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Abstract: Along with the evolution of computer viruses, the number of file samples that need to be analyzed
has constantly increased. An automatic and robust tool is needed to classify the file samples quickly and efficiently.
Inspired by the human immune system, we developed a local concentration based virus detection method, which
connects a certain number of two-element local concentration vectors as a feature vector. In contrast to the existing
data mining techniques, the new method does not remember exact file content for virus detection, but uses a
non-signature paradigm, such that it can detect some previously unknown viruses and overcome the techniques like
obfuscation to bypass signatures. This model first extracts the viral tendency of each fragment and identifies a
set of statical structural detectors, and then uses an information-theoretic preprocessing to remove redundancy in
the detectors’ set to generate ‘self’ and ‘nonself’ detector libraries. Finally, ‘self’ and ‘nonself’ local concentrations
are constructed by using the libraries, to form a vector with an array of two elements of local concentrations
for detecting viruses efficiently. Several standard data mining classifiers, including K -nearest neighbor (KNN),
radial basis function (RBF) neural networks, and support vector machine (SVM), are leveraged to classify the local
concentration vector as the feature of a benign or malicious program and to verify the effectiveness and robustness
of this approach. Experimental results show that the proposed approach not only has a much faster speed, but also
gives around 98% of accuracy.
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1 Introduction

Since the first malicious executable code ap-
peared in 1981, computer viruses have been evolv-
ing with the rapid development of computer envi-
ronments such as the operating system and network
(Wang et al., 2009). There are three main virus de-
tection methods: signature-based, malicious activity
detection, and heuristic-based.
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The natural immune system is a dynamic, adap-
tive, and distributed learning system. It protects
organisms against antigen invasion by distinguish-
ing foreign antigens (pathogens and tumor cells)
from the organisms’ own healthy cells and tissues,
and eliminating foreign antigens (Wang et al., 2009).
Similarly, the functionality of computer security sys-
tems is to recognize and eliminate viruses; thus, the
natural immune system has provided with an inspi-
ration to develop this kind of artificial immune based
heuristic method for virus detection (Kephart, 1994).

To overcome the disadvantages of the widely
used signature-based virus detection method, data
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mining and machine-learning approaches are also
proposed for virus detection (Kolter and Maloof,
2006; Christodorescu et al., 2007). Many classifi-
cation algorithms have been put into practice for
solving virus problems combined with an artificial
immune system (AIS), including Naïve Bayes, sup-
port vector machine (SVM), artificial neural net-
work (ANN), and hybrid approaches (Schultz et al.,
2001; Wang et al., 2003; Kolter and Maloof, 2006;
Christodorescu et al., 2007).

In this paper, a novel AIS method is used to
generate an array of two-element immune local con-
centration (LC) vectors as the feature vector for virus
detection. ‘Self’ and ‘nonself’ detector libraries con-
tain the bit strings that are most representative of
benign and virus programs, respectively. ‘Self’ and
‘nonself’ local concentrations are constructed by us-
ing ‘self’ and ‘nonself’ detector libraries to traverse
the fixed length segment of a program (Wang et al.,
2010). Then these two-element local concentrations
of the program are connected to form a feature vector
to identify a virus. The framework of the proposed
technique is shown in Fig. 1.

Comprehensive experiments were conducted on
a public virus data set in the previous works (Chao
and Tan, 2009; Wang et al., 2009). Comparisons on
performance were made among different classifiers
including K -nearest neighbor (KNN), radial basis
function (RBF) neural networks, and SVM. Exper-
imental results showed that the proposed approach
achieves a more than 97% detection rate, and thus
outperforms the current approach. The runtime of
training and detecting is relatively short. It takes
0.054 s on average to identify a given file.

It is well known that the signature-based virus
detection method is incompetent in detecting some
new viruses. Furthermore, the number of mal-
wares maintains an exponential growth, such that
signature-based virus detection methods cannot keep
pace with the security challenges, considering either
increase of the signatures’ database or matching time
of signatures. Different from the existing data min-
ing techniques including the signature-based method
and malicious activity detection, the proposed ap-
proach neither memorizes specific byte-sequences ap-
pearing in the actual file content nor monitors sus-
picious program behaviors. Our approach is non-
signature based and therefore has the potential of
detecting previously unknown viruses. Moreover, in
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Fig. 1 Architecture of our proposed technique

most of the current approaches, each selected detec-
tor is related to one feature dimension, resulting in a
feature of large dimensionality. The proposed model
reduces the feature dimensionality and extracts po-
sition related information during the process of local
concentration extraction. In this way, the model can
somewhat overcome the two inherent shortcomings
of non-signature based techniques—high false posi-
tive rate and large processing cost, resulting in low
false positive rate and processing cost.

2 Related work

As mentioned above, there are three main fea-
ture construction approaches for virus detection.

The most common approach for virus detection
is the signature-based method. It utilizes binary data
mining to detect patterns in a large amount of data
and uses them to detect future instances in simi-
lar data (Henchiri and Japkowicz, 2006). Because
viruses can embed themselves in existing files, the
entire file is searched not just as a whole, but also in
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pieces. This traditional method can detect an exist-
ing virus accurately, but it is somewhat limited by
the fact that it can identify only a limited amount
of generic or extremely broad signatures. It cannot
detect some new emerging threats.

Malicious activity detection is another approach
to identifying viruses (Ilgun et al., 1995; Hofmeyr
et al., 1998). In this approach, the virus detection
system monitors the suspicious malicious activities.
The file may be further investigated if a malicious
behavior is detected. This type of antivirus method
does not try to search known similar data, but mon-
itors the malicious activities of the system instead.
The malicious activity detection approach can there-
fore detect new viruses that do not yet appear in any
virus dictionaries. Nevertheless, it is a dynamic form
of monitoring, and the detection must rely on ele-
ments that are observable from an external agent.
This method is often criticized because malicious
actions are effectively executed (Kirda et al., 2006;
Egele, 2008; Jacob et al., 2008).

Recently, heuristic methods that are more so-
phisticated, like malicious activity detection, have
been actively investigated to identify unknown
viruses. Since these methods operate for the byte-
level file content, they do not require any a priori
information about the viruses.

The most inspired heuristic virus detection
method was proposed by Schultz et al. (2001) and
Kolter and Maloof (2006).

The framework in Schultz et al. (2001) is com-
posed of three learning algorithms: (1) an inductive
rule-based learner that generates boolean rules based
on feature attributes; (2) a probabilistic method gen-
erating the probability that an example is in a class
given a set of features; (3) a multi-classifier system
that combines the outputs from several classifiers to
generate a prediction. These three independent tech-
niques include system resource information, strings,
and byte sequences extracted from the malicious ex-
ecutables in the data set as different types of fea-
tures. The byte sequence technique, as used in our
work, provides a relatively high detection accuracy.
However, it requires large processing and memory
requirements and has been improved by Kolter and
Maloof (2006).

Kolter and Maloof (2006) used n-gram analy-
sis and data mining to detect and classify malicious
executables as they appear in the wild. The byte

sequences were extracted from the executables, con-
verted into n-grams, and the most relevant n-grams
were treated as features. Their approach was eval-
uated for two aspects, including the classification
between the benign and malicious executables and
categorization of executables based on the function
of their payload.

3 Generation of detector libraries

Our proposed approach is mainly divided into
three parts: (1) generate ‘self’ and ‘nonself’ detector
libraries from the randomly selected training set; (2)
extract the two-element local concentration of each
segment in a training sample and connect these local
concentrations to construct a feature vector; (3) use
three trained classifiers, including KNN, RBF neural
networks, and SVM, to detect the testing sample
characterized by the ordered concentration vector.
The overview of the proposed algorithm is outlined
in Algorithm 1.

Algorithm 1 Immune local concentration based
virus detection
1: Generate ‘self’ and ‘nonself’ detector libraries by

training data
2: Determine the sizes of the libraries by proportional

selection of the potential detectors according to their
importance

3: for each sample in the training set do
4: Extract the local concentration vectors of each

segment
5: Connect these local concentrations to an ordered

feature vector as the input of a classifier
6: end for
7: Use these local concentration vectors to train the

classifier
8: while algorithm is running do
9: if a file is detected then

10: Characterize the file by local concentration vec-
tors through trained ‘self’ and ‘nonself’ detector
libraries

11: Use the trained classifier to predict the label of
the file

12: end if
13: end while
14: The dimensionality N of the feature vector is decided

by file truncated length

This approach computes a statistical and
information-theoretic feature in a manner of local
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concentration on the byte-level file content. The
generated feature vector of file segments is then given
as an input to standard data mining classification al-
gorithms that classify the file as virus or not.

The operating principle of generating the ‘self’
detector library and ‘nonself’ detector library is as
shown in Fig. 2. The concrete step is to divide all
detectors into two sets by their tendency values and
to calculate the detector importance, with important
detectors retained.
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Fig. 2 Detector library generating process

The ‘self’ detector library is composed of de-
tectors most representative of benign files, and the
‘nonself’ detector library is composed of those detec-
tors most representative of viruses. Intuitively, the
fragment that appears most frequently in virus pro-
grams, while rarely in benign programs, is a good
representative of virus.

As mentioned in Wang et al. (2010), the de-
tectors in the library are a set of fixed-length frag-
ments. Here, a fixed length (L-bit) fragment of bi-
nary data, considered to contain appropriate infor-
mation of functional behaviors, is taken as the detec-
tor to discriminate a virus from the benign program.
The length L is set not too short to discriminate ‘self’
and ‘nonself’ or too long to make virus-specific data

hidden in the binary data of files. Considering that
one meaningful computer instruction is 8 or 16 bits
normally, it is reasonable to set L as 16, 32, or 64.
A sliding window (Fig. 3, the overlap of the sliding
window is L/2 bits) is used to count the document
frequency of a detector in virus programs and benign
programs. The difference of its document frequency
in the virus programs and benign programs can re-
flect the tendency to be a virus or a benign file.

A segment in a program   
d(j+1)=21C38EC4

01     B4    CD    21   C3    8E     C4    12    59... ...

d(j)=B4CD21C3

Fig. 3 Document frequency counting process (L=32
bits)

After counting the document frequency of each
fragment, the tendency to be a virus of fragment X
is defined as (Wang et al., 2010)

T (X) = P (X = 1|Cv)− P (X = 1|Cs), (1)

where P (X = 1|Cv) and P (X = 1|Cs) mean the
document frequencies of fragment X appearing in
the virus samples and benign samples of the training
set, respectively.

We define the number of virus files as Nv, the
number of benign files as Ns, the number of virus
files that contain fragment X as nv, and the number
of benign files that contain fragment X as ns. Then,

P (X = 1|Cv) =
nv

Nv
, (2)

P (X = 1|Cs) =
ns

Ns
. (3)

If each fragment is extracted to form a dictio-
nary, the size of this dictionary would become very
large (Wang et al., 2009). The detectors appearing
in most of files are not relevant to the separation
of these files because all the classes have instances
that contain these detectors. Thus, with the number
of detectors growing, the cost of computing would
increase, but the effect may not be improved and
may be made even worse. We reduce the number
of fragments to generate ‘self’ and ‘nonself’ detector
libraries according to different importance of each
detector (Wang et al., 2010). The importance of
each detector is calculated based on information gain
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(IG). The detectors are sorted based on IG values in
descending order; m% front of them are retained.
Besides IG, other detector importance measures in-
cluding document frequency, term-frequency vari-
ance, χ2 statistic, and principal component analysis
(PCA), can also be applied to the model, endowing
it with promising development. The preprocessing
of statistical and information-theoretic feature gen-
eration is therefore complete.

The generation of detector libraries is as de-
scribed in Algorithm 2, in which m is a parameter to
be adjusted, indicating proportional selection of all
the fragments. The IG is defined as

IG(X,C) =
∑

x∈{0,1},c∈{Cv,Cs}

(
P (X = x ∧C = c)

· log2
P (X = x ∧C = c)

P (X = x) · P (C = c)

)
, (4)

where P (X = 1) means the document frequency
of fragment X that appears in the training set,
P (X = 0) the document frequency of fragment X

that does not appear in the training set, P (C = Cv)

the document frequency of virus files, P (C = Cs) the
document frequency of benign files, P (X = 0|Cv)

the document frequency of fragment X that does
not appear in virus samples of the training set, and
P (X = 0|Cs) the document frequency of fragment
X that does not appear in benign samples of the
training set (Wang et al., 2010).

P (X = 1) =
nv + ns

Nv +Ns
, (5)

P (X = 0) =
Nv +Ns − nv − ns

Nv +Ns
, (6)

P (C = Cv) =
Nv

Nv +Ns
, (7)

P (C = Cs) =
Ns

Nv +Ns
, (8)

P (X = 0|Cv) =
Nv − nv

Nv
, (9)

P (X = 0|Cs) =
Ns − ns

Ns
. (10)

Algorithm 2 Generation of detector libraries
1: Initialize ‘self’ and ‘nonself’ detector libraries as ∅

2: while algorithm is running do
3: for each fragment X in the sample of the training

set do
4: Calculate the information gain (IG) of fragment

X by Eq. (4)
5: Sort m% detectors based on IG values in de-

scending order to compose the library // m is
a parameter to be adjusted

6: end for
7: for each fragment X in the library do
8: Calculate the tendency of fragment X by

Eq. (1)
9: if T (X) < 0 then

10: Add fragment X into the ‘self’ detector li-
brary

11: else
12: Add fragment X into the ‘nonself’ detector

library
13: end if
14: end for
15: end while

4 Construction of the feature vector

To construct a feature vector, a jumping win-
dow is moved to plot out several fixed length W -bit
segments. Inside a fixed length W -bit segment in
the program, a sliding window with L/2 bits overlap
is used to obtain the ‘self’ local concentration and
‘nonself’ local concentration (Fig. 4). In every win-
dow the local concentration of segment i is defined
in Eqs. (11) and (12).

VCi =
VNi · L

W
, (11)

BCi =
BNi · L

W
, (12)

where VCi and BCi denote the ‘nonself’ and ‘self’
local concentrations, respectively, VNi is the num-
ber of the detectors appearing in both the detecting
segment of the file and the ‘nonself’ detector library,
and BNi is the number of the detectors appearing in
both the detecting segment of the file and the ‘self’
detector library.

After ‘self’ and ‘nonself’ local concentrations are
constructed in each window, these two-element lo-
cal concentrations of the program are connected to
form a feature vector [(VC1, BC1), (VC2, BC2), · · · ,
(VCn, BCn)] (Fig. 5).
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To serve these feature vectors as the input of
successive classifiers for detecting, the dimensional-
ity of the vector should be consistent. In this study,
truncated operation is applied and some rear dimen-
sionality is discarded. We useN×W bits information
of each program, where N is the number of segments
covered by the jumping window. Algorithm 3 is for
feature construction.

Self
detector
library

Segment  i
Nonself
detector
library

Traversal
matching

Traversal
matching

Two-element
local concentration

Fig. 4 Local concentration construction
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Fig. 5 Feature vector construction

5 Data mining based classification

After characterizing the sample by a local con-
centration feature vector, one comes to the training
phase with different classifiers. Here, we introduce
three simple but effective data mining methods used
in this work.

5.1 KNN

KNN is a lazy learning method based on the
closest training samples in the feature space. A sam-
ple is classified by a majority vote of its neighbors,
with the sample being assigned to the class most fre-

quent amongst its K nearest neighbors (K is a pre-
defined positive integer). During the classification
phase, a detected feature vector is labeled by the
class that is the most common among the K training
samples nearest to that vector. Usually, Euclidean
distance, Hamming distance, etc. can be used as the
distance metrics according to different situations.

Algorithm 3 Feature construction
1: for a program to be detected do
2: Truncate front N ×W bits of the file and discard

rear dimensionality of the file
3: for each segment inside W -bit jumping windows

do
4: Traverse the segment i using an L-bit sliding

window with L/2 bits overlap
5: Use the global concentration method as given

in our previous work (Wang et al., 2010)
6: Calculate the ‘nonself’ local concentration VNi

7: Calculate the ‘self’ local concentration BNi

8: Label the feature vector of segment i with (VNi,
BNi)

9: end for
10: Connect these ordered two-element local concen-

trations to construct a feature vector
11: end for

KNN is simple and effective. The classification
with KNN is sensitive, however, to the data distri-
bution. The disequilibrium distribution tends to in-
fluence the classification result: classes with more
frequent samples tend to dominate the prediction
of the new vector. Another problem is that during
the training, all available data should be computed,
which leads to considerable overhead when the train-
ing set is large.

In the KNN algorithm, K should be odd and
small in order to avoid tie and misclassification.
A good K can be optimized by some evolutionary
algorithms.

5.2 SVM

An SVM is a supervised learning algorithm. The
algorithm constructs a hyperplane or a set of hyper-
planes in a high or infinite dimensional space, maps
the samples as points into a possibly high dimen-
sional space, and divides the samples into separate
classes by a clear gap that is as wide as possible.
An unlabeled sample is classified by the side of the
separate hyperplane where the sample lies when it is
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mapped to the feature space.
SVM is a kind of generalized linear classifier. In

addtion, SVM can create non-linear classifiers with a
non-linear kernel function instead of dot product by
applying the kernel technique. This technique avoids
the computational burden of explicitly representing
the feature vectors.

In SVM training, cost parameter C and kernel
parameters can influence the position of the optimal
hyperplane in the feature space and hence the per-
formance of classification.

5.3 RBF neural network

Neural network is an adaptive system whose
structure changes based on the information that
flows through the network during the learning phase,
trying to simulate the functional aspects of biological
neural networks.

Radial basis network is embedded in a neural
network topology that uses RBF as the activation
function. Like the architecture of the standard feed
forward back-propagation network, it typically has
three layers: an input layer, a hidden layer with a
non-linear RBF activation function, and a linear out-
put layer. In this study, the output layer is a sigmoid
function of a linear combination of hidden layer val-
ues, representing a posterior probability, consisting
of only one node—the label of the detected file.

Radial basis network works best when enough
training vectors are available, and is more powerful
in a multi-dimensional space. It tends to have several
times more neurons than a comparable feedforward
network in the hidden layer, and each neuron re-
sponds only to relatively small regions of the input
space compared with standard neurons that output
over a large region of the input space. The RBF
network would not suffer from local minima as the
error surface is quadratic. It can easily find the min-
imum. Moreover, the RBF network takes much less
time than training a sigmoid/linear network (Chen
et al., 1991).

In the RBF network, the spread parameter con-
trols the spread of the RBF. A larger spread leads
to a smoother RBF and more neurons responding to
an input vector. A smaller spread leads to a steeper
RBF, so that the neuron with the weight vector clos-
est to the input will have a much larger output than
other neurons. The network tends to respond to the
target vector associated with the nearest design in-

put vector. It is necessary that the spread parameter
be large enough for the neurons to respond to over-
lapping regions of the input space, but not so large
that all the neurons respond in essentially the same
manner.

6 Experimental results

Experiments were conducted on a public virus
data set (Chao and Tan, 2009; Wang et al., 2009).
The ‘cilpku08’ data set was obtained from a famous
virus website VX Heavens (http://vx.netlux.org/)
and from Computer-Forensic Experts of Anti-Virus
Group in Peking University, which can be obtained
from http://www.cil.pku.edu.cn/resources/. The
folder includes 3547 malicious executables classified
into 685 families based on their properties, compris-
ing six different types: virus, trojan, worm, back-
door, constructor, and miscellaneous. The most
common file type for detection is virus, comprising
more than 90% of all files; the remaining 10% of files
are equally divided among the other five types. Our
legal files were obtained from all folders of machines
running the Windows 2000 and XP operating sys-
tems. This data set was divided into three subsets
(Chao and Tan, 2009; Wang et al., 2009). The first
data set contains 538 programs with the ‘self’ set of
284 legal files and the ‘nonself’ set of 254 virus files.
The second data set contains 1815 programs with
the ‘self’ set of 915 legal files and 900 virus files. The
third data set consists of the second set and 2647
extra virus files, 4462 files in total. The training set
is much smaller than and is covered by the detect-
ing set, so that the expansibility and comprehensive
ability can be tested.

The test platform setting for experiments is
shown in Table 1.

Table 1 The test platform

Description

Operating system Windows XP

Computer hardware
CPU: Pentium IV 1.5 GHz;

RAM: 512 MB
Programming language C & Matlab languages

Compiling environment
Microsoft Visual C++ 6.0

& Matlab R2007a
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6.1 Experiments for different window sizes
and numbers of windows

In this part, different window size W and num-
ber of windows N, corresponding to the dimension-
ality of the feature vector, were tested using three
different classifiers, to find the parameters with the
best performance. The tested W ranges from 100 to
500 with a step size of 100 and N ranges from 20 to
60 with a step size of 10. The average results of 10
experiments with different partitions of the second
data set were used to measure the performance.

Figs. 6–8 show that when W =400 and N =50
the results are considerably stable and quite good on
the data set. Thus, these two parameters were fixed
in the following experiments.
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Fig. 6 Accuracy with different window sizes and num-
bers of windows on the second data set by K -nearest
neighbor (KNN)
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Fig. 7 Accuracy with different window sizes and num-
bers of windows on the second data set by support
vector machine (SVM)
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Fig. 8 Accuracy with different window sizes and num-
bers of windows on the second data set by radial basis
function neural network (RBF NN)

6.2 Experiments for different proportional se-
lections of all the fragments

The size of the detector dictionary is decided by
the proportional selection of the fragments. A prop-
erly chosen proportional selection parameter m may
greatly reduce the computing cost without losing its
discriminatory power. The experiments for different
m were also conducted on the second data set; m was
chosen from 10% to 100% with a step size of 10%.
The results are shown in Fig. 9.
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Fig. 9 Accuracy with different proportional selec-
tions of the fragments on the second data set for the
three data mining methods (window size: 400; win-
dow number: 50)

When m=10%, the detecting rate has the best
performance; i.e., the size of the detector dictionary
is the smallest.

6.3 Length of the detector

The length of the chosen detector, L-bit, is crit-
ical to discriminate viruses from benign programs.
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As the length of a meaningful program instruction is
usually 16, 32, or 64 bits, L is not necessarily larger
than 64 to contain at least one entire instruction.
The length of the detector was taken as 32 or 64 in
this work to make it not too long to include some
hidden viral information and not too short to obtain
enough representative viral information. The over-
lap of the sliding window is L/2 bits. The accuracy
rates using the SVM classifier with different lengths
of the detector are shown in Table 2.

6.4 Contrast experiments

To assess the performance and show possible ad-
vantages of the proposed approach, nine contrast ex-
periments against the method in Wang et al. (2009)
were performed on these three practical data sets
under a Windows operating system. The same par-
titions were made using the same data. Tests 1, 2,
and 3 were performed on the first data set with a
partition ratio of 4:1, 1:1, 1:4 for the training set and
the detecting set, respectively. Tests 4, 5, and 6 were
performed on it with a partition ratio of 2:1, 1:1,
1:2 for the training set and the detecting set, respec-
tively. Tests 7, 8, and 9 were performed on the second
data set with a partition ratio of 2:1, 1:1, 1:2 for the
training set and the detecting set, respectively.

As shown in Figs. 10 and 11, our proposed
method outclassed the hierarchical AIS (H-AIS)
method in all the tests, and achieved an accuracy
rate of more than 97% on the detecting set. The pro-
posed method did not appear to lose performance as
the set size was growing. The runtime performance
of our method was also better than that of the
H-AIS method. In Fig. 12, the training time of
the new method varies linearly with the number
of files, unlike the H-AIS method whose training time

Table 2 Average accuracy rate by SVM when the detector length L=64 or 32

Test
Accuracy rate with 64-bit detector (%) Accuracy rate with 32-bit detector (%)

No.
Training set Detecting set Training set Detecting set

All Virus Benign All Virus Benign All Virus Benign All Virus Benign

1 100.00 100.00 100.00 97.22 96.08 98.25 99.53 99.51 99.56 95.37 98.04 92.98
2 100.00 100.00 100.00 97.40 95.28 99.30 99.63 99.21 100.00 98.51 96.85 100.00
3 100.00 100.00 100.00 94.19 87.68 100.00 99.07 98.04 100.00 96.74 95.57 97.80
4 100.00 100.00 100.00 97.75 96.43 98.94 99.44 98.82 100.00 96.07 92.86 98.94
5 100.00 100.00 100.00 97.03 94.49 99.30 100.00 100.00 100.00 97.03 98.43 95.77
6 100.00 100.00 100.00 95.56 90.59 100.00 100.00 100.00 100.00 95.00 90.59 98.95
7 99.92 100.00 99.84 98.02 97.67 98.36 99.09 99.50 98.69 98.02 97.67 98.36
8 100.00 100.00 100.00 96.04 94.00 98.03 99.78 99.56 100.00 97.91 97.33 98.47
9 100.00 100.00 100.00 95.12 91.83 98.36 99.67 99.33 100.00 97.27 95.83 98.69

grew exponentially with the file number. Further-
more, the runtimes of the new method (several min-
utes) and the H-AIS method (several hours) are not
of the same order of magnitude.
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Fig. 10 Accuracy rate on the detecting sets of contrast
experiments (proportional selection: 10%; window
size: 400; window number: 50)
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Fig. 11 Accuracy rate on the training sets of contrast
experiments (proportional selection: 10%; window
size: 400; window number: 50)
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Experiments on the third data set confirmed the
model’s expansibility, and the training set is much
smaller than the detecting set. The results are shown
in Fig. 13.
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Fig. 12 Training runtime of two methods
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Fig. 13 Accuracy rate on the detecting sets of ex-
panded contrast experiments by SVM (proportional
selection: 10%; window size: 400; window number:
50)

6.5 Parameters optimization

The feature vector constructed by an ordered
two-element local concentration is the input of a
classifier, and the binary value is the output. The
generation of ‘self’ and ‘nonself’ detector libraries,
the jumping window size W setting, and the win-
dow number N setting, which in turn determine the
feature vector, are here an optimization problem.

The vector that needs to be optimized, P∗ =

[m,W,N, P ∗
1 , P

∗
2 , · · · , P ∗

n ], is composed of the de-
tector library determinant m, the jumping window
size W, the window number N, and the parameters
P ∗
1 , P

∗
2 , · · · ,P ∗

m associated with a certain classifier
(Wang et al., 2010).

When m is set to different values, different de-
tector libraries are obtained. A unique feature vector

can be constructed with different W and N, for a file
to be characterized, whose ‘self’ local concentrations
that represent their similarity to benign program and
‘nonself’ local concentrations that represent their
similarity to virus are different. P ∗

1 , P
∗
2 , · · · , P ∗

m are
classifier-related parameters that influence the per-
formance of a certain classifier. Different classifiers
hold different parameters and lead to varied perfor-
mances. For example, parameters associated with
KNN include a number of nearest neighbors and the
distance measures. SVM-related parameters that de-
termine the position of the optimal hyperplane in the
feature space include cost parameter C and kernel
parameters.

The optimal vector is the one whose cost
function associated with classification is minimum,
namely the one that makes the accuracy of classifi-
cation maximum. The cost function CF(P) can be
defined as

CF(P) = Err(P), (13)

where Err(P) is the classification error on the train-
ing set.

The input vector P is composed of two parts:
LC feature vector determinants m, W, N and the
classifier-related parameters P ∗

1 , P
∗
2 , · · · , P ∗

m. It is to
find a P∗ such that

CF(P∗) = Err(P∗)

= min
{m,W,N,P∗

1 ,P∗
2 ,··· ,P∗

m}
Err(P).

(14)

Several robust optimization approaches can be
used to optimize the input vector, such as particle
swarm optimization (PSO) and the genetic algorithm
(GA). Here, we use a clonal PSO (CPSO) (Fig. 14) to
design the LC feature vector and the corresponding
classifier. For the detailed optimization process, refer
to Tan and Xiao (2007).

The selection of the LC feature vector determi-
nants m, W, N and the classifier-related parameters,
P ∗
1 , P ∗

2 , · · · , P ∗
m, is a dynamic optimization pro-

cess (which is the same as the parameter selection
in Wang et al. (2010)). Parameters associated with
KNN include the number of nearest neighbors K and
the distance measures. K is optimized in the integer
number interval [1, 20], and the distance measures
are chosen among ‘Euclidean’, ‘cityblock’, ‘cosine’,
and ‘correlation’. For SVM, the cost parameter C

is optimized in real number interval [1, 200]. For
the RBF neural network, the spread σ in real num-
ber interval [1, 5] is optimized. m is optimized in
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Fig. 14 Clonal particle swarm optimization (CPSO)
based classification process

the integer number interval [5, 100], and W and N

range in [100, 600] and [10, 100], respectively. The
maximum number of generations is set to be 200 as
the stop criterion, and the number of particles in a
swarm is 20.

The randomness of CPSO leads to a slight vari-
ation in the performance and parameters obtained.
Therefore, the results of nine independent classes of
experiments on the expended third data set were
used to evaluate tests. This design is more reason-
able. The average performances of empirical and op-
timized classification designs are reported in Tables
3 and 4.

Table 3 Average accuracy rates on the detecting set
with empirical and optimized classification designs
under optimum conditions by SVM

Test
Average accuracy False positive rate∗

No.
rate (%) (%)

Optimized Empirical Optimized Empirical

1 97.83 97.83 4.37 4.37
2 98.51 96.59 0.00 2.95
3 96.74 96.30 2.20 3.61
4 97.75 97.13 1.06 3.17
5 97.56 97.56 3.93 3.93
6 96.15 96.15 3.17 3.17
7 98.03 98.03 1.64 1.64
8 97.91 97.20 1.53 1.09
9 97.27 96.80 1.31 1.20

Average 97.53 97.06 2.14 2.79
∗ The rate of legal files mistakenly classified as malicious
executables

The results show that the optimized classifica-
tion design resulted in a 1% increase in accuracy
rate compared with the empirical classification de-

Table 4 Average accuracy rates on the detecting set
with empirical and optimized classification designs
under optimum conditions by KNN

Test
Average accuracy False positive rate∗

No.
rate (%) (%)

Optimized Empirical Optimized Empirical

1 97.78 97.78 4.04 4.04
2 97.77 96.08 0.70 2.84
3 97.91 96.23 0.00 3.06
4 98.88 97.69 1.06 4.04
5 96.65 96.12 0.00 2.73
6 95.94 95.94 3.61 3.61
7 97.02 96.68 0.00 0.44
8 97.47 96.30 1.31 1.20
9 96.94 95.47 1.15 0.87

Average 97.37 96.48 1.32 2.54
∗ The rate of legal files mistakenly classified as malicious
executables

sign. The CPSO method has improved the accuracy
and reduced the false positive rate. However, a trade-
off decision has to be made between the better result
and a much longer training time.

7 Conclusions

In this paper we have proposed a non-signature
based approach that analyzes the byte-level file con-
tent. In contrast to traditional binary data min-
ing methods, our method first establishes a uniform
framework for a general and systematic approach
to feature construction. Second, it reduces the di-
mensionality resulting in a faster training process.
Also, the proposed feature extraction approach at-
tains better or at least comparable results. The new
method is easier without sacrificing performance,
and provides implicit robustness against common ob-
fuscation techniques.
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