
Wen et al. / J Zhejiang Univ-Sci C (Comput & Electron)   2012 13(3):218-231 218 

 

 

 

 

Grasp evaluation and contact points planning for  

polyhedral objects using a ray-shooting algorithm 
 

Shuang-quan WEN†, Tie-jun WU 
(Department of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China) 

†E-mail: sqwen@iipc.zju.edu.cn 

Received June 8, 2011;  Revision accepted Oct. 25, 2011;  Crosschecked Feb. 8, 2012 

 

Abstract:    Grasp evaluation and planning are two fundamental issues in robotic grasping and dexterous manipulation. Most 
traditional methods for grasp quality evaluation suffer from non-uniformity of the wrench space and a dependence on the scale and 
choice of the reference frame. To overcome these weaknesses, we present a grasp evaluation method based on disturbance force 
rejection under the assumption that the normal component of each individual contact force is less than one. The evaluation crite-
rion is solved using an enhanced ray-shooting algorithm in which the geometry of the grasp wrench space is read by the support 
mapping. This evaluation procedure is very fast due to the efficiency of the ray-shooting algorithm without linearization of the 
friction cones. Based on a necessary condition for grasp quality improvement, a heuristic searching algorithm for polyhedral object 
regrasp is also proposed. It starts from an initial force-closure unit grasp configuration and iteratively improves the grasp quality to 
find the locally optimum contact points. The efficiency and effectiveness of the proposed algorithms are illustrated by a number of 
numerical examples. 
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1  Introduction 
 

Multifingered robotic hands are very powerful in 
object grasping and especially suitable to perform 
dexterous and fine manipulation tasks. They provide 
many grasp configurations from which we can choose 
those that meet our different demands. Thus, an 
evaluation method is necessary for us to obtain the 
best grasping quality. 

Grasp stability is characterized by two well- 
known terms, ‘form closure’ and ‘force closure’ 
(Salisbury and Roth, 1983; Murray et al., 1994; 
Xiong, 1994; Bicchi, 2000). A grasp achieves form 
closure if it prevents the grasped object from slipping 
under the constraint of unilateral frictionless contacts, 
while a force closure grasp can resist arbitrary ex-
ternal forces and torques in consideration of the fric-
tional grasping forces. The primary distinction be-

tween a form closure and a force closure lies in the 
contact model employed (Zhu and Wang, 2003). 
Salisbury and Roth (1983) have proved that a grasp is 
form closed if and only if the contact wrenches of the 
grasp positively span the whole wrench space. An 
equivalent necessary and sufficient condition for form 
closure is that the origin of the wrench space is in the 
interior of the convex hull of the contact wrenches 
(Xiong, 1994). Liu (1999) linearized the friction cone 
as a polyhedral convex cone, and then transformed 
the force closure test into a ray-shooting problem. Liu 
(1999) also presented an efficient algorithm for 
computing all n-finger force closure grasps on a po-
lygonal object by recursively transferring the problem 
from high dimension to low dimension (Liu, 2000). 
Based on geometric analysis, Li et al. (2003) proposed 
a method for computing three-finger force closure 
grasps of 2D and 3D objects. Zhu et al. (2004) for-
mulated a numerical test for closure properties of 3D 
grasps as a convex constrained optimization problem 
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without linearization of the friction cones. 
The qualitative tests described above are de-

signed to check whether a grasp is closed or not. A 
metric index expressing the grasp quality is needed 
for quantitative grasp analysis and optimal grasp 
planning. Ferrari and Canny (1992) measured grasp 
quality by the radius of the largest sphere centered at 
the origin and fully contained in the convex hull of the 
primitive wrenches. This quality is a widely used 
criterion and is sometimes referred to as the largest 
ball criterion (Suárez et al., 2006). After that, a qual-
ity measure based on decoupled wrenches (Mirtich 
and Canny, 1994) was developed to remedy the 
non-uniformity of the wrench space. Another short-
coming of the largest ball criterion is its dependence 
on the coordinate system of the grasped object. Thus, 
Teichmann (1996) proposed a measure based on the 
radius of the largest origin-centered balls among all 
possible translations of the object coordinate system. 
Borst et al. (2004) introduced a physically motivated 
description of a general task wrench space (TWS) 
based on an object wrench space (OWS) and pre-
sented a quality measure which overcame the prob-
lems of the non-uniform wrench space. Strandberg 
and Wahlberg (2006) presented a method for grasp 
evaluation based on disturbance force rejection. Their 
approach not only included both task and object 
geometry information but also overcame the de-
pendence on the scale and choice of the reference 
frame. Suárez et al. (2006) summarized 22 different 
quality measures in the grasp literature and divided 
them into two groups: measures associated with 
contact position and measures associated with hand 
configuration. One way to choose a global optimal 
grasp is to rank grasps according to each of the 
measures and then to combine them into a single 
measure (Chinellato et al., 2003). 

As for grasp planning, most approaches have 
been based on iterative searching algorithms. Ding 
et al. (2001b) proposed an algorithm to find a force 
closure grasp by iteratively minimizing the distance 
between the origin and the centroid of the primitive 
contact wrenches along the local search direction in 
each step. Based on the concept of ‘Q distance’, the 
constrained optimization (Zhu et al., 2001), the de-
scent searching algorithm (Zhu and Wang, 2003), and 
the genetic algorithm (Phoka et al., 2006) were de-
signed to plan optimal grasp. Other heuristic search-

ing algorithms can be found in the literature (Ding et 
al., 2001a; Liu et al., 2004; Roa and Suárez, 2009). 
Grasp planning can be formulated as an optimization 
problem, and then solved directly using a standard 
optimization toolbox. Mangialardi et al. (1996) de-
termined the optimal grip points with minimal 
grasping forces by solving an optimization problem 
with nonlinear constraints. Mantriota (1999) then 
modified it to minimize the friction coefficient needed 
to ensure contact stability in the presence of a generic 
disturbing external force. Watanabe and Yoshikawa 
(2007) treated grasp planning as an optimization 
problem from the viewpoint of decreasing the mag-
nitudes of the contact forces needed to balance all the 
wrenches in a required wrench set. More recently, 
Zheng and Qian (2009) proposed two nonlinear op-
timization problems to minimize the maximal prede-
fined distance between the origin and the surface of 
all non-negative linear combinations of the primitive 
contact wrench sets. 

In this paper, we extend Strandberg and Wahl-
berg’s grasp evaluation method to a more natural and 
better grasp wrench space. After careful study we 
adapt the fast ray-shooting algorithm (Zheng et al., 
2010) for use in grasp evaluation. A necessary condi-
tion for grasp quality improvement is also presented 
in this paper. Based on this condition, a heuristic 
planning algorithm for polyhedral object regrasp is 
also proposed. Our grasp evaluation method inherits 
all the benefits from Strandberg and Wahlberg’s 
method with additional benefits as follows: 

1. The grasp quality calculated using our 
evaluation method is more accurate because lineari-
zation of friction cones is not needed. 

2. It can apply to a soft finger contact model 
because the geometry of the grasp wrench space is 
read by the support mapping in the ray-shooting  
algorithm. 

Table 1 lists the notations to facilitate reading. 
 
 
2  Preliminaries 

2.1  Grasp mapping 

Consider a rigid object fixed with an object co-
ordinate frame grasped by m frictional point contacts. 
Set a local contact coordinate frame whose first prin-
cipal axis orientation is the inward normal direction at  
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the ith contact. Then the contact force fi can be ex-
pressed in the local contact coordinate frame as 

T[ ]i xi yi zif f ff  or T[ ]i xi yif ff  for 3D and 2D 

grasps, respectively. We set the upper bound of nor-
mal force component fxi to 1 for convenience and let μi 
denote the static friction coefficient at contact i. To 
avoid separation and slip at each contact, fi must lie in 
the friction cone FCi, which can be expressed by 

 

 
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FC

| 0 1, . (2D)
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When combining force and torque vectors f and τ to 
form a wrench of w=[fT τT]T, the total resultant 
wrench applied on the object by the m frictional point 
contacts is 

 
1

.
m

i i
i

 w G f  (2) 

 
Here, Gi is the grasp matrix at contact i. Let ri and Ri 
(i=1, 2, ···, m) be the position of contact i and the 
relative orientation of the ith local contact coordinate 
frame, respectively, with respect to (w.r.t.) the object 
reference frame. Let ri=[xi yi]

T and ri=[xi yi zi]
T rep-

resent 2D and 3D grasps, respectively. We have 
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where [ri]× is a cross product matrix satisfying 
ri×fi=[ri]×f for any force vector f. We have [ri]×=[−xi yi] 
for 2D grasps, while for 3D grasps, we have a skewed 
symmetric matrix defined as 
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2.2  Ray-shooting problem 

Let A denote a compact set in úd, and coA the 

convex hull of A. Let  | 0, dR    q q   be a ray 

emanating from the origin through another point q. 
The ray-shooting problem (Zheng et al., 2010) is to 

Table 1  Notations used in this paper 

Parameter Meaning 

m Number of contacts 
fi Contact force at contact i 
μi Static friction coefficient at contact i 
FCi Friction cone for contact i 
τ Torque vector 
w Total resultant wrench 
d Dimensionality of the wrench space. d=3 and  

d=6 for 2D and 3D grasps, respectively 
ri Position of contact i 
Ri 

 
Relative orientation of the ith local contact  

coordinate frame with respect to (w.r.t.) the 
object frame 

Gi Grasp matrix for the ith contact 
[ri]× Cross product matrix for vector ri 
A A compact set in úd 
coA Convex hull of A 
R A ray from the origin through another point q 
s Intersection of the boundary of coA by the  

ray R 
hcoA(u)  Support function of coA w.r.t. uúd 
scoA(u) Support mapping of coA w.r.t. u 
0 Origin of a space or zero matrix 
int() The interior of a set 
V0 An initial set containing d+1 affinely independ-

ent points in coA. V0={a1, a2, ···, ad+1} 
coFi The ith facet of coV0. Fi={a1, a2, ···, ai−1, ai+1,  

···, ad+1} 
Wi Grasp wrench set for contact i 
W Total unit grasp wrench set 
w0 Offset wrench generated by gravity 
wd Disturbance wrench 
Wd Disturbance wrench set 
ei A fixed direction for unit disturbance force 
P(ei) A set that contains those points on the object 

surface with ei on their friction cones 
ρ Magnitude of the disturbance force 

ρ*(ei) Maximum magnitude for the disturbance force 
ei the grasp can resist 

ρm Final grasp quality 
wT A general transformation of W 
fn Normal contact force. fn=[1 0]T and fn=[1 0 0]T 

for 2D and 3D grasps, respectively 
G Total grasp matrix. G=[G1 G2 ··· Gm]T 
wc Average wrench generated by all normal contact 

forces at each contact 
║·║ 2-norm of a vector 
ε, σ Termination tolerances in the ray-shooting and

heuristic regrasp planning algorithms,  
respectively 

nmax Maximum iteration in the heuristic regrasp  
planning algorithm 

χ An assigned parameter in the heuristic regrasp 
planning algorithm 
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determine the intersection of the boundary of coA by 
this ray, denoted by s. A support function of coA, hcoA: 
úd→ú, is defined by 

 

 
T

co
co

( ) max ,A
A

h



a

u u a  (5) 
 

where aúd. The support mapping scoA(u) is a point in 
coA satisfying hcoA(u)=uTscoA(u). 

Zheng et al. (2010) presented hitherto the fastest 
d-dimensional algorithm for solving the ray-shooting 
problem. We retell their approach briefly here. Sup-
pose 0int(coA), where 0 is the origin and int() de-
notes the interior of a set (Fig. 1). Let V0={a1, a2, ···, 
ad+1} be an initial set containing d+1 affinely inde-
pendent points in coA and satisfying 0int(coV0). Let 
Fi={a1, a2, ···, ai−1, ai+1, ···, ad+1}. Then coFi is the ith 

facet of coV0. Let 1
i
c W q , where Wi=[a1, a2, ···, 

ai−1, ai+1, ···, ad+1]ú
d×d. Let min(c) and sum(c) de-

note the minimum and the sum, respectively, of 
components of c. Then it is easy to verify that the ray 
R intersects coFi if and only if min(c)≥0 and the in-

tersection point s0=q/sum(c). Let co iF  denote the 

intersection facet of coV0 with the ray R. The outward 

normal vector of co iF  can be calculated by 

T
0 di

u W x , where xd=[1 1 ··· 1]Túd. Then a new 

simplex coV1 can be constructed using co iF  and the 

support mapping scoA(u0). A new round of iteration 
can be started to find a new intersection point s1 on the 
facet of coV1 and the sequence {si} is convergent to 
the intersection point s. In practice, the iterations can 
stop when hcoA(ui)−1<ε, where ε is the termination 
tolerance. The last ui can be adopted as the outward 
normal of coA at s. 
 
 
3  Grasp quality index 
 

Strandberg and Wahlberg (2006) measured the 
grasp’s quality by its ability to resist disturbance 
forces. They linearized the friction cone FCi as a 
k-sided pyramid and then defined the unit grasp 
wrench space (UGWS) as the convex combination of 
all the linearized primitive wrenches, for simplifica-
tion. The UGWS limits the sum of all the normal 
force components to less than one. Strandberg and 
Wahlberg (2006) also stated that a more natural way 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
to represent UGWS was as the convex combination of 
the Minkowski sum of primitive wrenches. This rep-
resentation is also better for evaluating grasp quality 
(Zheng and Qian, 2006), but the heavy computation 
required prevented them from doing so. In this section, 
their grasp measure is extended to the more natural 
and better grasp wrench space without linearizing the 
friction cones. 

Let Wi be the grasp wrench set for contact i, 
which comprises all the wrenches generated by 
fiFCi. It is the image of FCi under the mapping Gi 
into the wrench space úd and we denote it by 
Wi=Gi(FCi) (Zheng and Qian, 2009). Then the total 
unit grasp wrench set composed of all the m grasps is 
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i i
i

W

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It is well known that a grasp is force-closure if 
and only if 0int(coW). Let w0 denote an offset 
wrench generated by gravitational force and wd be the 
disturbance wrench arising from unknown forces 
acting on the object surface. For equilibrium, we have 

d 0 1
.

m

i ii
  w w G f 0  Let Wd denote the distur-

bance wrench set. Then a unit grasp can equilibrate all 
the disturbance forces if and only if 

 

 d 0co( { }).W W   w  (7) 
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0
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a1

a2

ad+1
coA

u0

Fig. 1  Illustration of the ray-shooting problem (Zheng et 
al., 2010) 
The problem is to find the intersection point s on the 
boundary of coA with R, which is the ray emitting from the 
origin and passing through a given point q. u0, u1, and u2 are 
outward normals to the facets of simplexes coV0, coV1, and 
coV2, respectively, hit by R 
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Supposing the magnitudes of disturbance 
wrenches in Wd are infinitely small, a unit grasp can 
equilibrate all disturbance wrenches if and only if 
0int(co{W+w0}). We define a grasp as a force- 
closure unit grasp if and only if 0int(co{W+w0}). 
Note that it is different from the commonly used term 
‘force-closure’ because the magnitude of normal 
force for each contact is limited and an offset wrench 
w0 is associated here. 

The disturbance wrench set Wd can be modeled 
by the entire disturbance wrenches arising from all 
possible pure forces acting on the surface of the 
grasped object. Let a unit vector ei denote a fixed 
direction for the disturbance force. Then the distur-
bance force ρei acting on all possible points on the 
grasped object will generate a subset of Wd. Here, ρ is 
a dimensionless scalar representing the magnitude of 
the disturbance force, and ‘possible points’ refers to 
points on the surface of the grasped object where ei is 
inside each friction cone of those points. Let P(ei) be a 
point set that contains all the possible points for the 
fixed direction ei, and ρ*(ei) the maximum magnitude 
of the disturbance force in the direction of ei that the 
grasp can resist, no matter where the disturbance 
force is applied. From Eq. (7), we can define ρ*(ei) as 
the solution to a min-max problem formulated as  
 

0
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( ) min max | co( { }) .
[ ]i

i
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  (8) 
 

We adopt the minimum ρ*(ei) among all the 
disturbance force directions as the final grasp quality, 
i.e., 

 m min ( ).
i

i 
e

e  (9) 

 

It is obviously impractical to calculate all the 
disturbance force directions; thus, we need to discre-
tize these directions. A simple discretization could be 
done by uniformly sampling sufficient points on the 
unit circle and the unit sphere, for 2D and 3D grasps, 
respectively. Let n denote the number of discrete 
directions. For 2D grasps, we can express ei= 
[cos(2πi/n) sin(2πi/n)]T (i=1, 2, ···, n), explicitly. For 
3D grasps, ei=[cosφisinθi sinφisinθi cosθi]

T, where 
0≤θi≤π, 0≤φi≤2π, and i=1, 2, ···, n. 

In general, all the points in P(ei) need to be in-
vestigated to solve the min-max problem (8). How-

ever, when the grasped object is a polyhedron, the 
number of points to be investigated can be reduced 
based on the following theorem, similar to that pre-
sented by Strandberg and Wahlberg (2006). 
Theorem 1    For polyhedral objects grasped by a 
force-closure unit grasp, the worst point on the object 
attacked by a disturbance force is a vertex. 
Proof    We assume all the faces of the polyhedral 
objects are convex because nonconvex faces can be 
decomposed into a number of convex polygons. A 
point rk on the kth convex face can be written as a 
convex combination of its vertices, i.e., 
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where 1 2, , ,

kk k kNv v v  are the vertices of the kth con-

vex face and Nk is the number of these vertices. Ob-
viously, all these Nk vertices belong to the vertices of 

the grasped object. Let ,
k
i jw  denote the wrench gen-

erated by a unit disturbance force acting on the vertex 
vk,j along the direction of ei, that is, 
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, where ,
k
i j  is defined by 

 

  , , 0max | co( { }) .k k
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Note that ,

k
i j  is positive because the grasp is a 

force-closure unit grasp, and , 0co( { })k k
i i j W  w w , 

j=1, 2, ···, Nk. From Eqs. (10), (11), and (4), the 
wrench wki generated by a unit disturbance force ei on 
the point rk can be represented by 
 

,
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From Eq. (13), we can easily conclude that 

0co( { })k
i ki W  w w  because it is a convex com-

bination of a point set ,{ }k k
i i j w  in the wrench space. 

Thus, we have 0max{ | co( { })} k
ki iW     w w  
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and further conclude that only the vertices in P(ei) can 
be the candidate solution to Eq. (8). Therefore, the 
worst point of attack by a disturbance force among all 
directions is a vertex of the grasped object. 

 
 

4  Grasp evaluation procedure 
 
The min-max problem (8) can be treated as a 

ray-shooting problem. The primary ray-shooting al-
gorithm proposed by Zheng et al. (2010) is very effi-
cient, even in high dimensions, such as the 6D wrench 
space of 3D grasps. However, some remedies or im-
provements can be made to complete the algorithm in 
our application described above. In this section, we 
propose an enhanced ray-shooting algorithm solution 
and present all the calculation issues. 

4.1  Support function and mapping 

It is necessary to calculate the support function 
and mapping of W+{w0} to solve the min-max prob-
lem (8). The following properties for support func-
tions and mappings are useful in reducing the  
computation. 
Theorem 2    Assume W, W1, W2, ···, Wmú

d and 
FCúm are compact sets and G is a real d×m matrix. 
Then the following equations hold (Gilbert and Foo, 
1990; Zheng and Chew, 2009): 
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Let WT=W+{wT}, where wT denotes a general 

transformation of W in the wrench space. From 
Theorem 2, we can calculate the support function and 
mapping of coWT as 
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The support mapping is not unique in some 

special cases, and we select one of these support 

mappings for the special cases in the following cal-

culation. Let T
i ix G u . Then for 2D grasps, xi=[xi 

yi]
T, we set 
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For 3D grasps, xi=[xi yi zi]
T, let 2 2

i i iy z   . 

We have 
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4.2  Grasp evaluation algorithm 

It should be checked whether 0int(coWT) be-
fore implementing the ray-shooting algorithm to the 
min-max problem (8). Let fn=[1 0 0]T and fn=[1 0]T 
for 3D and 2D grasps, respectively. It can be proved 
that wc given below lies in the interior of coW if and 
only if G=[G1 G2 ··· Gm] is of full row rank (Zhu et al., 
2004): 

 c n
1

1
.

m

i
im 

 w G f  (20) 

 

If wc=−w0, we can directly conclude −w0 
int(coW) if G is of full row rank. For the nontrivial 
case of wc≠−w0, we have the following straightfor-
ward theorem: 
Theorem 3    Let wcint(coW) and wscoW. Then 
(1−λ)wc+λwsint(coW) for 0<λ<1. 

The following corollary of Theorem 3 is also 
straightforward: 
Corollary 1    If G is of full row rank and wc≠−w0, 
letting ws be the intersection of the boundary of coW 
by a ray emanating from wc passing −w0, then −w0 

int(coW) if and only if c s c 0 w w w + w . 

Fig. 2a shows a force-closure unit grasp checked 
by Corollary 1. Let q=−w0−wc. The calculation of ws 
in Fig. 2a can be transformed to the standard 

ray-shooting problem. Thus, if s q  as in Fig. 2b, 
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then −w0int(coW). Let   q s . Then λ<1 indi-

cates a force-closure unit grasp. 
Two shortcomings exist for the primary 

ray-shooting algorithm. Firstly, it does not handle the 

singular cases when calculating 1
i
c W q . A simple 

singular case is illustrated in Fig. 3, where scoA(u0) lies 
in a ray emanating from the origin and passing 
through a vertex of coV0. Thus, we should make sure 
Wi is of full rank before calculating its inverse in our 
enhanced algorithm. 

The ray-shooting algorithm needs to start from 
an initial set V0 such that coV0 contains the origin in 
its interior and is contained in coA. The lack of 
method to obtain this initial set V0 is another short-
coming of the primary ray-shooting algorithm and we 
try to fix it here. First, we make the assumption that 
the friction coefficients μi>0 for all the m (m>1) 
contact points. Let ri be the largest radius of the 
sphere centered at fn/m in the force space and fully 
contained in the friction cone FCi (Fig. 4a). Obviously, 
ri can be computed by 

 

 2
, 1,2, , .

1

i
i

i

r i m
m




 


  (21) 

 
If G has full row rank, then for an arbitrary nonzero 
point pj in the wrench space úd, let εi,j be formulated 
by 

 , T T 1
, 1,2, , .

( )
i

i j

i j

r
i m


 

G GG p
  (22) 

 
Let εi,j=+∞ when the denominator encounters zero in 
Eq. (22). Then, we have the following theorem: 
Theorem 4    For any positive εj, if εj≤min{εi,j} for all 
i, we have wc+εjpjcoW. 

Proof    Let c1

m

i i j ji



  G f w p , where fi=fn/m+Δfi. 

From Eq. (20), we have 
1

.
m

i i j ji



  G f p  The spe-

cial solution is T T 1( )i i j j
 f G GG p  since G has full 

row rank. From 0<εj≤εi,j, it can be deduced 
that║Δfi║≤ri. We further conclude that fiFCi for all 
the m contact points (Fig. 4a). Then from the defini-
tion of the grasp wrench set W in Eq. (6), 

1

m

i ii
W


 G f  is affirmed. Therefore, wc+εjpjcoW. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For 3D grasps, choose pj (j=1, 2, ···, 7) as the 
vertices of a 6D regular simplex inscribed on the unit 
sphere centered at the origin of the wrench space ú6, 
and let r=min{εi,j}/6. With the aid of Theorem 4, it 
can be easily proven that the sphere with a radius of r 
centered at wc (Fig. 4b) is fully contained in coW. If 
the grasp is affirmed to be a force-closure unit grasp, 
i.e., obtaining a non-negative λ<1 from Corollary 1, 
the sphere with a radius of (1−λ)r centered at −w0 is 
also included by coW. For 2D grasps, we reach the 

s R

q

u0

s0

0

coV1

coV0

H1

coA

scoA(u0)

Fig. 3  A singular case in the ray-shooting algorithm 
This differs from the singular case depicted by Zheng et al. 
(2010) 
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 0w

  cco( { })W w

Fig. 2  Illustration of Corollary 1 
(a) A ray R emanating from wc passing –w0 intersects the 
boundary of coW at ws; (b) Adding an offset of –wc to coW, the 
ray-shooting problem of (a) transforms to the standard form 
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


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Fig. 4  Construction for the proof of Theorem 4 
(a) A sphere with a radius of ri centered at fn/m in the force 
space is contained in the friction cone FCi; (b) Two spheres 
with radii of r and (1−λ)r, respectively, and centered at wc 
and –w0 in the wrench space are both included by coW 
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same conclusions except that the selection of pj (j=1, 
2, 3, 4) comes from a 3D regular simplex and r is 
changed to min(εi,j)/3. Therefore, for 3D (or 2D) 
grasps, a simple initial set V0 can be the vertices of a 
6D (or 3D) regular simplex inscribed on the sphere 
centered at the origin with a radius of r and (1−λ)r for 
A=W+{−wc} and A=W+{w0}, respectively. 

The enhanced ray-shooting algorithm is almost 
the same as its original form proposed by Zheng et al. 
(2010) except for the two improvements described 
above. Thus, we ignore its explicit expression and 
implement it in our grasp evaluation algorithm as 
follows: 
 

Algorithm 1    Grasp evaluation 
Input: The offset wrench w0, the friction coefficients μi and 
the positions ri for m contact points, the vertices vj, j=1, 2, ···, 
of the grasped polyhedral object, and discretized force direc-
tion ei, i=1, 2, ···, n. 
Output: If the grasp is a force-closure unit grasp, return the 
grasp quality ρm dedicated by Eq. (9). 
1 Compute Gi, wc, and W by Eqs. (3), (20), and (6),  

    respectively. Let G←[G1 G2 ··· Gm] 
2 if GGT is not of full rank then 
3 abort {it is not a force-closure unit grasp} 
4 end if 
5 if wc=−w0 then 
6 λ←0 
7 else  
8 A←W+{−wc}, q←−w0−wc. Compute s by the  

    enhanced ray-shooting algorithm 

9 if s q  then 

10   q s  

11 else 
12 abort {it is not a force-closure unit grasp} 
13 end if 
14 end if 
15 for all discretized force directions ei do 
16 select vertices vj such that ei lies in their friction cones

    A←W+{w0}, 
TT T T

, [ ]i j i i j    w e e v  

17 for all vertices vj do 
18 q←−wi,j, calculate s by the enhanced ray-shooting 

algorithm. ,i j  s q  

19 end for 
20 ρ*(ei)←min{ρi,j} 
21 end for 
22 return ρm←min{ρ*(ei)} 

4.3  Discussions on the grasp evaluation algorithm 

In the above algorithm, the force-closure unit 
grasp is checked in lines 1 to 14 according to Corol-

lary 1, and the grasp quality is calculated in lines 15 to 
22 by the enhanced ray-shooting algorithm. The 
above grasp evaluation algorithm is very fast because 
linearization of the friction cones is not needed. 
However, a large number of callings for the enhanced 
ray-shooting algorithm are needed in line 18 when the 
number of force directions and the number of vertices 
of the grasped polyhedral object are very large. 
Suppose wj (j=1, 2, ···, M) are the disturbance 
wrenches in Wd (Fig. 5a). We first calculate a simplex 
coV0 containing the origin of the wrench space in its 
interior and with all the d+1 vertices on the boundary 
of co(W+{w0}). When calculating the intersection 
point of the boundary of co(W+{w0}) by the ray in the 
direction of w1 by means of the enhanced ray- 
shooting algorithm, a sequence of simplexes will be 
generated. We can record some of these simplexes to 
speed up the computation of the ray-shooting problem 
in the direction of w2. A recursive problem decompo-
sition strategy is recommended to avoid reduplicate 
simplex calculations: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)

H1
H0

co(W+{w0})

coV2

coV1

coV0

0

w1

w2

w3

w4

w5

w6

Disturbance wrench set Wd

{w1,w2,w3} w4 {w5,w6}

{w1,w2} w3 {w5,w6}

{w1,w2}

(b)





Fig. 5  Recursive problem decomposition 
(a) The grasp evaluation algorithm needs to determine all 
the intersection points; (b) A searching tree generated by 
recursive problem decomposition 
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1. Divide the disturbance wrench set Wd into d+1 
subsets such that all the rays shooting in the direction 
wj from the same subset intersect the same facet of 
coV0. Attach the corresponding intersection facet to 
each subset. 

2. For each subset with more than one element, 
calculate the support mapping sA of co(W+{w0}) in 
the outward normal direction of the corresponding 
intersection facet coF. If the distance between sA and 
coF is less than the termination tolerance ε, then 
output the intersection points on the facet coF by all 
the rays shooting in the direction wj chosen from the 
subset; otherwise, construct a new simplex coV using 
the face coF and the support mapping sA. Then further 
divide the disturbance wrenches in the subset into d 
low-layer subsets such that all the rays in the direction 
wj in the same low-layer subset intersect the same new 
facet of coV. Attach the new corresponding intersec-
tion facet to each low-layer subset. 

3. For each subset with only one element wj, we 
can resort to the enhanced ray-shooting algorithm to 
calculate the intersection point on the boundary of 
co(W+{w0}). Note that we can skip some of the steps 
in the enhanced ray-shooting algorithm since some of 
the simplexes have already been calculated. 

4. Recursively repeat step 2 or 3 for each new 
subset until no new subsets are generated in step 2. 

The recursive problem decomposition strategy 
described above can be represented by a search tree 
structure. The root node represents all elements in the 
disturbance wrench set Wd. All the elements in a 
non-leaf node are divided and assigned to its child 
nodes depending on the face intersected by the ray. A 
simple search tree is illustrated in Fig. 5b, where d=2, 
 is the empty set, and there are only six disturbance 
wrenches in Wd. Note that the searching tree strategy 
will not accelerate the grasp evaluation algorithm 
when the number of force directions and the number 
of vertices of a grasped polyhedral object are rela-
tively small. 

Another method to speed up the grasp evaluation 
algorithm is a short-circuiting technique. In the itera-
tion of the ray-shooting algorithm shown in Fig. 1, we 
obtain a sequence of {si} which is convergent to the 
intersection point s. Obviously, ║si║≤║s║. Let ρm be 
the minimum grasp quality among all the checked 
disturbance wrenches. The iteration of the enhanced 
ray-shooting algorithm in line 18 can be terminated 

immediately once ║si║>ρm║q║ occurs; i.e., the cal-
culation of s is not required. 

The ray-shooting algorithm proposed by Zheng 
et al. (2010) can cope with arbitrary object grasping. 
However, our grasp evaluation algorithm is limited to 
polyhedral object grasping because the disturbance 
wrench set Wd is difficult to calculate for non-  
polyhedral objects. A possible approach to modeling 
the disturbance wrench may be as follows. First, ap-
proximate the surface of an arbitrary object by a point 
set and their corresponding normal direction (Roa and 
Suárez, 2009). Second, calculate the candidate 
wrench set that contains all the wrenches generated by 
those discretized forces ei in the friction cone for each 
point. Finally, the disturbance wrench set Wd can be 
selected as those wrenches on the boundary of the 
convex hull of the candidate wrench set. 
 
 
5  Contact points regrasp planning 
 

When allowing the contact points to move on the 
faces of the grasped polyhedral object, the grasp 
quality measured by Eq. (9) will change accordingly. 
In this section, we discuss how to place the contact 
points appropriately to achieve better grasp quality 
for 3D grasps. The following assumptions are made 
first: 

1. The initial contact points form a force-closure 
unit grasp. 

2. The ith contact position ri is restricted to a face 
denoted by Ci. 

5.1  Necessary condition for grasp quality im-
provement 

Considering the ith contact position ri moving to 

a new position i
r  on the contact face Ci (Fig. 6a), the 

amount of the change δ i i i
 r r r  can be expressed in 

the initial local contact coordinate frame by [0 δyi 
δzi]

T. Note that Ri in Eq. (3) is a constant matrix when 
ri is restricted to the movement on the face Ci. 
Therefore, i

r  can be expressed in the object coordi-

nate frame as 
 
 T[0 δ δ ] .i i i i iy z r r R  (23) 

 

The grasp matrix Gi changes to i
G  accordingly, 
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where 0 is a 3×3 zero matrix and Si is a skewed 
symmetric matrix in the following form: 
 

 

0 δ δ

δ 0 0 .

δ 0 0

i i

i i

i

z y

z

y

 
   
  

S  (25) 

 
Suppose after moving by δri for all the contact 

points on each contact face, the total grasp wrench set 
W calculated using Eq. (6) changes to W′. Let 
A=W+{w0} and A′=W′+{w0} (Fig. 6b). Suppose both 
coA and coA′ contain the origin of the wrench space in 
their interiors. Let ρj=max{ρ|−ρwjcoA} for all the 
disturbance wrenches wj contained in Wd, and k be the 
index that satisfies ρk≤ρj for all j=1, 2, ···, M. Obvi-
ously, ρk is the grasp quality measured by Eq. (9). In 
Fig. 6b, the hyperplane H with normal nk supports 
coA at s, which is the intersection point on the 
boundary of coA  by the ray R. Suppose both s and nk 
are calculated by the ray-shooting algorithm before-
hand (the short-circuiting technique is not imple-

mented). We have T( ) 1A k kh  n n s  when ignoring 

the tolerance ε. Therefore, it can be concluded that 
 

 T

1
.k

k k k

  
s

w n w
 (26) 

 
When the total grasp wrench set is changed to W′ 

(Fig. 6b, dotted line) we have T( ) ,A k kh  n n s  where 

s′ is the intersection point on the boundary of coA′ by 
the ray R. All three points s′, s, and wk lie on the same 
ray R; thus, the solution to max{ | co }k k A     w  

is bounded by 
 

 ( ) .k A k k
k

h 


  

s
n

w
 (27) 

 
Therefore, hA′(nk)>1 is a necessary condition for the 
grasp quality improvement when W is changed to W′. 
We use this necessary condition to guide the move-
ment of contact points, and it works well in our nu-
merical examples demonstrated in Section 6. 

5.2  Heuristic regrasp planning algorithm 

We begin with a discussion about the influence 
of the movement of δri on hA(nk). Choose δri=[0 δyi 
δzi]

T with respect to each local contact coordinate 

frame for i=1, 2, ···, m. Let T .i i kd G n  Then from 

Eq. (24), the variation δdi is formulated by 
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n R n R

d = n R

n R

 (28) 

 
where RVi1, RVi2, and RVi3 are the first, second, and 
third column vectors, respectively, of the rotation 
matrix Ri, and nkRú

3 is a column vector formulated 
by the last three elements in nk. It is easy to prove that 

FC ( )
i ih d  satisfies the Lipschitz continuity from 

Eq. (18), which implies its differentiability almost 
everywhere w.r.t. di. From Eq. (28), di is differentiable 
w.r.t. yi and zi. Let di=[dxi dyi dzi]

T. Then the partial 
derivatives of FC ( )

i ih d  w.r.t. yi and zi are determined 

by 
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(29) 
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Fig. 6  The moving of the contact points 
(a) The ith contact point moving on a face; (b) The variation 
of the total grasp wrench set resulting from the moving of all 
the contact points 
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(30) 
 

Note that FC ( )
i ih d  is not differentiable when 

2 2d d max{0, d }.i i i iy z x     Luckily, the irregular 

di is rarely encountered in numerical examples. Be-
sides, we can perform a small perturbation to escape 
this irregular point even if a non-differentiable case is 
encountered. 

Let y=[y1 z1 y2 z2 ··· ym zm]T be a 2m-dimensional 
column vector and δy combine the variations of all the 
contact points. From Eq. (14), δhA(nk)=Lkδy, where Lk 
is formulated by 
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 (31) 

 
Note that we use a subscript k in Eq. (31) because nk is 

hidden in T .i i kd G n  For all the other disturbance 

wrenches wj (j≠k) contained in Wd, we can calculate Lj 
by Eq. (31) in the same way. Therefore, the variation 
δy satisfying Lkδy>0 is a possible direction for grasp 
quality improvement. Based on this observation, we 
formulate the following linear programming problem 
for the estimation of the optimum amount of change 
Δy in the initial local contact coordinate frame: 

 

 
1 1 2 2

max

s.t. , ,
k

   

L y

A y b A y b
 (32) 

 
where T T T T T T

1 1 2 1 1[ ] ,k k M A L L L L L   b1=[ρk−ρ1 

ρk−ρ2 … ρk−ρk−1 ρk−ρk+1 … ρk−ρM]T, and A2Δy≥b2 
represents the constraint such that the new contact 
position i iCr  after the movement of Δy. Let Δy* 

denote the solution to Eq. (32) and suppose ║Δy*║≠0. 
We have a moving of χΔy* which will certainly in-
crease hA(nk) if χ is a sufficiently small positive 

number. Let σ be the termination tolerance and nmax be 
the maximum iteration number. By assigning χ(0, 1), 
we have the heuristic regrasp planning algorithm as 
follows: 
 

Algorithm 2    Heuristic regrasp planning 
Input: The initial force-closure unit grasp contact positions ri

and the constraint face Ci for m contact points, and the dis-
turbance wrench set Wd. 
Output: The final grasp quality ρ* and all contact points ri. 
1 Compute ρj and nj for all the disturbance wrenches in Wd.

Let ρ*←min ρj. Select k such that ρk=ρ
* 

2 Formulate Eq. (32) and compute Δy*, n←0 
3 repeat 

4 0
i ir r  for i=1, 2, ···, m, update all ri by a moving of 

Δy*, and call Algorithm 1 
5 if ρm≤ρ

* or it is not a force-closure unit grasp then 
6 repeat 

7     0 ,i ir r  ,   y y  update all ri by a moving 

of Δy*, and call Algorithm 1 

8 until  y or ρm>ρ* 

9 if  y  then 

10     break 
11 end if 
12 end if 
13 ρ*←ρm, n←n+1, formulate Eq. (32), and compute Δy*

14 until  y  or n≥nmax 

15 return ρ* and ri for i=1, 2, ···, m 

 
 
6  Numerical examples 
 

We verify the performance of the proposed al-
gorithms in this section using three numerical exam-
ples. All the examples were implemented using 
MATLAB 7.5 on a 3.16 GHz Intel Core 2 Duo 
desktop computer. The coefficients of the friction for 
contact points and disturbance forces were set to 0.3 
and 1.5, respectively. The unit of length for the ob-
jects was cm while the unit of force was set to N in the 
numerical examples. The termination tolerance ε in 
the ray-shooting algorithm was set to 10−5. We adopted 
the same friction cone for a vertex as that defined by 
Strandberg and Wahlberg (2006). It was taken as the 
union of all the cones belonging to the faces forming 
the vertex. An additional cone in the direction of the 
averaged vertex normal was also added. 
Example 1    This example was designed to verify the 
efficiency of the grasp evaluation algorithm in 2D 
grasps. Five 2D grasp cases were considered (Fig. 7).  
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We first set the resolution of the disturbance 
force directions to 5°, i.e., n=72, and calculated 164 
disturbance wrenches in Wd for each case. Five grasp 
qualities were obtained, i.e., ρC=0.6477, ρE=0.5877, 
and ρA=ρB=ρD=0.7213 after calling Algorithm 1. Our 
grasp quality measure more closely resembled human 
intuition compared with other quality evaluation 
methods discussed by Borst et al. (2004). The results 
were independent of the scale and the choice of the 
reference frame. The computation costs measured by 
time are listed in Table 2. Next, we increased the 
resolution of the disturbance force directions to 0.1°, 
i.e., n=3600, and repeated the grasp evaluation pro-
cedure. To demonstrate the efficiency improvement 
yielded by our searching tree, we also implemented 
the grasp evaluation algorithm without the searching 
tree. The computation costs are also listed in Table 2. 
For n=72 and n=3600, the average CPU times of our 
searching tree method were only 4.64% and 2.02% 
respectively, of those calculated without the searching 
tree. 
Example 2    This example was originally presented 
by Strandberg and Wahlberg (2006) for 3D grasp 
evaluation. A box of 2×2×5 was grasped with four 
point contacts (Fig. 8a). The object coordinate frame 
was attached to the center of the box. The contact 
positions were [±1 0 0]T and [0 ±1 0]T. The  

 
 
 
 
 
 
 
 
 
 
 
 
resolutions of the disturbance force directions were 
set to 10.59° and 10° for θ and φ, respectively. Thus, it 
resulted in a total of 578 force directions and 2664 
disturbance wrenches in Wd. The grasp evaluation 
algorithm with the short-circuiting technique was 
implemented twice: in the first implementation grav-
ity was ignored, while in the second one gravity of 
g=[0 0 −0.3]T was considered. Then, a contact point in 
the center of the bottom face was added (Fig. 8b) to 
increase the grasp quality. The algorithm proposed by 
Strandberg and Wahlberg (2006) adopts the UGWS as 
a convex combination of all linearized primitive 
wrenches for simplification. Thus, to compare com-
putation time, we have to compute the Minkowski 
sum of primitive wrenches before implementing their 
method. We linearized the friction cone FCi using a 
k-sided pyramid (k=3, 5, 7) and computed the ele-
ments of the Minkowski sum of primitive wrenches 
using the algorithm proposed by Zheng and Qian 
(2006). Then, we implemented Strandberg and 
Wahlberg’s method using the convex hull of the 
computed Minkowski sum. The consumed CPU time 
and grasp quality ρm are listed in Table 3 in comparison 
with those obtained using our method. 
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Fig. 7  Five 2D grasp examples 
The original grasp object is a rectangle of 8×4 in case A. The 
reference frame is placed in the center of the rectangle, and 
the coordinates of the four contacts are [±2 ±2]T. All the other 
cases are modifications of case A. In case B the origin is 
moved left by two units and the reference frame is rotated 
anticlockwise by 45°. In case C all the contact points are 
moved right by one unit. In case D the grasp and the object 
are scaled by a factor of 1.5. In case E two rectangles with 
dimensions 2×4 are added to the grasped object 

Table 2  Execution time for Example 1 

Execution time (ms) 

With searching tree Without searching treeCase

n=72 n=3600 n=72 n=3600

A 38.75 130.8 879.3 6426 

B 42.71 134.8 929.6 6663 

C 40.93 134.5 776.3 6641 

D 33.95 127.8 763.4 6329 

E 35.15 130.7 781.0 6463 

Mean 38.30 131.7 825.9 6504 

n is the number of discretized disturbance force directions 
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Fig. 8  Illustration of grasps evaluated in Example 2 
(a) Four point contacts; (b) Five point contacts 
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We can see that the consumed CPU time of our 

method was less than that of Strandberg and Wahl-
berg’s method even when k=3 (the minimum number 
to linearize the friction cone for 3D grasps) and our 
method obtained much higher accuracy on grasp 
quality (Table 3). The CPU time consumed using their 
method increased dramatically with the growth of the 
number to linearize the friction cone and the number 
of contacts because there were (k+1)m−1 elements in 
the Minkowski sum of primitive wrenches. For in-
stance, we obtained 32 767 elements in computing the  
Minkowski sum and found 977 044 hyperplanes when 
implementing their method for k=7 and m=5. There-
fore, their method is not suitable for grasp evaluation 
based on the UGWS described in this paper when the 
number of contacts is relatively large. 
Example 3    The contact points planning was tested 
in this example for a triangular prism with height 2 
(Fig. 9), given by Watanabe and Yoshikawa (2007). 
The base of this triangular prism was a right isosceles 

triangle with a size of 4×4×4 2 . We placed the ob-
ject coordinate frame at the isosceles vertex of the 
bottom triangular; thus, the object’s centroid trans-
lated to [4/3 4/3 1]T. The gravitational force applied to 
the object was g=[0 0 −0.16]T, and the contact points 
were restricted to three lateral faces. Five thousand 
grasp configurations were sampled on the object, and 
279 force-closure unit grasps were found by running 
the grasp test part, i.e., lines 1 to 14, of Algorithm 1. 
The average CPU time for a grasp test was 10.38 ms. 
Next, we planned the optimal grasp configuration 
using the heuristic regrasp planning algorithm pro-
posed in Section 5. The resolutions of the disturbance 
force directions were set to 15° for both θ and φ, re-
sulting in a total of 266 force directions and 932 dis-
turbance wrenches in Wd. The termination tolerance σ 
and the maximum iteration number nmax were taken to 
be 10−4 and 20, respectively. We set χ=0.2 and took 
the first 50 force-closure unit grasps in the grasp test  

 
 
 
 
 
 
 
 
 
procedure as the initial grasps. Fig. 10 shows the 
correlation between the initial and the final grasp 
quality. The average grasp qualities for the initial 
grasp and the final grasp were 0.0206 and 0.1069, 
respectively. The average CPU time for a single heu-
ristic searching procedure was 180.7 s. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

7  Conclusions 
 
Like the evaluation procedure based on the abil-

ity of the grasp to reject disturbance forces proposed 
by Strandberg and Wahlberg (2006), our approach 
incorporates the object geometry, can be visualized 
easily for 3D grasps, and is independent of the scale 
and choice of the reference frame. However, our 
method is based on an enhanced ray-shooting algo-
rithm in which the geometry of the grasp wrench 
space is read by the support mapping. Therefore, a 
common and more natural grasp wrench space which 
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Fig. 9  Contact points planning in Example 3

0 0.04 0.08 0.12 0.16
0

0.04

0.08

0.12

0.16

Initial grasp quality

F
in

al
 g

ra
sp

 q
ua

lit
y

Fig. 10  Initial vs. final grasp quality for contact points 
regrasp planning in Example 3 

Table 3  Comparison of consumed CPU time and grasp quality between our method with short-circuiting and 
Strandberg and Wahlberg (2006)’s method in Example 2 

CPU time (s) ρm 
Strandberg and Wahlberg (2006) Strandberg and Wahlberg (2006)Grasp configuration 

Ours  
k=3 k=5 k=7 

Ours 
k=3 k=5 k=7 

Fig. 8a, g=[0 0 0]T 2.69 10.1   37.0   68.7 0.2236 0.1591 0.2039 0.2169 
Fig. 8a, g=[0 0 −0.3]T 2.65 10.5   38.2   75.9 0.1949 0.1208 0.1710 0.1844 
Fig. 8b, g=[0 0 −0.3]T 2.73 38.6 139.4 334.2 0.3317 0.1951 0.2790 0.3037 

k is the number of force vectors to linearize the friction cone 
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limits the normal component of each individual con-
tact force to one, can be implemented in our grasp 
evaluation without linearization of friction cones. 
Contact points regrasp planning is also discussed in 
this paper. Starting from the initial force-closure unit 
grasp, a heuristic searching algorithm to iteratively 
improve the grasp quality is proposed based on a 
necessary improvable condition. The efficiency and 
effectiveness of the proposed algorithms are illus-
trated by three numerical examples. 

 
References 
Bicchi, A., 2000. Hands for dexterous manipulation and robust 

grasping: a difficult road toward simplicity. IEEE Trans. 
Robot. Autom., 16(6):652-662.  [doi:10.1109/70.897777] 

Borst, C., Fischer, M., Hirzinger, G., 2004. Grasp Planning: 
How to Choose a Suitable Task Wrench Space. IEEE Int. 
Conf. on Robotics and Automation, p.319-325.  [doi:10. 
1109/ROBOT.2004.1307170] 

Chinellato, E., Fisher, R.B., Morales, A., del Pobil, A.P., 2003. 
Ranking Planar Grasp Configurations for a Three-Finger 
Hand. IEEE Int. Conf. on Robotics and Automation, 
p.1133-1138.  [doi:10.1109/ROBOT.2003.1241745] 

Ding, D., Liu, Y.H., Wang, M.Y., Wang, S.G., 2001a. Auto-
matic selection of fixturing surfaces and fixturing points 
for polyhedral workpieces. IEEE Trans. Robot. Autom., 
17(6):833-841.  [doi:10.1109/70.976003] 

Ding, D., Liu, Y.H., Zhang, J., Knoll, A., 2001b. Computation 
of Fingertip Positions for a Form-Closure Grasp. IEEE Int. 
Conf. on Robotics and Automation, p.2217-2222.  [doi:10. 
1109/ROBOT.2001.932952] 

Ferrari, C., Canny, J., 1992. Planning Optimal Grasps. IEEE 
Int. Conf. on Robotics and Automation, p.2290-2295.  
[doi:10.1109/ROBOT.1992.219918] 

Gilbert, E.G., Foo, C.P., 1990. Computing the distance between 
general convex objects in three-dimensional space. IEEE 
Trans. Robot. Autom., 6(1):53-61.  [doi:10.1109/70.88117] 

Li, J.W., Liu, H., Cai, H.G., 2003. On computing three-finger 
force-closure grasps of 2-D and 3-D objects. IEEE Trans. 
Robot. Autom., 19(1):155-161.  [doi:10.1109/TRA.2002. 
806774] 

Liu, Y.F., Lam, M.L., Ding, D., 2004. A complete and efficient 
algorithm for searching 3-D form-closure grasps in the 
discrete domain. IEEE Trans. Robot., 20(5):805-816.  
[doi:10.1109/tro.2004.829500] 

Liu, Y.H., 1999. Qualitative test and force optimization of 3-D 
frictional form-closure grasps using linear programming. 
IEEE Trans. Robot. Autom., 15(1):163-173.  [doi:10.1109/ 
70.744611] 

Liu, Y.H., 2000. Computing n-finger form-closure grasps on 
polygonal objects. Int. J. Robot. Res., 19(2):149-158.  
[doi:10.1177/02783640022066798] 

Mangialardi, L., Mantriota, G., Trentadue, A., 1996. A three- 
dimensional criterion for the determination of optimal 
grip points. Robot. Comput.-Integr. Manuf., 12(2):157- 
167.  [doi:10.1016/0736-5845(96)00001-4]  

Mantriota, G., 1999. Communication on optimal grip points for 
contact stability. Int. J. Robot. Res., 18(5):502-513.  

[doi:10.1177/027836499901800506] 
Mirtich, B., Canny, J., 1994. Easily Computable Optimum 

Grasps in 2-D and 3-D. Proc. IEEE Int. Conf. on Robotics 
and Automation, p.739-747.  [doi:10.1109/ROBOT.1994. 
351399] 

Murray, R.M., Li, Z., Sastry, S.S., 1994. A Mathematical In-
troduction to Robotic Manipulation. CRC Press, Boca 
Raton, FL, USA. 

Phoka, T., Niparnan, N., Sudsang, A., 2006. Planning Optimal 
Force-Closure Grasps for Curved Objects by Genetic 
Algorithm. IEEE Conf. on Robotics Automation and 
Mechatronics, p.1-6.   [doi:10.1109/RAMECH.2006.252 
683] 

Roa, M.A., Suárez, R., 2009. Finding locally optimum force- 
closure grasps. Robot. Comput.-Integr. Manuf., 25(3): 
536-544.  [doi:10.1016/j.rcim.2008.02.008] 

Salisbury, K., Roth, B., 1983. Kinematics and force analysis of 
articulated mechanical hands. J. Mech. Transm. Autom. 
Des., 105(1):35-41.  [doi:10.1115/1.3267342] 

Strandberg, M., Wahlberg, B., 2006. A method for grasp 
evaluation based on disturbance force rejection. IEEE 
Trans. Robot., 22(3):461-469.  [doi:10.1109/tro.2006.870 
665] 

Suárez, R., Roa, M., Cornella, J., 2006. Grasp Quality Meas-
ures. Technical Report IOC-DT-P-2006-10, Institut 
d’Organització i Control de Sistemes Industrials, Uni-
versitat Politecnica de Catalunya, Barcelona, Spain. 

Teichmann, M., 1996. A Grasp Metric Invariant under Rigid 
Motions. Proc. IEEE Int. Conf. on Robotics and Auto-
mation, p.2143-2148.  [doi:10.1109/ROBOT.1996.506187] 

Watanabe, T., Yoshikawa, T., 2007. Grasping optimization 
using a required external force set. IEEE Trans. Autom. 
Sci. Eng., 4(1):52-66.  [doi:10.1109/TASE.2006.873005] 

Xiong, Y.L., 1994. Theory of point contact restraint and qua-
litative analysis of robot grasping. Sci. China Ser. A, 
37(5):629-640. 

Zheng, Y., Chew, C.M., 2009. A Numerical Solution to the 
Ray-Shooting Problem and Its Applications in Robotic 
Grasping. IEEE Int. Conf. on Robotics and Automation, 
p.2080-2085.  [doi:10.1109/ROBOT.2009.5152184] 

Zheng, Y., Qian, W.H., 2006. Limiting and minimizing the 
contact forces in multifingered grasping. Mech. Mach. 
Theory, 41(10):1243-1257.  [doi:10.1016/j.mechmachtheory. 
2005.11.001] 

Zheng, Y., Qian, W.H., 2009. Improving grasp quality evalua-
tion. Robot. Auton. Syst., 57(6-7):665-673.  [doi:10.1016/j. 
robot.2008.12.002] 

Zheng, Y., Lin, M.C., Manocha, D., 2010. A Fast 
n-Dimensional Ray-Shooting Algorithm for Grasping 
Force Optimization. IEEE Int. Conf. on Robotics and 
Automation, p.1300-1305.  [doi:10.1109/ROBOT.2010. 
5509297] 

Zhu, X.Y., Wang, J., 2003. Synthesis of force-closure grasps on 
3-D objects based on the Q distance. IEEE Trans. Robot. 
Autom., 19(4):669-679.  [doi:10.1109/TRA.2003.814499] 

Zhu, X.Y., Ding, H., Li, H.X., 2001. A Quantitative Measure 
for Multi-fingered Grasps. IEEE/ASME Int. Conf. on 
Advanced Intelligent Mechatronics, p.213-219. 

Zhu, X.Y., Ding, H., Wang, M.Y., 2004. A numerical test for 
the closure properties of 3-D grasps. IEEE Trans. Robot. 
Autom., 20(3):543-549.  [doi:10.1109/TRA.2004.825514] 


