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Abstract: Time series motifs are previously unknown, frequently occurring patterns in time series or approximately
repeated subsequences that are very similar to each other. There are two issues in time series motifs discovery, the
deficiency of the definition of K -motifs given by Lin et al. (2002) and the large computation time for extracting
motifs. In this paper, we propose a relatively comprehensive definition of K -motifs to obtain more valuable motifs.
To minimize the computation time as much as possible, we extend the triangular inequality pruning method to
avoid unnecessary operations and calculations, and propose an optimized matrix structure to produce the candidate
motifs almost immediately. Results of two experiments on three time series datasets show that our motifs discovery
algorithm is feasible and efficient.
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1 Introduction

In recent decades, research concerning time se-
ries data mining has received much attention. Time
series motifs are the frequently occurring, previously
unknown patterns in time series data. By using the
motifs, a variety of applications in data mining can
be extended, such as discovery of association rules,
time series classification, and detection of interesting
behaviors.

At present, time series motifs are applied in
medicine (Abe et al., 2005), telemedicine (Guyet
et al., 2007), weather prediction, etc. Theoretical
research on time series motifs began with a pioneer-
ing paper (Lin et al., 2002), which formalized the
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idea of approximately repeated subsequences by in-
troducing time series motifs. Because it is very dif-
ficult to compute the exact solution for the motif
discovery problem, more and more researchers have
proposed fast approximate algorithms to find motifs
(Chiu et al., 2003; Tanaka et al., 2005; Guyet et al.,
2007; Beaudoin et al., 2008). In another work, a
new algorithm was proposed to extract approximate
motifs that capture portions of the time series with
a similar and eventually symmetric behavior (Fer-
reira et al., 2006). Recent advances in time series
motifs research come from nonlinear-field time series
analysis. Time series data has been transformed to
a network (Zhang and Small, 2006), and the motifs
in the networks are used to distinguish the origi-
nal time series of different dynamical properties (Xu
et al., 2008).

In spite of extensive research in recent years,
there are still some deficiencies in time series motifs
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discovery: (1) Previous studies are based mainly on
the original definitions in Lin et al. (2002). How-
ever, the definition of K -motifs in Lin et al. (2002)
is not comprehensive, and it can easily lead to the
loss of more frequently occurring patterns in time
series data. (2) The efficiency of extracting motifs in
motifs discovery algorithms is still not high.

To find more frequently occurring patterns in
time series, we propose a comprehensive and efficient
motifs discovery algorithm. We modify the defini-
tion of K -motifs in Lin et al. (2002), which helps
find more frequently occurring patterns. Meanwhile,
we extend the triangular inequality pruning method
and propose an optimized matrix structure to im-
prove the efficiency. By case studies, we demonstrate
the feasibility and efficiency of our motifs discovery
algorithm.

2 Basic principle

Before describing our algorithm, we provide
some definitions of the key terms that will be used
throughout this paper.
Definition 1 (Time series, Lin et al., 2002) A
time series, i.e., a sequence T = t1, t2, . . . , tT_length,
is an ordered set of T_length real valued variables.

The sequence of real-valued values is a typically
temporal ordering. Other kinds of well-defined or-
derings, such as shapes (Ueno et al., 2006) and hand-
written text, can be considered as time series. Time
series can be very long, sometimes containing billions
of observations (Hegland et al., 2001). In this study,
we confine our interest to the local of the time series,
which are called subsequences.
Definition 2 (Subsequence, Lin et al., 2002)
Given a time series T of length T_length, a sub-
sequence C of T is a sampling of length C_length
(< T_length) of contiguous position from T ; that is,
C = tp, tp+1, . . . , tp+C_length−1 for 1 ≤ p ≤ T_length
−C_length + 1.

By Definition 2 we know that a time series of
length C_length has (T_length − C_length + 1)
subsequences of length C_length. It is important
to provide a definition that can determine if a given
subsequence is similar to other subsequences (André-
Jönsson and Badal, 1997; Yi and Faloutsos, 2000).
These similar subsequences are known as matches
(Chiu et al., 2003).
Definition 3 (Match, Lin et al., 2002) Given

two subsequences Ci (starting from position i), Cj

(starting from position j ) and the distance function
D(Ci, Cj), we say that Ci matches Cj , if D(Ci, Cj)
< R. The R is a positive real number (called ‘range’)
which can be assigned by users.

The distance value R used in Definition 3 deter-
mines the approximate similarity. The above defini-
tion of ‘match’ is very clear and intuitive, but the
definition of motifs should not include the trivial
matches (Ferreira et al., 2006).
Definition 4 (Trivial match, Lin et al., 2002)
Given a time series T, containing a subsequence Ci

beginning at position i and a matching subsequence
Cj beginning at j, we say that Cj is a trivial match
to Ci if either i = j or there does not exist a subse-
quence Cj′ beginning at j′ such that D(Ci, Cj′ ) >
R, and either i < j′ < j or j < j′< i.

Next, we provide our relatively comprehensive
definition of K -motifs.
Definition 5 (K -motifs) Given a time series T,
a subsequence length C_length, and a range R,
the most significant motif in T (called thereafter 1-
motif) is the subsequence C1 that has the highest
count of non-trivial matches. The Kth most signif-
icant motif in T (called thereafter K -motif) is the
subsequence CK that has the Kth highest count of
non-trivial matches (Lin et al., 2002), and satisfies
either condition below. We denote the set of subse-
quences matching CK by M (CK).

(1) D(CK , Ci) > 2R, for all 1 ≤ i < K ;
(2) R < D(CK , Ci) < 2R, for all 1 ≤ i < K, and

D(CK , Cj) > R (Cj is any subsequence in M (Ci)).
We can also replace conditions (1) and (2) by a

single equivalent condition:

The intersection of M (CK) with M (Ci) is empty.

Fig. 1 illustrates these two conditions on a sim-
ple set of time series projected onto the 2D space.

By Definition 5 we propose a relatively compre-
hensive definition of K -motifs. Compared with the
definition of K -motifs given by Lin et al. (2002), we
add condition (2).

From Lin et al. (2002), one needs to judge
whether the distance between two motifs is greater
than 2R. The purpose of this judgment is to avoid
the situation in which two motifs share the same
subsequences. If two motifs have most of the same
subsequences, the two motifs are basically the same.
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Fig. 1 A visual description of the definition of K -
motif. (a) illustrates that the distance between 1-
motif and 2-motif is larger than 2R, and these two
motifs will definitely not share the same elements.
However, if the distance between two motifs is re-
quired only to be between R and 2R as in (b), the
two motifs also do not share the same elements

In this case, it is meaningless to distinguish these
two motifs. From this point of view, we can change
some conditions to meet the same requirement. We
can reset the distance range. Based on the origi-
nal scope 2R, we add a permissible range (R, 2R).
Namely, the intersection of two motifs does not have
subsequences (Fig. 1b). This condition also satis-
fies the requirement that two motifs should not have
the same subsequences (Lin et al., 2002). If limited
to the definition of K -motifs in Lin et al. (2002),
we may probably miss some meaningful motifs. The
main purpose of improving the theory of the distance
range is to find much more frequent patterns.

Now we show why many more valuable motifs
can be discovered. If the distance between the can-
didate motif circle and each identified motif circle
is in (R, 2R), and these two motifs do not share
the same subsequences, this motif should not be ig-
nored. However, in accordance with Lin et al. (2002),
the distance between any two motif circles is greater
than 2R. In this case, we may miss some probable
motifs. These probable motifs may include many
more subsequences. Therefore, we can set a smaller
distance range to avoid the omission of these valuable
motifs.

The above definitions are based on the premise
that there is a meaningful method to measure the

distance between two subsequences. We use the Eu-
clidean distance to measure the distance between
two subsequences. Let D(Ci, Cj) represent the Eu-
clidean distance between subsequences Ci and Cj .
Recently, extensive empirical comparisons with more
complex measures have shown that the Euclidean
distance has better features on a wide variety of ar-
eas (Ding et al., 2008). More importantly, the Eu-
clidean distance satisfies the triangle inequality. This
is a very important property for this study, one that
needs to be satisfied by the distance function.

If the length of the subsequences is C_length,
the time complexity of computing the Euclidean dis-
tance is O(C_length). In our algorithm, we use a
fast triangle inequality pruning method to reduce
the computation time. In this method, we can make
an initial judgment before computing the distance
between any two subsequences. If the distance is
greater than the given value R, we do not need to
calculate the Euclidean distance between any two
subsequences. If it is less, we calculate the actual
distance. With the help of this pruning method, we
can reduce the time complexity. Then, based on an
optimized subsequence matrix structure in which the
matrix element is subsequence, we can discover the
motifs much more rapidly. We assume that there are
seven subsequences C1–C7, and set C1 as the refer-
ence subsequence. This sequence number is based on
the distances from all other subsequences to C1. If
the distances from C1 to C2 and C1 to C5 are both
less than R, we can set the values of the correspond-
ing array elements in the subsequence matrix.

According to this subsequence matrix, we can ef-
fectively extract 1-motif that contains the most sim-
ilar subsequences. Then we delete the subsequences
that belong to 1-motif, and extract 2-motif. The
algorithms will be described in the following.

Table 1 summarizes the notations used in this
paper.

3 Methods

In this section, we discuss our algorithm in de-
tail. The whole process includes time series data
preprocessing, initializing the subsequence matrix,
executing the 1-motif discovery algorithm, and exe-
cuting the K -motif discovery algorithm.
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Table 1 A summary of the notations used in this
paper

Notation Description

T A time series
T_length The length of T
C A subsequence of T
C_length The length of C
R A positive real number which

can be assigned by the user
D(Ci, Cj) The Euclidean distance between

subsequences Ci and Cj

lower_bound(Ci , Cj) The difference between
D(C1, Cj) and D(C1, Ci)

3.1 Time series data preprocessing

We extend the triangular inequality pruning
method to avoid unnecessary operations and calcu-
lations on time series data preprocessing.

Suppose there are num subsequences and the
length of each subsequence is C_length. We pre-
compute the distances between any two subse-
quences. First, randomly select a subsequence as the
reference subsequence marked by C1 from num sub-
sequences. Then calculate the Euclidean distances
from other subsequences to C1. After that, accord-
ing to the Euclidean distances to C1, make a linear
arrangement of these subsequences. For example,
suppose there are seven subsequences. Select one of
the subsequences as the reference subsequence C1,
and then calculate the Euclidean distances from C1

to the other six subsequences. Array these subse-
quences according to the Euclidean distances, and
the order is C2, C3, C4, C5, C6, and C7 (Fig. 2).

C C

15 10 30 25 8 12

21 C C43 C C65 C7

Fig. 2 Differences of Euclidean distances between
each pair of consecutive sequences. The marked dis-
tances as a condition of pruning are the lower bounds
of the adjacent subsequences; the distance between
C1 and C2 is the real Euclidean distance

Fig. 2 shows the differences of Euclidean dis-
tances between each pair of consecutive sequences.
In our algorithm, we use lower_bound(Ci, Cj)
(1 < i < j ) to represent the difference between
D(C1, Cj) and D(C1, Ci). For example, we use
lower_bound(C2, C3) to represent the difference be-
tween D(C1, C3) and D(C1, C2). According to the
triangle inequality principle, the difference of two

sides of a triangle is always smaller than the third
side. Thus, lower_bound(C2, C3) must be smaller
than the actual Euclidean distance between C2 and
C3. If lower_bound(C2, C3) is greater than the
range R, we do not need to calculate the actual Eu-
clidean distance.

If R = 9, then in a motif, the distances from the
central subsequence to other subsequences must be
less than 9. In Fig. 2, the lower bound between C2

and C3 is 10; thus, the actual distance between C2

and C3 must be greater than or equal to 10. Then C2

and C3 must not be in the same motif. Also, C2, C4,
C5, C6, and C7 are not in the same motif, because
the lower bounds from C2 to other subsequences are
greater than 10. We extensively leverage the trian-
gle inequality pruning method to preprocess the dis-
tances and achieve the pruning quickly. An example
is given as follows.

Define R = 15 and suppose we want to cal-
culate D(C1, C3). We need to judge whether
lower_bound(C2, C3) is less than R. Fig. 2 shows
that lower_bound(C2, C3) = 10 < R. Thus, we need
to calculate the actual Euclidean distance between
C2 and C3. If the actual Euclidean distance is less
than R, we can set the value of the corresponding
array element. Next we should calculate D(C2, C4).
The process is the same as the above description.
We should judge whether the value of D(C1, C4) −
D(C1, C2) is less than R. As D(C1, C4) − D(C1,
C2) = 40 > R, we do not need to calculate the ac-
tual Euclidean distance between C2 and C4. We do
not need to judge C2 and C5, C2 and C6, or C2

and C7. Obviously, if D(C1, C4) − D(C1, C2) =
40 > R and D(C1, C5), D(C1, C6), D(C1, C7) are
larger than D(C1, C4), then D(C1, C5) − D(C1, C2),
D(C1, C6)−D(C1, C2), and D(C1, C7) − D(C1, C2)
are certainly larger than R. Therefore, we do not
need to make any further judgments. Based on this
point, we can omit a lot of calculations and achieve a
fast pruning. Meanwhile, our algorithm can directly
control the loop by the order. Thus, it is easier to
implement.

Next, we need to choose the reference subse-
quence. The selection criterion is such that the ref-
erence subsequence chosen can help achieve better
and faster pruning. First, we calculate the standard
deviations from the reference subsequences to other
subsequences, and select the reference subsequence
that has the largest standard deviation. According
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to Mueen et al. (2009), the larger the standard devi-
ation, the larger the lower bound.

3.2 Initializing the subsequence matrix

We propose an optimized matrix structure to
produce the candidate motifs almost immediately.
Before the matrix is initialized, we need to select the
best reference subsequence and guarantee that we
can achieve better and faster pruning. Algorithm 1
describes this process.

Algorithm 1 Looking for the best reference
1: for i = 1 to k do
2: refi ← a randomly chosen subsequence Ci from T

3: for j = 1 to m do
4: Compute the actual distance between refi, Cj

5: D(refi, Cj)← the distance between refi, Cj

6: D[i][j] ← D(ref i, Cj)

7: end for
8: Si ← standard_deviation(D[i])

9: end for
10: Find the largest standard deviation. The corre-

sponding reference subsequence is the best reference
time series. Suppose the result is refi

11: Sort D [i ] from small to large
12: Dist[]← D[i]

13: return Dist[]

In Algorithm 1, T represents the time series,
D [][] stores the distances between reference subse-
quences and other subsequences, k represents the
number of reference subsequences, m represents the
number of subsequences, and Dist[] stores a set of dis-
tances between the best reference subsequence and
other subsequences.

In Algorithm 1, we calculate the standard de-
viations of D [i ] (1 < i < k) (line 8) and select the
reference subsequence that has the largest standard
deviation (lines 1–9). Then we use a matrix Dist[]
to store all distances between the best reference sub-
sequence and other subsequences in ascending order
(line 12). The information in Dist[] will be used in
the following sections.

With the preprocessing on the distances be-
tween any two subsequences, we can construct the
subsequence matrix. First, we set the values of all
matrix elements as 0. Then judge whether the lower
bound between any two subsequences is less than R.
If it is greater than R, the corresponding matrix ele-
ment value is still 0. If less, then we need to calculate

the actual Euclidean distance D(Ci, Cj). If the ac-
tual distance is less than R, then the corresponding
matrix element value is set as D(Ci, Cj). If greater,
the corresponding matrix element value is still 0.

There is a problem concerning the large number
of subsequences. Supposing there are 5 × 107 sub-
sequences, the matrix will be very large and occupy
much storage space. According to the symmetry of
the Euclidean distance, T [][] is also a symmetric ma-
trix. When most of element values in the matrix are
0, T [][] is a sparse matrix. It would use much space
to store unnecessary information. One of the sim-
plest solutions is to store only the actual distances
that are less than R, and the corresponding informa-
tion. Particularly, if R is very small, this method
can save much storage space. Based on this opti-
mization, we use a compressed storage structure, the
triple sequence table.

Let subr store the line number, col the column
number, and dist the corresponding Euclidean dis-
tance in row subr and column col. We have dist <
R. The triple sequence table Euc_dist stores the val-
ues of subr, col, and dist. m represents the number
of subsequences. C_count[i] stores the number of
subsequences whose distances to Ci are less than R.

Algorithm 2 describes the process of initializing
the triple sequence table Euc_dist.

Algorithm 2 Initializing the triple sequence table
1: Initialize C_count[1, 2, . . . , m]← 0

2: for i = 1 to m do
3: for j = i+ 1 to m do
4: Compute the lower bound between Ci, Cj

5: lower_bound(Ci, Cj)← |Dist[j]−Dist[i]|
6: if lower_bound(Ci, Cj) > R then
7: Break // This can reduce space dramatically

// and is an important feature of our algorithm
8: else
9: Compute the actual distance between Ci, Cj

10: if the actual distance is smaller than R then
11: Assign related information to Euc_dist
12: C_count[i ]++
13: C_count[j ]++
14: end if
15: end if
16: end for
17: end for

In Algorithm 2, we use the triple sequence table
to store the useful information that will be used for
discovering motifs. The triple sequence table can
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help save the storage space. Based on the
symmetry, if D(Ci, Cj) is smaller than R,
D(Cj , Ci) is certainly smaller than R. Because
D(Ci, Cj) is equal to D(Cj , Ci), we assign only
one value. Define an array C_count, and C_count[i ]
represents the number of subsequences whose dis-
tances to Ci are smaller than R. In the following
algorithm, C_count will be used directly to make
judgments.

Next, we explain lines 2–7 in Algorithm 2. We
have calculated the distances between other subse-
quences and the reference subsequence. Thus, ac-
cording to the values of these distances, the sub-
sequences can be arranged in ascending order, fol-
lowed by C2, C3, C4, . . . . According to the illustra-
tion in Section 3.1, when lower_bound(Ci, Cj) > R,
stop computing lower_bound(Ci, Ck) (j < k < m)

and skip inner loop. This can reduce search time
dramatically.

3.3 Executing the 1-motif discovery algo-
rithm

We present an algorithm to discover 1-motif
based on the matrix described in Section 3.2. Based
on the values of the array C_count, we look for
the elements with the largest value in C_count,
and add the subsequences whose corresponding dis-
tance values in Euc_dist are not 0 into 1-motif. Of
course, we may encounter the situation in which
there are several elements with the largest value in
C_count. For this situation, there exists a method
that chooses the motif whose matches have
the lower variance (Chiu et al., 2003). This method,
however, was not verified in Chu et al. (2003).
In future work, we will verify the validity of this
method, and try to find a better method to solve this
problem.

Algorithm 3 describes the process of discover-
ing 1-motif. In Algorithm 3, 1-motif_center
represents the center of 1-motif. First, we look for
the position where the value is the maximum
in C_count (lines 2–6). Then we use the cor-
responding subsequence as the center of 1-motif
(lines 7–8), and find all the subsequences whose dis-
tances to this center subsequence are smaller than R
(lines 9–18). Finally, we regard all subsequences as
1-motif.

Algorithm 3 Discovering 1-motif
1: Initialize max ← 1

2: for i = 2 to m do
3: if C_count[i] > C_count[max] then
4: max ← i // obtain the center of 1-motif
5: end if
6: end for
7: 1-motif_center ← Cmax

8: Add 1-motif_center to 1-motif
// find in Euc_dist the subsequences whose distances
// to Tmax are smaller than R

9: for i = 1 to the length of Euc_dist do
10: if Euc_dist[i ].subr == max then
11: k← Euc_dist[i].col

12: Add Ck to 1-motif
13: end if
14: if Euc_dist[i].col == max then
15: k← Euc_dist[i].subr

16: Add Ck to 1-motif
17: end if
18: end for
19: return 1-motif

3.4 Executing the K -motif discovery algo-
rithm

After discovering 1-motif, we ignore the subse-
quences contained in 1-motif and do further mining
based on the rest of the subsequences. In this sub-
section, we present an algorithm to discover K -motif
based on our improved definition. Algorithm 4 de-
scribes the process of discovering K -motif.

In Algorithm 4, K -1-motifs represents the iden-
tified motifs, and K -motif_center represents the cen-
ter of K -motif. Algorithm 4 compares the proba-
ble candidate motif center and other centers of the
identified motifs (lines 20–30). If the distances are
greater than 2R, the candidate motif is regarded as
the K -motif. If not, the actual distances are calcu-
lated from the center of the candidate motif to all
subsequences in identified motifs. If all distances are
greater than R, the candidate motif is regarded as
the K -motif. If one of the distances is smaller than
R, the candidate motif will be excluded.

When looking for the candidate K -motif, we
need to adjust the corresponding array information.
The subsequences that belong to the identified mo-
tifs will not be considered in the following judgment
(lines 2–12). Thus, we make a further analysis on
Euc_dist and C_count. Comparing the values of
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Algorithm 4 Discovering K -motif
1: Initialize max ← 1

2: for k = 1 to the length of Euc_dist do
3: i← Euc_dist[k].subr

4: if Ci is in K-1-motifs then
5: Change the corresponding information of Ci

in C_count and set the value of distance in
Euc_dist[i ] as 0
// avoid interference for the following judgment

6: else
7: j ← Euc_dist[k].col

8: if Cj is in K-1-motifs then
9: Change the corresponding information of Cj

in C_count and set the value of distance in
Euc_dist[j ] as 0

10: end if
11: end if
12: end for // find the K -motif
13: for i = 2 to m do
14: if C_count[i] > C_count[max] then
15: max ← i // obtain the center of K -motif
16: end if
17: end for
18: K-motif_center ← Cmax

19: Add K -motif_center to K -motif
20: if the center Cmax of the candidate motif does not

meet Definition 5 then
21: C_count[max] ← 0 // change the C_count
22: Go to line 13 // continue the search
23: else
24: for k = 1 to the length of Euc_dist do
25: if Euc_dist[k].subr == max && Euc_dist[k].

dist > 0 then
26: j ← Euc_dist[k].col

27: Add Cj to K -motif // find in Euc_dist
// the subsequences whose distances to
// Cmax are smaller than R

28: end if
29: end for
30: end if
31: return K -motif

C_count, we can determine the center of candidate
K -motif (lines 13–18). Then judge whether the can-
didate K -motif shares the same subsequences with
the identified motifs (line 20). If they share the same
subsequences, this candidate K -motif is skipped. If
not, find the subsequences whose distances to the
center subsequence in the K -motif are smaller than
R. All the subsequences found are seen as K -motif
(lines 24–30).

4 Results and discussion

To verify the accuracy and efficiency of our al-
gorithm, we studied two groups of publicly avail-
able datasets: Video Surveillance and EEG. De-
tails about Video Surveillance and EEG datasets
are available from the UCR (University of Califor-
nia, Riverside) time series data mining archive and
http://www.cs.ucr.edu/∼mueen/MK/, respectively.
Meanwhile, to verify the feasibility of our algorithm,
we analyzed a Randomwalk dataset. In this section,
we consider case studies on these time series datasets.

4.1 Motifs experiments and analysis

Based on the traditional definition and our im-
proved definition of K -motifs, we reveal the results
of three comparative experiments on three different
time series datasets.
Experiment 1 (Randomwalk dataset) There are
40 000 subsequences of length 512. Fig. 3 gives a
partial visualization of this dataset.

0 100 200 300 400 500 600-2.0

-1.5

-1.0

-0.5

0

0.5

1.0

1.5

2.0

2.5

Subsequence length

Fig. 3 Partial visualization of the Randomwalk
dataset

First we used the motifs discovery algorithm
based on the traditional definition of K -motifs. The
1- and 2-motif of this dataset are shown in Figs. 4
and 5a, respectively (R=5.40).

Then we used the motifs discovery algorithm
based on our improved definition of K -motifs. The
1-motif is the same as that in Fig. 4, and the 2-motif
is shown in Fig. 5b (R=5.40).

The 2-motif in Fig. 5b includes many more sub-
sequences than that in Fig. 5a. Having discovered
this interesting result, we continued to check if it is
really significant. The first thing is to check whether
the 2-motif shares the same subsequences with other
motifs. According to our algorithm design, two
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Fig. 4 The 1-motif of the Randomwalk dataset (R =
5.40)

motifs will not share the same subsequences. More-
over, each subsequence in Fig. 4 is not the same as
the ones in Fig. 5b. The second thing is to examine
the distance between any two subsequences. Our al-
gorithm guarantees that the distances between any
two subsequences in 2-motif are smaller than R; thus,
the 2-motif in Fig. 5b is a meaningful result. By
comparison, Fig. 5b includes many more frequently
occurring patterns. The purpose of our algorithm
is to discover many more frequently occurring pat-
terns. Thus, the 2-motif in Fig. 5b is much more
meaningful. We verify that the improvement on the
definition of K -motifs can help find many more fre-
quently occurring patterns in time series data, and
the algorithm based on the traditional definition of
K -motifs will miss some probable candidate motifs.
Experiment 2 (Video Surveillance dataset) First
we used the algorithm based on the traditional def-
inition of K -motifs to discover motifs. Figs. 6 and
7a show the 1- and 2-motif, respectively (R=14.00).
Then we used the motifs discovery algorithm based
on our improved definition of K -motifs to discover
motifs. The 1-motif is the same as that in Fig. 6,
and the 2-motif is shown in Fig. 7b (R = 14.00).

Comparison of Figs. 7a and 7b shows that
the improvement on the definition of K -motif is
meaningful.
Experiment 3 (EEG dataset) First we used the
algorithm based on the traditional definition of K -
motifs to discover motifs. Figs. 8 and 9a show the 1-
and 2-motif of this dataset, respectively (R=16.52).
Then we used the motifs discovery algorithm based
on our improved definition of K -motifs to discover
motifs. The 1-motif is the same as that in Fig. 8,
and the 2-motif is shown in Fig. 9b (R = 16.52).
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Fig. 5 The 2-motif of the Randomwalk dataset based
on traditional (a) and our improved (b) definition of
K -motifs (R = 5.40)

According to Figs. 9a and 9b, our improvement
on the definition of K -motif is more convincing.

In conclusion, our algorithm based on the im-
proved definition of K -motif is feasible and effective
on different datasets and can help find many more
frequently occurring patterns.

4.2 Efficiency analysis on improved triangular
inequality

In our algorithm, we leverage triangular in-
equality to improve the efficiency. Based on the
Randomwalk, Network, and Burst datasets, we
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Fig. 6 The 1-motif of the Video Surveillance dataset
(R = 14.00)
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Fig. 7 The 2-motif of the Video Surveillance dataset
based on traditional (a) and our improved (b) defini-
tion of K -motifs (R = 14.00)
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Fig. 8 The 1-motif of the EEG dataset (R = 16.52)

compared the time consumption of the triangular in-
equality pruning algorithm and our improved prun-
ing algorithm. Details of the Network dataset and
Burst dataset are available from the UCR time series
data mining archive. We set R as 1.52 and obtained
the corresponding time consumption. Table 2 shows
the results.

Compared with the triangular inequality prun-
ing method, our improved pruning algorithm reduces
time consumption; e.g., in the Network dataset, the
time reduction ratio is (455.276−272.510)/455.276 =

0.401. We can conclude that our improved pruning
algorithm saves a large proportion of time and is
much more effective than the triangular inequality
pruning algorithm.
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Fig. 9 The 2-motif of the EEG dataset based on
traditional (a) and our improved (b) definition of K -
motifs (R = 16.52)

Table 2 Comparison of time consumption on three
datasets between our improved pruning method and
the triangular inequality pruning method (R = 1.52)

Method
Time (s)

Network Burst Randomwalk

Our improved 272.510 258.617 195.953
pruning method

Triangular inequality 455.276 385.117 244.250
pruning method

5 Conclusions

We propose a new motifs discovery algorithm
that is significantly more comprehensive and faster
than the traditional motifs discovery algorithms.
One contribution of this paper is to introduce the rel-
atively comprehensive definition of K -motifs based
on the traditional definition of K -motifs (Lin et al.,
2002), and this improvement can help avoid the omis-
sion of many more frequently occurring patterns.
Another contribution is to improve the triangular
inequality pruning method from a new perspective.
We use this fast pruning method and the optimized
matrix structure to realize fast motifs discovery. Re-
sults of experiments on three different time series
datasets show that our algorithm is feasible and
effective.
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There is an important direction, i.e., the expres-
sion of motifs, along which we may extend this work.
If the time series dataset is very large, the number
of discovered motifs may be intimidating. In future
work, we will investigate tools for visualizing and
navigating the results of a motif search.
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