
Yan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):647-657 647

Improving naive Bayes classifier by dividing its decision regions*

Zhi-yong YAN, Cong-fu XU†‡, Yun-he PAN

(Institute of Artificial Intelligence, Zhejiang University, Hangzhou 310027, China)
†E-mail: xucongfu@zju.edu.cn

Received Dec. 20, 2010; Revision accepted Apr. 8, 2011; Crosschecked July 14, 2011

Abstract: Classification can be regarded as dividing the data space into decision regions separated by decision boundaries. In
this paper we analyze decision tree algorithms and the NBTree algorithm from this perspective. Thus, a decision tree can be
regarded as a classifier tree, in which each classifier on a non-root node is trained in decision regions of the classifier on the parent
node. Meanwhile, the NBTree algorithm, which generates a classifier tree with the C4.5 algorithm and the naive Bayes classifier as
the root and leaf classifiers respectively, can also be regarded as training naive Bayes classifiers in decision regions of the C4.5
algorithm. We propose a second division (SD) algorithm and three soft second division (SD-soft) algorithms to train classifiers in
decision regions of the naive Bayes classifier. These four novel algorithms all generate two-level classifier trees with the naive
Bayes classifier as root classifiers. The SD and three SD-soft algorithms can make good use of both the information contained in
instances near decision boundaries, and those that may be ignored by the naive Bayes classifier. Finally, we conduct experiments
on 30 data sets from the UC Irvine (UCI) repository. Experiment results show that the SD algorithm can obtain better generali-
zation abilities than the NBTree and the averaged one-dependence estimators (AODE) algorithms when using the C4.5 algorithm
and support vector machine (SVM) as leaf classifiers. Further experiments indicate that our three SD-soft algorithms can achieve
better generalization abilities than the SD algorithm when argument values are selected appropriately.

Key words: Naive Bayes classifier, Decision region, NBTree, C4.5 algorithm, Support vector machine (SVM)
doi:10.1631/jzus.C1000437 Document code: A CLC number: TP181

1 Introduction

The naive Bayes classifier (Domingos and Paz-
zani, 1997) is an example of global learning (Huang et
al., 2008), which obtains a distribution estimation of
the whole data set. The naive Bayes classifier as-
sumes that attributes of instances are independent
given the class (Domingos and Pazzani, 1997). Al-
though this assumption is very naive, the naive Bayes
classifier has good generalization ability, and is one
of top 10 algorithms in data mining voted by IEEE
International Conference on Data Mining (ICDM)
2006 (Wu et al., 2008).

There are many studies on improving the gen-
eralization ability of the naive Bayes classifier,
amongst which the NBTree algorithm (Kohavi, 1996)
is typical. The NBTree algorithm trains naive Bayes
classifiers on the leaf nodes of a decision tree.

Some researchers regard classification as divid-
ing data space X into some decision regions separated
by decision boundaries (Bishop, 2006), although most
researchers regard classification as finding a mapping
from data space X to label set Y (Mitchell, 1997). We
call the former perspective the dividing perspective.
In this paper, we analyze decision tree algorithms and
the NBTree algorithm from the dividing perspective.
A decision tree can be regarded as a classifier tree
composed of two types of classifiers. An NBTree can
be regarded as a two-level classifier tree with a deci-
sion tree classifier as the root node and several naive
Bayes classifiers as leaf nodes. Then the NBTree
algorithm can be regarded as training naive Bayes

Journal of Zhejiang University-SCIENCE C (Computers & Electronics)
ISSN 1869-1951 (Print); ISSN 1869-196X (Online)
www.zju.edu.cn/jzus; www.springerlink.com
E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National Natural Science Foundation of
China (No. 60970081) and the National Basic Research Program (973)
of China (No. 2010CB327903)
© Zhejiang University and Springer-Verlag Berlin Heidelberg 2011

Yan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):647-657 648

classifiers in decision regions of the C4.5 algorithm
(Quinlan, 1993). The NBTree algorithm can use ad-
vantages of both the C4.5 algorithm and the naive
Bayes classifier, and outperforms these two classifi-
ers (Kohavi, 1996).

Being contrary to the NBTree algorithm which
trains naive Bayes classifiers in decision regions of the
C4.5 algorithm, we propose the second division (SD)
algorithm to train classifiers in decision regions of the
naive Bayes classifier. The SD algorithm will generate
a two-level classifier tree, with the naive Bayes clas-
sifier as the root node and other classifiers as leaf
nodes. We also propose three soft versions of the SD
algorithm (SD-soft) to deal with overlapped regions
generated by the naive Bayes classifier. In this paper
leaf classifiers used are the naive Bayes classifier, the
C4.5 algorithm, and support vector machine (SVM)
(Vapnik, 1995). We perform experiments on 30 data
sets from the UC Irvine (UCI) repository (Frank and
Asuncion, 2010) to compare the SD algorithm with
the NBTree and the averaged one-dependence esti-
mators (AODE) algorithms (Webb et al., 2005). We
also compare three SD-soft algorithms with the SD
algorithm. We apply the SD algorithm to the AODE
algorithm, the C4.5 algorithm, and SVM. Finally we
adopt the global/local learning theory of Huang et al.
(2008) to discuss why the SD algorithm works.

2 Analysis of decision tree and the NBTree
algorithms from the dividing perspective

The dividing perspective regards classifiers as
dividing data space X into some decision regions
(Bishop, 2006). The definition of the decision region
is as follows.
Definition 1 (Decision region) If region R in data
space X satisfies the following two conditions for
classifier C, then it is called the decision region of
label Yi under classifier C, denoted as DR(C, Yi):

, () ,iC Y∀ ∈ =x R x (1)
, () ,iC Y∀ ∉ ≠x R x (2)

where x is the test instance.

For decision regions, the following formulas are
true:

(,) , ,i iC Y Y≠ ∅ ∀ ∈DR Y (3)

(,) (,) , ,i j i jC Y C Y Y Y∩ = ∅ ≠DR DR (4)

(,) .
i

i
Y

C Y
∈

=DR∪
Y

X (5)

From Eqs. (3)–(5), it is clear that decision regions

of classifier C constitute a partition of data space X.
From the dividing perspective, a classifier can be

regarded as a divider, whose function is to obtain a
partition of data space X.

2.1 Analysis of decision tree algorithms

The decision tree is a knowledge representation
method. Non-leaf nodes Ni of a decision tree are at-
tributes, and leaf nodes of a decision tree are labels.
On each non-leaf node, branches are generated ac-
cording to value of the attribute of this node. An
example of the decision tree is shown in Fig. 1.

Each node of a decision tree corresponds to a

region of data space X. For example, the root node N0
of the decision tree in Fig. 1 corresponds to data space
X. A leaf node of a decision tree corresponds to a part
of a decision region. Decision tree algorithms adopt a
majority voting method to determine the label for the
region corresponding to a leaf node. For each non-leaf
node, decision tree algorithms divide its correspond-
ing region into several sub-regions which correspond
to its children nodes. The relationship among regions
of parent and children nodes of the decision tree in
Fig. 1 is as follows:

1 2 1 2 1 2, , , ,= ∪ ∩ = ∅ ≠ ∅ ≠ ∅X R R R R R R (6)

1 3 4 3 4 3 4, , , ,= ∪ ∩ = ∅ ≠ ∅ ≠ ∅R R R R R R R (7)

2 5 6 5 6 5 6, , , .= ∪ ∩ = ∅ ≠ ∅ ≠ ∅R R R R R R R (8)

Fig. 1 Structure of a decision tree and regions corre-
sponding to its nodes

N0

X

R1

Y0

N1 N2

Y1 Y2 Y3

R3 R4 R5

R2

R6

Yan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):647-657 649

It is clear that each non-leaf node corresponds to
a divider. From the dividing perspective, a classifier
can be regarded as a divider. If regions generated by a
divider are associated with labels, then regions can be
regarded as decision regions. After this process, a
divider can be regarded as a classifier. For example, if
nodes N1 and N2 are associated with labels Y1 and Y2,
respectively, then the root node N0 can be regarded as
corresponding to a classifier whose output is Y1 or Y2.
Each non-leaf node corresponds to a piece-wise clas-
sifier (PWC), which is a very simple classifier:

0 1

1 1 2

1 1

, [] ,
, [] [,),

PWC()

, [] ,k k

Y x i v
Y x i v v

Y x i v− −

 <⎧
⎪ ∈⎪= ⎨
⎪
⎪ ≥⎩

x
#

 (9)

where x[i] is the value of the ith attribute of instance x
and vi is the interval boundary of x[i].

The region corresponding to a node can be re-
garded as a decision region of the classifier corre-
sponding to the parent node. For a non-leaf node,
decision tree algorithms train a PWC in the decision
region of the classifier corresponding to its parent
node. In Fig. 1, PWC0 corresponding to the root node
N0 divides data space X into R1 and R2, which corre-
spond to nodes N1 and N2 respectively. For node N1,
PWC1 is trained in decision region R1 of PWC0.
Similarly, for node N2, PWC2 is trained in decision
region R2 of PWC0.

Each leaf node corresponds to a majority voting
classifier (MVC), which is also a very simple
classifier:

{ }MVC() arg max (,) | (,) , ,
iY j j j j j iy y D y Y= ∈ =x x x

 (10)

where xj is the instance and D denotes the training
data set.

Decision tree algorithms train an MVC in the
region corresponding to a leaf node. The label pre-
dicted by a leaf node is the one predicted by the MVC
trained in the region corresponding to the leaf node.

Each non-leaf node corresponds to a PWC, and
each leaf node corresponds to an MVC; thus, a deci-
sion tree can be regarded as a classifier tree. The
classifier tree corresponding to the decision tree in
Fig. 1 is shown in Fig. 2.

Although both PWC and MVC are very simple,

we can obtain very good generalization ability by
organizing these two classifiers as a tree. For exam-
ple, the C4.5 algorithm is one of top 10 algorithms in
data mining voted by ICDM 2006 (Wu et al., 2008).

2.2 Analysis of the NBTree algorithm

The NBTree algorithm also generates a decision
tree, whose leaf nodes are naive Bayes classifiers
instead of labels. An NBTree is also a classifier tree,
whose non-leaf and leaf nodes are PWCs and naive
Bayes classifiers, respectively. The structure of an
NBTree is shown in Fig. 3.

In Fig. 3, if nodes NB0, NB1, NB2, and NB3 are

associated with labels Y0, Y1, Y2, and Y3, then regions
R3, R4, R5, and R6 can be regarded as decision regions
of PWC1 and PWC2. Then the sub-tree composed of
PWC0, PWC1, and PWC2 can be regarded as a deci-
sion tree generated by the C4.5 algorithm, whose
objective is to generate decision regions for training

X

R1 R2

R3 R4 R5 R6

PWC0

PWC1 PWC2

MVC1MVC0 MVC2 MVC3

Fig. 2 Classifier tree corresponding to the decision tree
in Fig. 1

Fig. 3 An NBTree as a classifier tree with naive Bayes
(NB) classifiers as leaf nodes

X

R1 R2

R3 R4 R5 R6

PWC0

PWC1 PWC2

NB1 NB0 NB2 NB3

Yan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):647-657 650

naive Bayes classifiers. Thus, an NBTree can also be
regarded as a classifier tree composed of a C4.5
classifier and several naive Bayes classifiers. These
naive Bayes classifiers are trained in decision regions
of the C4.5 classifier. The two-level classifier tree
corresponding to the classifier tree in Fig. 3 is shown
in Fig. 4.

3 Training classifiers in decision regions of
the naive Bayes classifier

Training naive Bayes classifiers in decision re-

gions of the C4.5 algorithm can improve the gener-
alization abilities of both the naive Bayes classifier
and the C4.5 algorithm (Kohavi, 1996). In this sec-
tion, we study the method of training classifiers in
decision regions of the naive Bayes classifier.

3.1 SD algorithm

The simplest method is to train classifiers in de-
cision regions of the naive Bayes classifier, which is
shown in Fig. 5.

There are two questions when training classifiers
in decision regions of the naive Bayes classifier:

1. When should we train classifier C in a deci-
sion region of the naive Bayes classifier?

2. When classifier C is trained in a decision re-
gion of the naive Bayes classifier, there are two clas-
sifiers in this decision region. Then which classifier
should be selected?

For question 1, it is clear that when classifier C
can improve the generalization ability of the naive
Bayes classifier in the decision region, classifier C
should be trained. However, it is very difficult to
determine whether classifier C can do this. Thus, we
exclude only one impossible case when the training
accuracy of the naive Bayes classifier in the decision
region is 100%. When this case is true, all instances in
the decision region have the same class. If classifier C
is trained in the decision region, only a classification
model with Yi as its unique output can be obtained.
This classification model cannot improve the gener-
alization ability of the naive Bayes classifier in this
decision region.

For question 2, between the naive Bayes classi-
fier and classifier C, the one with better generalization
ability should be selected, but it is very difficult to
determine in the training phase. There are at least three
methods for selecting a better classifier. The first
method is to divide training data set D into training
subset and validation subset and then to choose the
classifier with better test accuracy on the validation
subset. The second method adopts cross validation to
select a better classifier. The third method is to select
the classifier with better training accuracy. Amongst
above three methods, the former two may obtain more
accurate selection, but they simultaneously need more
time. We adopt the last method in this study.

Training the classifier can be regarded as divid-
ing data space X once. Then training classifier C in
decision regions of the naive Bayes classifier can be
regarded as the SD to data space X. The procedure of
the SD algorithm is shown in Fig. 6. Like the NBTree
algorithm, the SD algorithm also generates a two-
level classifier tree. In this classifier tree, the naive
Bayes classifier is the root classifier, and classifier C
is the leaf classifier.

3.2 SD-soft algorithm

The SD algorithm trains classifiers in decision
regions of the naive Bayes classifier. Decision regions
constitute a partition of data space X. This dividing is

Fig. 4 An NBTree composed of a C4.5 and several naive
Bayes classifiers

X

DR0 DR1 DR2 DR3

C4.5

NB1 NB0 NB2 NB3

Fig. 5 Classifier training in decision regions of the naive
Bayes classifier

X

DR0 DR1 DR2 DR3

NB

C1 C0 C2 C3

Yan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):647-657 651

hard dividing. But the naive Bayes classifier can
generate overlapped regions in data space X, which
means instance (x, y) may belong to several decision
regions with conditional probabilities. In this section
we propose a soft version of the SD algorithm to deal
with overlapped regions generated by the naive Bayes
classifier.

There are many methods for generating regions
with overlaps. In this section, we adopt the method
similar to the one used in the divide-and-conquer
(D&C) algorithm (Frosyniotis et al., 2003) to gener-
ate overlapped regions and combine classifiers. The
D&C algorithm first uses a clustering algorithm to
obtain data subsets {Di}, and then trains several
multi-layered perceptron classifiers (Pal and Mitra,
1992) on these data subsets. The clustering algorithm
used is the fuzzy C-means algorithm (Bezdek, 1981)
or greedy expectation minimization (EM) algorithm
(Vlassis and Likas, 2002). In the test phase, predic-
tions of these classifiers are combined to make the
final prediction. The membership degree of instance
(x, y) belonging to cluster i is denoted as u(clusteri, x).
The D&C algorithm utilizes membership threshold q
to obtain soft data subsets. The soft data subset Dsi is
obtained by

{ }s (,) | (cluster ,) .i iD y u q= >x x (11)

The D&C algorithm then uses Eq. (12) to obtain the
probability distribution p(Yi|x):

1

0
(|) (cluster ,) (()).

k

i j j i
j

p Y u I C Y
−

=

= ⋅ ==∑x x x (12)

The indicator function I(z) is defined by

1, if is true,
()

0, otherwise.
z

I z
 ⎧

= ⎨ ⎩
 (13)

We adopt the above subset generating method to

obtain regions with overlaps. The output of the naive
Bayes classifier is a probability distribution vector
[pNB(Y0|x), pNB(Y1|x), …, pNB(Yk−1|x)]. The data subset
Dsi is obtained by

s NB{(,) | (|) }.i iD y p Y q= >x x (14)

From Eq. (14), it is clear that instance (x, y) may be
contained in several data subsets.

Since classifier C may be a classifier that outputs
the probability distribution, we improve the combin-
ing method of the D&C algorithm:

1

NB
0

(|) (|) (|),
j

k

i j C i
j

p Y p Y p Y
−

=

= ⋅∑x x x (15)

where (|)
jC ip Y x denotes the probability of x be-

longing to class Yi predicted by classifier Cj.
Taking indicator vector is_used into considera-

tion, the output of p(Yi|x) is calculated by

1

NB
0

NB

(|) (|) (|) (,)

(|) (,),

j

k

i j C i
j

i

p Y p Y p Y I j T

p Y I i F

−

=

= ⋅ ⋅

 + ⋅

∑x x x

x
 (16)

where I(j, T) and I(i, F) are used to represent
I(is_used[j]==true) and I(is_used[i]==false), respec-
tively. Then we have

(,) (,) 1.I j T I i F+ = (17)

Eq. (18) is true for every classifier that outputs
the probability distribution:

1

0

(|) 1.
k

C i
i

p Y
−

=

=∑ x (18)

Training phase:
Input: training data set D, the naive Bayes classifier NB,
and classifier C

Output: a two-level classifier tree named SD tree (com-
posed of NB, Ci, and indicator vector is_used)

1. Train the naive Bayes classifier NB on training data set
D.

2. Obtain data subsets {Di} in decision regions of NB
using the following formula:

{(,) | NB() }.i iD y Y= =x x
3. For each Di, compute training accuracy of NB. If it is

100%, is_used[i]=false. If it is not 100%, train C on Di
to obtain Ci. If training accuracy of Ci on Di is greater
than that of NB, then is_used[i]=true; otherwise,
is_used[i]=false.

Test phase:
Input: an SD tree, and test instance x
Output: label y
1. Obtain prediction yNB of NB for x.
2. If is_used[yNB]==false, y=yNB; otherwise, y=CyNB(x).

Fig. 6 Procedure of the SD algorithm

Yan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):647-657 652

Then we have the following derivation:

1 1 1

NB
0 0 0

1

NB
0

1 1

NB
0 0

NB
0

(|) (|) (|) (,)

(|) (,)

(|) (,) (|)

(|) (,)

j

j

k k k

i j C i
i i j

k

i
i

k k

j C i
j i

i
i

p Y p Y p Y I j T

p Y I i F

p Y I j T p Y

p Y x I i F

− − −

= = =

−

=

− −

= =

=

= ⋅ ⋅

 + ⋅

 = ⋅ ⋅

 + ⋅

∑ ∑∑

∑

∑ ∑

x x x

x

x x

1

1

NB
0

1

NB
0

1

NB
0

1

NB
0

(|) (,)

(|) (,)

(|) ((,) (,))

(|)

1.

k

k

j
j

k

i
i

k

i
i

k

i
i

p Y I j T

p Y I i F

p Y I j T I i F

p Y

−

−

=

−

=

−

=

−

=

 = ⋅

 + ⋅

 = ⋅ +

 =

 =

∑

∑

∑

∑

∑

x

x

x

x

The final output is determined by

arg max (|).
iY iy p Y∈= Y x (19)

The SD-soft algorithm is shown in Fig. 7.

3.3 Time complexity of the SD algorithm

We first assume that the training data has m at-
tributes, n instances, and k classes, and then discuss
the time complexity of the SD algorithm. It is clear
that the SD algorithm increases the computational cost
of the naive Bayes classifier. The training and test time
complexities of the naive Bayes classifier are O(mn)
and O(km), respectively (Webb et al., 2005). In the
training phase, after training the naive Bayes classi-
fier, the SD algorithm first divides the training data set
into data subsets, and the time complexity is O(kmn).
Then the SD algorithm trains classifier C k times at
most, and the time complexity is O(kCtrain(n/k)), in
which O(Ctrain(n/k)) is the time complexity of training
classifier C on a data set of size n/k. Thus, the training
time complexity of the SD algorithm is O(mn)
+O(kmn)+O(kCtrain(n/k)). In the test phase, the SD
algorithm first uses NB to obtain the prediction y, and
the time complexity is O(km). Then the SD algorithm
may use classifier Cy to make the final prediction, and

O(Ctest(n/k)) is the time complexity of using classifier
C trained on the data set with size n/k to make the
prediction. Thus, the test time complexity of the SD
algorithm is O(km)+O(Ctest(n/k)).

In this study, we use the naive Bayes classifier,
the C4.5 algorithm, and SVM as leaf classifiers, and
SVM adopts the sequential minimal optimization
(SMO) training algorithm (Platt, 1999). These three
classifiers are eager classifiers, whose test time com-
plexity is very small. Thus, we compare only the
training time complexity of the SD algorithm with
that of the naive Bayes classifiers, the NBTree algo-
rithm, and the AODE algorithm. Training time com-
plexities are listed in Table 1.

From Table 1, it is clear that training time com-
plexities of SD (C=NB) and SD (C=C4.5) are smaller
than that of the NBTree algorithm, and the training
time complexity of SD (C=SVM) may be comparable
with that of the NBTree algorithm. The training time
complexity of SD (C=C4.5) may be comparable with

Training phase:
Input: training data set D, the naive Bayes classifier
NB, classifier C, and probability threshold q.

Output: a two-level classifier tree named SD tree
(composed of NB, Ci, and indicator vector is_used)

1. Train the naive Bayes classifier NB on training data
set D.

2. Obtain soft data sets {Dsi} and data set {Di} in de-
cision regions of NB using the following formulae:

{ }s NB(,) | (|) ,i iD y p Y q= >x x

(){ }(,) | NB .i iD y Y= =x x
3. For each Di, compute training accuracy of NB. If it is

100%, is_used[i]=false. If it is not 100%, train C on
Dsi to obtain Ci. If training accuracy of Ci on Di is
greater than that of NB, then is_used[i]=true; oth-
erwise, is_used[i]=false.

Test phase:
Input: an SD tree, and test instance x
Output: label y
1. Obtain prediction yNB of NB for x.
2. If is_used[yNB]==false, y=yNB. Otherwise, obtain the

probability distribution of NB for x, and then use
the following two equations to obtain the final
prediction y:

1

NB
0

NB

(|) (|) (|) (,)

(|) (,),

j

k

i j C i
j

i

p Y p Y p Y I j T

p Y I i F

−

=

= ⋅ ⋅

 + ⋅

∑x x x

x

arg max (|).
iY Y iy p Y∈= x

Fig. 7 Procedure of the SD-soft algorithm

Yan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):647-657 653

that of the AODE algorithm. The training time com-
plexity of SD (C=SVM) is larger than that of the
AODE algorithm. The computational cost of the SD-
soft algorithm is larger than that of the SD algorithm
because data set Dsi usually has more instances than
data set Di.

4 Experimental results

In this section, we perform experiments to use

the SD and the SD-soft algorithms to train the naive
Bayes classifier, the C4.5 algorithm, and SVM in
decision regions of the naive Bayes classifier. We
first compare the SD-algorithm with the NBTree and
the AODE algorithms, and then compare the SD-soft
algorithm with the SD algorithm.

The experimental environment is the Waikato
environment for knowledge analysis (WEKA) (Witten
and Frank, 2005). The naive Bayes classifier, the
NBTree algorithm, and the C4.5 algorithm adopt Na-
iveBayes, NBTree, and J48 methods of WEKA re-
spectively, with default settings. The J48 method is an
implementation of the C4.5 release 8 (Quinlan, 1996).
The AODE algorithm adopts the AODE method of
WEKA, and adopts the supervised discretion method
to discretize continual attributes. SVM adopts the
SMO method of WEKA, and a linear kernel function.

The experimental data sets are 30 UCI data sets.
We remove instances with unknown values from
these data sets. After the above preprocessing, de-
scriptions of these data sets are listed in Table 2.

We adopt 10 times 10-fold cross validation to
obtain test accuracies and adopt two-tailed t-test with

95% confidence to compare different classifiers to
obtain win-loss-tie (W/L/T) records. Due to space
limitation, only t-test results are listed.

4.1 SD algorithm

We first use the naive Bayes classifier as the leaf
classifier. The SD algorithm can be applied twice or
three times, denoted as 2SD and 3SD, respectively.
We train the naive Bayes classifier, SD, 2SD, and
3SD, and then compare these classifiers by t-test
(Table 3).

From Table 3, we can find that SD, 2SD, and
3SD all can improve the generalization ability of the
naive Bayes classifier.

Table 2 Descriptions of 30 UCI data sets after pre-
processing

Data set Number of
attributes

Number of
classes

Number of
instances

Anneal 39 6 898
Balance-scale 5 3 625
Breast-cancer 10 2 277
Bridges 13 6 70
Car 7 4 1728
Credit-g 21 2 1000
Dermatology 35 6 358
Diabetes 9 2 768
Ecoli 8 8 336
Haberman 4 2 306
Heart-c 14 5 296
Heart-statlog 14 2 270
Hepatitis 20 2 80
Ionosphere 35 2 351
Iris 5 3 150
Liver-disorders 7 2 345
Lung-cancer 57 2 27
Molecular 59 4 106
Mushroom 23 2 5644
Postoperative 9 3 87
Segment 20 7 2310
Solar 13 2 323
Sonar 61 2 208
Soybean 36 19 562
Sponge 46 3 54
Tic-tac-toe 10 2 958
Vehicle 19 4 846
Vote 17 2 232
Vowel 14 11 990
Zoo 18 7 101

Table 1 Training time complexities of eight classifiers
Classifier Time complexity Literature
NB O(mn) Webb et al., 2005
NBTree O(n2km2/v) Zheng and Webb, 2005
AODE O(m2n) Webb et al., 2005
C4.5 O(mnlogn) Frank and Witten, 1998
SVM O(nd), d∈[1, 2.2] Platt, 1999
SD1 O(2mn)+O(kmn)

SD2 O(mn)+O(kmn)
+O(mnlog(n/k))

SD3 O(mn)+O(kmn)
+O(nd/kd−1)

This study

SD1: C=NB; SD2: C=C4.5; SD3: C=SVM. k: number of classes; m:
number of attributes; v: average number of values for an attribute;
n: number of training instances

Yan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):647-657 654

Compared with the naive Bayes classifier, 2SD
obtains the best t-test result. Thus, it is necessary to
apply the SD algorithm twice.

Then we compare 2SD with the NBTree and the

AODE algorithms (Table 4).
Table 4 shows that the generalization ability of

2SD is better than that of the NBTree algorithm, but
worse than that of the AODE algorithm. Another
advantage of 2SD over the NBTree algorithm is that
the training time of 2SD is much shorter than that of
the NBTree algorithm, because the SD algorithm does
not adopt cross validation in the training phase.

We then use the C4.5 algorithm and SVM as leaf
classifiers of the SD algorithm. Test accuracies ob-
tained by the SD algorithm are compared with those
obtained by the naive Bayes classifier, leaf classifi-
ers, the NBTree algorithm, and the AODE algorithm
(Table 5).

From Table 5, it is clear that when using the C4.5

algorithm and SVM as leaf classifiers, the SD algo-
rithm can obtain better generalization abilities than

the naive Bayes classifier, leaf classifiers, the
NBTree, and the AODE algorithms.

4.2 SD-soft algorithm

The selection of q value is crucial for the SD-soft
algorithm. In our experiment, the SD-soft algorithm is
trained with q values as follows:

/ , {0.0, 0.2, 0.4, ..., 2.0},q p m p= = (20)

where p is the argument and m is the number of
classes.

We train the SD-soft algorithm with 11 q values
and the SD algorithm on 30 UCI data sets. The leaf
classifiers used are the naive Bayes classifier, the
C4.5 algorithm, and SVM. From Eq. (20), q value is
adjusted by p value; therefore, we perform experi-
ments with different p values. We first compare av-
erage test accuracies of the SD algorithm with those
of the SD-soft algorithm with different p values. Av-
erage test accuracies are shown in Fig. 8. The best p
value we select for a data set is the one that makes the
SD-soft algorithm obtain the best average test accu-
racy on this data set. Then the SD-soft algorithm with
the best q value is compared with the SD algorithm.
The t-test results are listed in Table 6.

From Fig. 8, when using the naive Bayes classi-
fier or SVM as the leaf classifier, the SD-soft algo-
rithm obtains worse test accuracies than the SD algo-
rithm. However, when using the C4.5 algorithm as the
leaf classifier and when the p value is 0.6, 0.8, or 1.0,
the SD-soft algorithm obtains better test accuracies.

Table 6 shows that the SD-soft algorithm can

obtain better generalization ability than the SD algo-
rithm when the best average test accuracy is selected
for each data set. Thus, it is possible for the SD-soft

Table 3 The t-test results (W/L/T) of applying the SD
algorithm once, twice, and three times

Algorithm W/L/T Algorithm W/L/T
SD vs. NB 14/6/10 2SD vs. SD 3/1/26

2SD vs. NB 14/5/11 3SD vs. 2SD 2/0/28
3SD vs. NB 14/6/10

Table 4 The t-test results (W/L/T) of comparing 2SD
with NBTree and AODE

Algorithm W/L/T
2SD vs. NBTree 13/8/9
2SD vs. AODE 8/12/10

Fig. 8 Test accuracies of the SD and SD-soft algorithms
with different p values

0.76
0.77
0.78
0.79
0.80
0.81
0.82
0.83
0.84
0.85
0.86

p

A
cc

ur
ac

y

0.20 0.4 0.80.6 1.0 1.41.2 1.6 2.01.8

SD (C=NB) SD-soft (C=NB)
SD (C=C4.5) SD-soft (C=C4.5)
SD (C=SVM) SD-soft (C=SVM)

Table 5 The t-test results (W/L/T) of comparing the
SD algorithm with other four classifiers

Algorithm W/L/T
SD (C=C4.5) vs. NB 15/4/11
SD (C=C4.5) vs. C4.5 18/2/10
SD (C=C4.5) vs. NBTree 18/4/8
SD (C=C4.5) vs. AODE 16/6/8
SD (C=SVM) vs. NB 16/3/11
SD (C=SVM) vs. SVM 15/7/8
SD (C=SVM) vs. NBTree 20/1/9
SD (C=SVM) vs. AODE 16/6/8

Yan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):647-657 655

algorithm to obtain better generalization ability than
the SD algorithm if an appropriate q value is selected.

5 Discussion

5.1 Other two SD-soft algorithms

The SD-soft algorithm is proposed to deal with
the overlapped regions generated by the naive Bayes
classifier, and adopts the method that the divide-
and-conquer algorithm uses to deal with the over-
lapped regions. In this section, we investigate two
other methods of dealing with the overlapped regions.

We first use Eq. (21) to obtain the data set {Dsi}
of the SD-soft algorithm, and the resulting algorithm
is named SD-soft.v2:

NB{(,) | NB() , (|) }.si i i iD D y Y p Y q= ∪ ≠ >x x x (21)

When q≥0.5, data set Dsi is the same as data set
Di, and thus the SD-soft.v2 algorithm uses the pre-
diction method of the SD algorithm to make the
prediction.

The SD-soft and the SD-soft.v2 algorithms are
both based on the conditional probability pNB(Yi|x).
Next we propose another SD-soft algorithm based on
the prediction rank of label Yi.

The function r(NB, x, Yi) calculates the predic-
tion rank of label Yi:

NB NB(NB, ,) { | (|) (|)} 1.i j j ir Y Y p Y p Y = > +x x x (22)

We use Eq. (23) to obtain the data set {Dsi} of

the SD-soft algorithm, and the resulting algorithm is
named SD-soft.v3:

s NB{(,) | (NB, ,) , (|) 0}.i i iD y r Y k p Y= ≤ >x x x (23)

When k=1, data set Dsi is the same as data set Di, and
thus the SD-soft.v3 algorithm uses the prediction
method of the SD algorithm to make the prediction.

We compare the above two new SD-soft algo-
rithms with the SD algorithm. The SD-soft.v2 algo-
rithm uses the q value in Eq. (20). The k values of the
SD-soft.v3 algorithm are 1, 2, and 3. For these two
new algorithms, we select the best average test ac-
curacy amongst different argument values for each
data set, and compare it with the test accuracy of the
SD algorithm (Table 7).

From Table 7, these two new algorithms can

both obtain better generalization abilities than the SD
algorithm. Comparing Table 7 with Table 6, we find
that they cannot obtain better generalization abilities
than the SD-soft algorithm, except that when the
SD-soft.v3 algorithm adopts SVM as the leaf classi-
fier. Like the SD-soft algorithm, argument selection is
crucial for the above two new algorithms.

5.2 Applying the SD algorithm to the AODE al-
gorithm, the C4.5 algorithm, and SVM

We first adopt the SD algorithm to train the C4.5
algorithm and SVM in decision regions of the AODE
algorithm (Table 8).

According to Table 8, training C4.5/SVM in
decision regions of the AODE algorithm by the SD
algorithm can improve generalization abilities of both
the AODE algorithm and leaf classifiers.

We then adopt the SD algorithm to train the C4.5

algorithm, the naive Bayes classifier, and SVM in
decision regions of the C4.5 algorithm and SVM. The
t-test results are listed in Tables 9 and 10, respectively.

Table 6 The t-test results (W/L/T) of comparing the
SD-soft algorithm with the SD algorithm

Algorithm W/L/T
SD-soft (C=NB) vs. SD (C=NB) 12/1/17
SD-soft (C=C4.5) vs. SD (C=C4.5) 15/0/15
SD-soft (C=SVM) vs. SD(C=SVM) 10/4/16

 Table 7 The t-test results (W/L/T) of comparing two
SD-soft algorithms with the SD algorithm

Algorithm W/L/T
SD-soft.v2 (C=NB) vs. SD (C=NB) 10/1/19
SD-soft.v2 (C=C4.5) vs. SD (C=C4.5) 11/0/19
SD-soft.v2 (C=SVM) vs. SD (C=SVM) 7/2/21
SD-soft.v3 (C=NB) vs. SD (C=NB) 9/0/21
SD-soft.v3 (C=C4.5) vs. SD (C=C4.5) 6/0/24
SD-soft.v3 (C=SVM) vs. SD (C=SVM) 8/0/22

Table 8 The t-test results (W/L/T) of applying the SD
algorithm to the AODE algorithm

Algorithm W/L/T
SD (AODE+C4.5) vs. AODE 12/4/14
SD (AODE+C4.5) vs. C4.5 16/3/11
SD (AODE+SVM) vs. AODE 16/2/12
SD (AODE+SVM) vs. SVM 11/8/11

Yan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):647-657 656

Tables 9 and 10 demonstrate that the SD algo-

rithm is applicable for neither the C4.5 algorithm nor
SVM. SD (C4.5+C4.5) improves the generalization
ability of the C4.5 algorithm in only six data sets. SD
(C4.5+NB) and SD (C4.5+SVM) both improve the
generalization ability of the C4.5 algorithm, but they
reduce the generalization abilities of the naive Bayes
classifier and SVM. SD (SVM+SVM) improves the
generalization ability of SVM in eight data sets, but
reduces it in five data sets. SD (SVM+C4.5) and SD
(SVM+NB) cannot improve the generalization ability
of SVM, although they improve the generalization
abilities of the C4.5 algorithm and the naive Bayes
classifier in over half the data sets.

Thus, the SD algorithm is applicable for the
AODE algorithm, but it is applicable for neither the
C4.5 algorithm nor SVM.

5.3 Why does the SD algorithm work?

From experimental results of Sections 4 and 5.2,
the SD algorithm is applicable for both the naive
Bayes classifier and the AODE algorithm, but it is not
applicable for either the C4.5 algorithm or SVM. In
this section we attempt to investigate the cause.

Huang et al. (2008) divided classifiers into global
learning and local learning. Global learning makes
descriptions of data, whereas local learning captures
the local useful information from data. Global learning
aims to estimate a distribution of data, whereas local
learning aims to obtain decision boundaries for classi-
fication. The disadvantage of global learning lies in

that it may not make good use of the information con-
tained in instances near decision boundaries. The dis-
advantage of local learning lies in that it may not make
good use of the global information contained in the
whole data set.

The naive Bayes classifier and the AODE algo-
rithm belong to global learning, and the C4.5 algo-
rithm and SVM belong to local learning. The naive
Bayes classifier and the AODE algorithm make good
use of the global information, but may not make good
use of the local information near decision boundaries.
The C4.5 algorithm and SVM make good use of the
local information, but may not make good use of the
global information. For the naive Bayes classifier and
the AODE algorithm, training the C4.5 algorithm and
SVM in their decision regions can make good use of
the local information contained in instances near
decision boundaries. For the C4.5 algorithm and
SVM, being trained in decision regions of the naive
Bayes classifier and the AODE algorithm can make
good use of the global information contained in the
whole data set. From Section 5.2, it cannot improve
the generalization abilities of the C4.5 algorithm and
SVM by training the naive Bayes classifier, the C4.5
algorithm, and SVM in decision regions of the C4.5
algorithm and SVM, which indicates that it cannot
obtain better generalization abilities to train classifi-
ers in decision regions of the local learning classifiers
by applying the SD algorithm.

The NBTree algorithm can be regarded as
training the naive Bayes classifier in decision regions
of the C4.5 algorithm and obtains better generaliza-
tion ability than both classifiers (Kohavi, 1996).
However, it differs from using the SD algorithm to
train the naive Bayes classifier in decision regions of
the C4.5 algorithm (SD(C4.5+NB)). First, the
NBTree algorithm trains the naive Bayes classifier in
regions generated by the C4.5 algorithm, not the real
decision regions of the C4.5 algorithm. Second, when
training the C4.5 algorithm, the NBTree algorithm
takes the test accuracy of the naive Bayes classifier
into consideration, whereas the SD algorithm does
not. Thus, the generalization ability of the NBTree
algorithm is better than that of SD(C4.5+NB). The
success of the NBTree algorithm indicates that it will
need much more complex methods to train classifiers
in decision regions of classifiers belonging to local
learning.

Table 9 The t-test results (W/L/T) of applying the SD
algorithm to the C4.5 algorithm

Algorithm W/L/T
SD (C4.5+C4.5) vs. C4.5 6/1/23
SD (C4.5+NB) vs. C4.5 17/2/11
SD (C4.5+NB) vs. NB 12/14/4
SD (C4.5+SVM) vs. C4.5 15/4/11
SD (C4.5+SVM) vs. SVM 4/17/9

Table 10 The t-test results (W/L/T) of applying the
SD algorithm to SVM

Algorithm W/L/T
SD (SVM+SVM) vs. SVM 8/5/17
SD (SVM+C4.5) vs. SVM 5/6/19
SD (SVM+C4.5) vs. C4.5 17/6/7
SD (SVM+NB) vs. SVM 4/4/22
SD (SVM+NB) vs. NB 16/8/6

Yan et al. / J Zhejiang Univ-Sci C (Comput & Electron) 2011 12(8):647-657 657

6 Conclusions

This paper investigates methods of training

classifiers in decision regions of the naive Bayes
classifier. The SD and three SD-soft algorithms all
generate two-level classifier trees with the naive
Bayes classifiers as root nodes.

Experimental results on 30 UCI data sets dem-
onstrate the effectiveness of these four new algo-
rithms: SD, SD-soft, SD-soft.v2, and SD-soft.v3.
When using the C4.5 algorithm and SVM as leaf
classifiers, the SD algorithm can obtain better gener-
alization ability than the naive Bayes classifier, leaf
classifiers, the NBTree, and the AODE algorithms.
When applied twice and using the naive Bayes clas-
sifier as leaf classifiers, the SD algorithm can obtain
better generalization ability than the naive Bayes
classifier and the NBTree algorithm. When using the
C4.5 algorithm and SVM as leaf classifiers, the three
SD-soft algorithms can obtain better generalization
abilities than the SD algorithm, but argument selec-
tion is crucial for these three SD-soft algorithms.

The SD algorithm is also applicable for the
AODE algorithm, but it is not applicable for the C4.5
algorithm or SVM.

The SD and SD-soft algorithms can make good
use of the information contained in instances near
decision boundaries, and the information may be
ignored by global learning classifiers, such as the
naive Bayes classifier and the AODE algorithm. The
SD and SD-soft algorithms can be regarded as a new
method of generating a hybrid of global learning and
local learning.

Acknowledgements

We thank graduate students Zhen-zhen MI,

Hai-tao WANG, Cheng-wei WANG, Qiang LIU, and
Xiao-qiong WU of School of Computer Science and
Technology at Zhejiang University for their advice
in paper revision.

References
Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective

Function Algorithms. Plenum Press, New York, USA.
Bishop, C.M., 2006. Pattern Recognition and Machine

Learning. Series: Information Science and Statistics.
Springer-Verlag, New York, p.179-181.

Domingos, P., Pazzani, M., 1997. On the optimality of the
simple Bayesian classifier under zero-one loss. Mach.
Learn., 29(2-3):103-130. [doi:10.1023/A:1007413511
361]

Frank, A., Asuncion, A., 2010. UCI Machine Learning Re-
pository. School of Information and Computer Science,
University of California, Irvine, CA, USA. Available
from http://archive.ics.uci.edu/ml [Accessed on July 7,
2010].

Frank, E., Witten, I.H., 1998. Generating Accurate Rule Sets
without Global Optimization. 15th Int. Conf. on Machine
Learning, p.144-151.

Frosyniotis, D., Stafylopatis, A., Likas, A., 2003. A divide-
and-conquer method for multi-net classifiers. Pattern
Anal. Appl., 6(1):32-40. [doi:10.1007/s10044-002-0174-6]

Huang, K.Z., Yang, H.Q., King, I., Lyu, M., 2008. Machine
Learning: Modeling Data Locally and Globally. Springer-
Verlag, New York, p.1-28.

Kohavi, R., 1996. Scaling up the Accuracy of Naive-Bayes
Classifiers: a Decision-Tree Hybrid. 2nd Int. Conf. on
Knowledge Discovery and Data Mining, p.202-207.

Mitchell, T.M., 1997. Machine Learning. WCB/McGraw-Hill,
New York, p.14-15.

Pal, S.K., Mitra, S., 1992. Multi-layer perceptron, fuzzy sets,
and classification. IEEE Trans. Neur. Networks, 3(5):
683-697. [doi:10.1109/72.159058]

Platt, J.C., 1999. Fast Training of Support Vector Machines
Using Sequential Minimal Optimization. In: Scholkopf,
B., Burges, C., Smola, A. (Eds.), Advances in Kernel
Methods: Support Vector Machines. MIT Press, Cam-
bridge, MA, USA, p.185-208.

Quinlan, J.R., 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann, San Mateo, CA, USA.

Quinlan, J.R., 1996. Improved use of continuous attributes in
C4.5. J. Artif. Intell. Res., 4(1):77-90.

Vapnik, V.N., 1995. The Nature of Statistical Learning The-
ory. Springer, Berlin Heidelberg.

Vlassis, N., Likas, A., 2002. A greedy EM algorithm for
Gaussian mixture learning. Neur. Process. Lett., 15(1):
77-87. [doi:10.1023/A:1013844811137]

Webb, G.I., Boughton, J.R., Wang, Z.H., 2005. Not so naive
Bayes: aggregating one-dependence estimators. Mach.
Learn., 58(1):5-24. [doi:10.1007/s10994-005-4258-6]

Witten, I.H., Frank, E., 2005. Data Mining: Practical Machine
Learning Tools and Techniques (2nd Ed.). Morgan
Kaufmann, San Francisco, CA, USA.

Wu, X.D., Kumar, V., Quinlan, J.R., Ghosh, J., Yang, Q.,
Motoda, H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., et
al., 2008. Top 10 algorithms in data mining. Knowl. In-
form. Syst., 14(1):1-37. [doi:10.1007/s10115-007-0114-2]

Zheng, F., Webb, G.I., 2005. A Comparative Study of Semi-
Naive Bayes Methods in Classification Learning. Fourth
Australasian Data Mining Workshop, p.141-156.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

