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Abstract:  An adaptive predictive pinning control is proposed to suppress the cascade in coupled map lattices (CMLs). Two
monitoring strategies are applied: (1) A specific fraction of nodes with the highest degree or betweenness are chosen to constitute
the set of monitored nodes; (2) During the cascade, an adaptive pinning control is implemented, in which only the nodes in the
monitored set whose current state is normal but whose predictive state is abnormal, are pinned with the predictive controller.
Simulations show that for the scale-free (SF) CML the degree-based monitoring strategy is advantageous over the betweenness-
based strategy, while for the small-world (SW) CML the situation is the opposite. With the adaptive predictive pinning control, the

fewer local controllers can effectively suppress the cascade throughout the whole network.
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1 Introduction

Cascading failures triggered by initial shocks are
common in many real large-scale complex systems,
such as the electrical power grid, the Internet, the
transportation networks, and the human society
(Crucitti et al., 2004; Wang and Chen, 2008). For
instance, on August 14, 2003, an initial disturbance in
Ohio triggered the largest blackout in U.S. history in
which millions of people remained without electricity
for as long as 15 hours (Ash and Newth, 2007). In
another example, the ILOVEYOU computer virus,
first detected in Hong Kong in May 2000, spread over
the Internet and caused a loss of nearly seven billion
dollars in facility damage and computer down-time
(Wang and Chen, 2003). In light of the wide occur-
rence and catastrophic impact of the cascade in many
real large infrastructures, the cascading failures in
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complex networks have become one of the most
concerned issues today (Motter and Lai, 2002; Motter,
2004; Lai et al., 2005; Li and Wang, 2006; 2007;
Zheng et al.,2007; Bao et al., 2008a; 2008b; Huang et
al., 2008).

Coupled map lattices (CMLs) have been widely
investigated over the past decades to model the rich
space-time dynamic behaviors of complex systems
(Gade and Hu, 2000; Jost and Joy, 2001). In com-
parison to partial differential equations (PDEs),
CMLs are more suitable for computational studies
because of the discrete nature of time and space. In
CML, the dynamic elements are situated at discrete
points in space, and time is discrete. Each spatial unit
is coupled to its neighbors by various coupling
schemes, including random coupling, global coupling,
nearest neighbor coupling, small-world (SW) cou-
pling proposed by Watts and Strogatz (1998), and
scale-free (SF) coupling proposed by Barabési and
Albert (1999), each of which is motivated by different
physical systems and achieves varying degree of
success in modeling those systems. Recently, studies
on dynamics of CML with different connections have
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been performed. Some researchers have studied the
synchronization in CML. Wang et al. have made great
achievements in the cascading failure model based on
CML and the mechanism of the cascading failure in
the model (Wang and Xu, 2004; Xu and Wang, 2005),
and they found that a sufficiently large perturbation
on a single node can lead to cascading failures of all
the other nodes in the network. Bao et al. (2008b)
further pointed out that the macroscopic properties of
SF CML during the failure propagation are governed
by the general laws of synergetics.

The existing research on the cascading failures
in CML focused only on the mechanism and charac-
teristics of cascade, and the relationship between the
cascade and the coupling topology. In this paper, we
investigate how to suppress the cascading failures in
CML with SW and SF coupling topologies based on
the adaptive predictive pinning control. The control
strategy is illustrated as follows: choose a fraction of
nodes with the highest degree or betweenness to
constitute the monitored node set; during the cascade,
only the nodes in the monitored node set, whose
current state is normal but whose predictive state is
abnormal, are adaptively pinned with the predictive
control. The adaptive pinning strategy is different
from the random and specific pinning scheme previ-
ously investigated in terms of the stabilization of
complex networks (Li and Chen, 2004; Li et al., 2004;
Xiang et al., 2007).

2 Formulation of the predictive control
algorithm

Predictive control is the advanced control tech-
nique with a significant and widespread impact on
industrial process control, which now can be found in
a wide variety of manufacturing environments in-
cluding chemicals, power plants, and aerospace
(Raimondo et al., 2007; Rawlings and Mayne, 2009).
The basic concept of predictive control is to solve an
optimization problem for a finite future interval at the
current time (Raimondo et al., 2007; Rawlings and
Mayne, 2009). The index to be optimized is normally
the expectation of a function measuring the discrep-
ancy between the predicted output and the desired
output of the system over the prediction horizon plus
a function measuring the control increment over the
control horizon. Only the first calculated control input

in the control horizon is actually implemented. The
horizons are moved by one sample period towards the
future and the optimization process is repeated at each
subsequent instant.

Consider a single-input-single-output system
governed by

y(t+1):f(y(t)’y(t_1)""’y(t_n)’ (1)
u(t),u(t=1),---,u(t —m)),
where parameters m and n are the delay in input and
output, respectively. At time ¢, the future system
outputs y,(¢++ilf) for i=1,2,...,H,, can be predicted by
using Eq. (1). These predicted values depend on the
previous outputs and inputs, the current system output
y(f), and the future control inputs u(z+i) for =0,
l,...,H,, where H,<H, is the control horizon. The
control variable is manipulated only within the con-
trol horizon and remains constant afterwards, i.e.,
u(t+i)=u(t+H,~1) for i=H,,....H,. The sequence of
future control inputs u(¢+i) for =0,1,....H,~1 is
computed by optimizing a given objective function. A
general objective function is defined as the following
quadratic form (Rawlings and Mayne, 2009):

Au(t+k)

min [J: Zp:[yp(t+k |0y =y,(t+K)] p,
":;H (2)
+Y (Au(r+k)) qk],

k=0

where p; and g are the weighting values. In the ex-
pression of J, the first term accounts for minimizing
the variance between the predictive output and the
desired output of the system, while the second
term, in which Au(t+k)=u(t+k)—u(t+k—1), represents a
penalty on the control cost (related, for instance, to
energy).

3 Scale-free and small-world network models

This study mainly investigates how to suppress
the cascading failures in CML with SF and SW cou-
pling topologies. In this section, we briefly describe
the generation algorithm of SF and SW network
models used in this work.

The SF network model proposed by Barabasi
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and Albert (1999) is adopted, in which two basic
features of most real-life complex networks, growth
and preferential attachment, are represented. The SF
model starts with my nodes. At every time step, a new
node is introduced until the desired number of nodes
N is reached. The new node connects to m already-
existing nodes by a preferential attachment with
probability 77(k(i))=k(i)/3k(j), where k(i) is the de-
gree of node i. The SF model develops the power-law
degree distribution.

The SW topology is generated using the famous
Watts-Strogatz model (Watts and Strogatz, 1998).
Starting from a nearest-neighbor coupled network
with N nodes arranged on a ring and K edges per node,
each edge is rewired at random with a probability
0<p<1. The SW model exhibits large clustering as in
the regular network and small average path between
nodes as in the random network. Because the SW
model may lead to the formulation of isolated clusters,
we hold the assumption in the whole paper that the
SW network before the attack is always connected
without any isolated clusters.

4 Cascading failure model based on CML

We consider a CML consisting of N nodes, de-
scribed as follows (Wang and Xu, 2004):

x(+D=|1-e)f (O +e Y k?z")

VACH ) ANE)

where x(¢) (i=1,2,...,N) is the state variable of node i
at time ¢. The connection information among the N
nodes is given by the adjacency matrix A=(a;)y«n. If
there is an edge between node i and node j, then
a;=a;=1; otherwise, a;=a;=0. It is assumed that no
two different nodes can have more than one edge in
between, and no node can have an edge with itself.
Parameter k(i) is the degree of node i, and (0, 1)
represents the coupling strength. The function f,
which defines the local dynamics, is chosen in this
work as the chaotic logistic map flx)=4x(1—x).

Node i is said to be in a normal state at time m if
0<x;(£)<1 when t<m. On the other hand, if 0<x;(¥)<1
when <m and x{(m)>1, node i is said to fail at time m
and it is assumed in this case that x;(¢)=0 when >m. If
the initial states of the nodes in a CML described in

Eq. (3) all lie in the interval (0, 1) and there is not any
external perturbation, then N nodes in the network
will be in normal states forever.

To trigger the cascading failure by attacking a
single node, an external perturbation R>1 is added to
node c at time m,

N a.
X (my=(1=&)f(x.(m=D)+e Z k (‘2) S (x;(m=1)+R.
“4)

In this case, node ¢ will fail at time m and we
have x.(£)=0 for all £~~m. At time m+1, the states of
these nodes that are directly connected with node ¢
will be affected by x.(m)>1 according to Eq. (4), and
the states of these nodes may also be larger than 1 and
thus may lead to a new round of node failures. The
evolution of cascade is represented by the parameter
1(¢), which is the cumulative proportion of the nodes
that fail in the network at time z.

5 Suppression of the cascading failure in
CML based on adaptive predictive pinning
control

A strategy, integrating the advanced predictive
control into the adaptive pinning scheme, is proposed
to greatly suppress the cascade in CML with the SW
and SF coupling topologies. In the following simula-
tions, we take N=2000, my=m=3 for SF CML, and
K=6, p=0.1 for SW CML. Then, the CML contains
2000 nodes and about 6000 connections.

Firstly, we explore which nodes play an impor-
tant role in accelerating the propagation. For the SF
and SW CML with different parameters, simulations
are implemented to find the key nodes. Figs. 1a and
1b illustrate the dynamics of cascade in SF and SW
CML caused by a deliberate attack and a random
attack occurring at time 10, respectively. In the de-
liberate attack, the attacked node has the largest de-
gree, and in the random attack, the attacked node is
randomly selected.

Figs. 2a and 2b present the degree and be-
tweenness of the nodes that fail during the cascade in
SF CML, respectively. From Figs. 1a and 2 we find
that, once the nodes with the highest degree or be-
tweeness fail (for example, at time 12 for deliberate
attack caused cascade and at time 13 for random
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attack caused cascade), the proportion of the nodes
that fail immediately increases sharply at the follow-
ing time. Therefore, in SF CML, the nodes with the
largest degree or betweenness can significantly speed
up the cascade.

1.0f )
(a)

0.8f

0.6

It)

0.4f

—+ Deliberate attack

0.2f -6~ Random attack |

—+Deliberate attack|
-8-Random attack
1 1 1

9 10 11 12 13 14 15 16 17 18 19

Fig. 1 Cascade in CML (¢=0.6) attacked by a perturba-
tion R=4 to a signal node at time 10: (a) scale-free CML;
(b) small-world CML

200 T T T T T 5
(a) + + Degree
o

160t O Betweenness | 4
o
X
§120- 3 §
2 - £
0O 80 o 12 8
S
; 8

401 o 1

0 0

200, T T T 5

(b) s + Degree

160+ O Betweenness 4~
o
X
g 1201 + 3 2
(= Q
3 80 ; 2 g
[
2
[
40r {11 @

0 '0

9 10 11 12 13 14 15 16 17
t

Fig. 2 Degree and betweenness of the nodes that fail
during the cascade in scale-free CML under a random (a)
and a deliberate (b) attack as shown in Fig. 1a

Figs. 3a and 3b present the degree and be-
tweenness of the nodes that fail during the cascade in
SW CML under random and deliberate attacks,
respectively.
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Fig. 3 Degree and betweenness of the nodes that fail
during the cascade in small-world CML under a random
(a) and a deliberate (b) attack as shown in Fig. 1b

As shown in Figs. 2 and 3, the distribution of the
nodes with the highest degree across the course of
propagation in SW CML is more even than that in SF
CML, and then the influence of those nodes on the
propagation is not obvious; however, the impact of
the nodes with the highest betweenness on the
propagation is distinct because the nodes with the
higher degree, which fail in the early stage of cascade,
usually have the smaller betweenness. Consequently,
in SW CML the nodes with the highest betweenness
are important to the propagation. We consider that
fewer local intelligent controllers can suppress the
cascade by pinning those nodes.

Secondly, a fraction dy, of the nodes with the
highest degree or betweenness are chosen to consti-
tute the monitored node set M. Monitoring and adap-
tive pinning are applied only to the nodes in M. The
pinned node i is represented as
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x(t+1)=

S G ()] +u, (D),
6))

J=1, =i ()

where u,(f) is the predictive control law to node i at
time ¢. Considering the equation of node state de-
scribed in Eq. (5), the one-step-ahead predictive con-
trol is implemented to each of the pinned nodes to
keep it in normal state. Based on the monitored node
set M, the adaptive pinning scheme is carried out; i.e.,
only the nodes in M whose current states are normal
but whose one-step-ahead predictive states are ab-
normal, form the adaptively pinned node set P and are
actually pinned with the predictive controllers. Dur-
ing the control process, when failures spread, the
adaptively pinned node set P varies while satisfying
PcM. J, is the adaptive pinning fraction of the nodes.

Finally, we illustrate the algorithm of one-step-
ahead predictive control applied to the pinned nodes
in CML.

Since one-step-ahead predictive control is used,
the parameters in the objective function shown in
Eq. (2) are chosen as H,=H,=1 and then only Au(f)
needs to be optimized.

As Aui(H)=u(f)—u(t—1), Eq. (5) can be rewritten
as

x(t+1)=

(- S)f(X(l))+8Z Yof ())‘

joge k(@) (6)

+Au, (1) +u, (- 1).

Substituting Eq. (6) into the objective function, we
have

‘2313(] Pl{

+Aui(t)+u,(t—1)—xl.s(t+1)} +(Au, (1)) qOJ.

(l—g)f(xl.(t))+£.zlka(i’ll) X, (1 ‘

(N

Considering the necessary condition for the J in ex-

pression (7) to have a minimum is to set

)

oAu (1)
we derive that the optimal increment of control at
time ¢ is

Au () =—21 {x,s(t+1)—u[(t—1)

) |

—-a-

S (x; (@)

} ®)

Since our goal is to keep the pinned node in
normal state (0, 1), in the simulations the set-point
value x;5(#+1) of node i at time #+1 is chosen as 0.9.
The set-point value is selected by balancing the con-
trol cost and performance.

The procedure of adaptive predictive pinning
control is illustrated as follows:

Step 1: Choose the values of parameters p1, go,
Xis(t+1) and determine the monitored node set M ac-
cording to the degree- or betweenness-based moni-
toring strategy.

Step 2: At time k, examine the current state and
one-step-ahead predictive state of each node in M,
and then decide the adaptive pinning node set P.

Step 3: For each pinned node i, achieve the op-
timal control increment Au;(f) according to Eq. (8).

Step 4: Add Auyt) to u(k—1) to generate the
control law u(k) at the current time £, and apply ui(k)
to the pinned node.

Step 5: k+1—k; go to step 2 if the control process
is not complete.

Jj= 1]¢1k()

6 Simulation results

In SF CML, under the max-degree based attack
the cascade propagates rapidly throughout the net-
work in only four time periods, as shown in Fig. 1a.
For the deliberate attack, the cascade can be greatly
suppressed when the adaptive predictive pinning
control is employed. The controlled cascade dynam-
ics and the adaptive pinning fraction (6,,=30%) are
depicted in Figs. 4a and 4b with the degree- and
betweenness-based monitoring strategies applied,
respectively. Figs. 4a and 4b show that in the worst
case when the SF CML is deliberately attacked, the
degree-based monitoring strategy is more effective
than the betweenness-based monitoring strategy, and
that fewer local predictive controllers can hold back
the cascade, with the largest fraction J, of pinning
control being only 5.6%. As shown in Fig. 1a, the SF
CML is still vulnerable to a random attack although
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the speed of propagation is slower than that in a de-
liberate attack.
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Fig. 4 Suppressed cascades and adaptive pinning fraction
under degree-based (a) and betweenness-based (b) moni-
toring strategies when adaptive predictive pinning control
is applied to the deliberate attack caused cascade in scale-
free CML shown in Fig. 1a (6,,=30%)

For the random attack, the cascade dynamics and
the corresponding adaptive pinning fraction are il-
lustrated in Figs. 5a and 5b under the degree- and
betweenness-based monitoring strategies, respec-
tively. For the random attack in SF CML both of the
two monitoring strategies prove effective, with the
largest pinning fraction J, being below 2%. Conse-
quently, the adaptive predictive pinning control can
prevent the further propagation of random or delib-
erate attack caused cascade in SF CML with fewer
local controllers applied.

The adaptive predictive pinning control with the
different monitoring strategies is applied to suppress
the deliberate or random attack caused cascade in SW
CML. For the deliberate attack in SW CML, the
suppressed cascades and adaptive pinning fraction are
shown in Figs. 6a and 6b for the degree- and
betweenness-based monitoring schemes respectively
(0m=40%). We can see that the performance of the
betweenness-based monitoring scheme is more ef-

fective than that of the degree-based monitoring
strategy.
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Fig. 5 Suppressed cascades and adaptive pinning fraction
under degree-based (a) and betweenness-based (b) moni-
toring strategies when adaptive predictive pinning control
is applied to the random attack caused cascade in scale-
free CML shown in Fig. 1a (6,,=30%)
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Fig. 6 Suppressed cascades and adaptive pinning fraction
under degree-based (a) and betweenness-based (b) moni-
toring strategies when adaptive predictive pinning con-
trol is applied to the deliberate attack caused cascade in
small-world CML shown in Fig. 1b (6,,=40%)
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For the random attack in SW CML, Figs. 7a and
7b depict the control effect and adaptive pinning
fraction under the two monitoring strategies (Jy,=
40%), and the betweenness-based monitoring scheme
is remarkably advantageous over the degree-based
one.
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Fig. 7 Suppressed cascades and adaptive pinning fraction
under degree-based (a) and betweenness-based (b) moni-
toring strategies when adaptive predictive pinning con-
trol is applied to the random attack caused cascade in
small-world CML shown in Fig. 1b (6,,=40%)

For the different values of monitored fraction d,,,
we further investigate the control performance of the
two monitoring strategies. For the cascades of SF and
SW CML shown in Figs. 1a and 1b, we try different
Om to examine the controlled cascade with the degree-
and betweenness-based monitoring strategies applied.
Fig. 8 illustrates the relationship between the final
fraction I, of the nodes that fail and the monitored
fraction Jy, under the different monitoring schemes.
For the random attack in SF CML, these two moni-
toring strategies have similar performance, while for
the deliberate attack in SF CML the degree-based
monitoring shows better performance than the
betweenness-based one (Fig. 8a). Fig. 8b shows that
for the random and deliberate attacks in SW CML, the
betweenness-based monitoring strategy is more ef-
fective than the degree-based one.
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Fig. 8 Relationship between the final failure fraction I,
and the monitored fraction o, in scale-free (a) and small-
world (b) CML

7 Conclusions

This paper investigates how to control the cas-
cade in the CML with SW and SF topologies. In the
CML, the nodes with the highest degree or between-
ness can play an important role in accelerating the
cascading failures. By integrating the advanced pre-
dictive control into the pinning scheme, an adaptive
predictive pinning control strategy for suppressing the
cascade in the CML is proposed. A specific fraction
of nodes that have the highest degree or betweenness
are chosen to constitute the monitored node set.
During the cascade, the adaptive pinning strategy is
applied; i.e., only the nodes in the monitored node set,
whose current state is normal but whose predictive
state is abnormal, are pinned with the one-step-ahead
predictive control. Simulation results show that for
the SF CML the degree-based monitoring strategy is
advantageous over the betweenness-based monitoring
strategy, while for the SW CML the situation is the
opposite. The fewer local predictive pinning control-
lers can effectively suppress the cascading failures
throughout the whole CML. This work might shed
some light on the analysis and control of cascading
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failures in real-world complex networks. For example,
in a large-scale electric network, some important
generators and transmission lines are monitored, and
a blackout can be avoided by pinning them.
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