent controllers can suppress the 
cascade by pinning those nodes. 

Secondly, a fraction δm of the nodes with the 
highest degree or betweenness are chosen to consti-
tute the monitored node set M. Monitoring and adap-
tive pinning are applied only to the nodes in M. The 
pinned node i is represented as 

Fig. 2  Degree and betweenness of the nodes that fail 
during the cascade in scale-free CML under a random (a) 
and a deliberate (b) attack as shown in Fig. 1a 
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Fig. 1  Cascade in CML (ε=0.6) attacked by a perturba-
tion R=4 to a signal node at time 10: (a) scale-free CML; 
(b) small-world CML 

Fig. 3  Degree and betweenness of the nodes that fail 
during the cascade in small-world CML under a random 
(a) and a deliberate (b) attack as shown in Fig. 1b 
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where ui(t) is the predictive control law to node i at 
time t. Considering the equation of node state de-
scribed in Eq. (5), the one-step-ahead predictive con-
trol is implemented to each of the pinned nodes to 
keep it in normal state. Based on the monitored node 
set M, the adaptive pinning scheme is carried out; i.e., 
only the nodes in M whose current states are normal 
but whose one-step-ahead predictive states are ab-
normal, form the adaptively pinned node set P and are 
actually pinned with the predictive controllers. Dur-
ing the control process, when failures spread, the 
adaptively pinned node set P varies while satisfying 

PM. δp is the adaptive pinning fraction of the nodes. 
Finally, we illustrate the algorithm of one-step- 

ahead predictive control applied to the pinned nodes 
in CML. 

Since one-step-ahead predictive control is used, 
the parameters in the objective function shown in 
Eq. (2) are chosen as Hp=Hu=1 and then only Δui(t) 
needs to be optimized. 

As Δui(t)=ui(t)−ui(t−1), Eq. (5) can be rewritten 
as  
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Substituting Eq. (6) into the objective function, we 
have 
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Considering the necessary condition for the J in ex-

pression (7) to have a minimum is to set 0,
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we derive that the optimal increment of control at 
time t is  
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Since our goal is to keep the pinned node in 

normal state (0, 1), in the simulations the set-point 
value xis(t+1) of node i at time t+1 is chosen as 0.9. 
The set-point value is selected by balancing the con-
trol cost and performance.  

The procedure of adaptive predictive pinning 
control is illustrated as follows: 

Step 1: Choose the values of parameters p1, q0, 
xis(t+1) and determine the monitored node set M ac-
cording to the degree- or betweenness-based moni-
toring strategy. 

Step 2: At time k, examine the current state and 
one-step-ahead predictive state of each node in M, 
and then decide the adaptive pinning node set P. 

Step 3: For each pinned node i, achieve the op-
timal control increment Δui(t) according to Eq. (8). 

Step 4: Add Δui(t) to ui(k−1) to generate the 
control law ui(k) at the current time k, and apply ui(k) 
to the pinned node. 

Step 5: k+1→k; go to step 2 if the control process 
is not complete. 
 
 
6  Simulation results 
 

In SF CML, under the max-degree based attack 
the cascade propagates rapidly throughout the net-
work in only four time periods, as shown in Fig. 1a. 
For the deliberate attack, the cascade can be greatly 
suppressed when the adaptive predictive pinning 
control is employed. The controlled cascade dynam-
ics and the adaptive pinning fraction (δm=30%) are 
depicted in Figs. 4a and 4b with the degree- and  
betweenness-based monitoring strategies applied, 
respectively. Figs. 4a and 4b show that in the worst 
case when the SF CML is deliberately attacked, the 
degree-based monitoring strategy is more effective 
than the betweenness-based monitoring strategy, and 
that fewer local predictive controllers can hold back 
the cascade, with the largest fraction δp of pinning 
control being only 5.6%. As shown in Fig. 1a, the SF 
CML is still vulnerable to a random attack although 
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the speed of propagation is slower than that in a de-
liberate attack. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the random attack, the cascade dynamics and 

the corresponding adaptive pinning fraction are il-
lustrated in Figs. 5a and 5b under the degree- and 
betweenness-based monitoring strategies, respec-
tively. For the random attack in SF CML both of the 
two monitoring strategies prove effective, with the 
largest pinning fraction δp being below 2%. Conse-
quently, the adaptive predictive pinning control can 
prevent the further propagation of random or delib-
erate attack caused cascade in SF CML with fewer 
local controllers applied. 

The adaptive predictive pinning control with the 
different monitoring strategies is applied to suppress 
the deliberate or random attack caused cascade in SW 
CML. For the deliberate attack in SW CML, the 
suppressed cascades and adaptive pinning fraction are 
shown in Figs. 6a and 6b for the degree- and  
betweenness-based monitoring schemes respectively 
(δm=40%). We can see that the performance of the 
betweenness-based monitoring scheme is more ef-

fective than that of the degree-based monitoring 
strategy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4  Suppressed cascades and adaptive pinning fraction
under degree-based (a) and betweenness-based (b) moni-
toring strategies when adaptive predictive pinning control 
is applied to the deliberate attack caused cascade in scale-
free CML shown in Fig. 1a (δm=30%) 
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Fig. 5  Suppressed cascades and adaptive pinning fraction 
under degree-based (a) and betweenness-based (b) moni-
toring strategies when adaptive predictive pinning control 
is applied to the random attack caused cascade in scale- 
free CML shown in Fig. 1a (δm=30%) 
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Fig. 6  Suppressed cascades and adaptive pinning fraction 
under degree-based (a) and betweenness-based (b) moni- 
toring strategies when adaptive predictive pinning con-
trol is applied to the deliberate attack caused cascade in 
small-world CML shown in Fig. 1b (δm=40%) 
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For the random attack in SW CML, Figs. 7a and 
7b depict the control effect and adaptive pinning 
fraction under the two monitoring strategies (δm= 
40%), and the betweenness-based monitoring scheme 
is remarkably advantageous over the degree-based 
one. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For the different values of monitored fraction δm, 

we further investigate the control performance of the 
two monitoring strategies. For the cascades of SF and 
SW CML shown in Figs. 1a and 1b, we try different 
δm to examine the controlled cascade with the degree- 
and betweenness-based monitoring strategies applied. 
Fig. 8 illustrates the relationship between the final 
fraction I∞ of the nodes that fail and the monitored 
fraction δm under the different monitoring schemes. 
For the random attack in SF CML, these two moni-
toring strategies have similar performance, while for 
the deliberate attack in SF CML the degree-based 
monitoring shows better performance than the  
betweenness-based one (Fig. 8a). Fig. 8b shows that 
for the random and deliberate attacks in SW CML, the 
betweenness-based monitoring strategy is more ef-
fective than the degree-based one. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7  Conclusions 
 

This paper investigates how to control the cas-
cade in the CML with SW and SF topologies. In the 
CML, the nodes with the highest degree or between-
ness can play an important role in accelerating the 
cascading failures. By integrating the advanced pre-
dictive control into the pinning scheme, an adaptive 
predictive pinning control strategy for suppressing the 
cascade in the CML is proposed. A specific fraction 
of nodes that have the highest degree or betweenness 
are chosen to constitute the monitored node set. 
During the cascade, the adaptive pinning strategy is 
applied; i.e., only the nodes in the monitored node set, 
whose current state is normal but whose predictive 
state is abnormal, are pinned with the one-step-ahead 
predictive control. Simulation results show that for 
the SF CML the degree-based monitoring strategy is 
advantageous over the betweenness-based monitoring 
strategy, while for the SW CML the situation is the 
opposite. The fewer local predictive pinning control-
lers can effectively suppress the cascading failures 
throughout the whole CML. This work might shed 
some light on the analysis and control of cascading 

Fig. 8  Relationship between the final failure fraction I∞ 
and the monitored fraction δm in scale-free (a) and small- 
world (b) CML  
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trol is applied to the random attack caused cascade in 
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failures in real-world complex networks. For example, 
in a large-scale electric network, some important 
generators and transmission lines are monitored, and 
a blackout can be avoided by pinning them. 
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