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Abstract: The stability of quantized innovations Kalman filtering (QIKF) is analyzed. In the analysis, the
correlation between quantization errors and measurement noises is considered. By taking the quantization errors as
a random perturbation in the observation system, the QIKF for the original system is equivalent to a Kalman-like
filtering for the equivalent state-observation system. Thus, the estimate error covariance matrix of QIKF can be
more exactly analyzed. The boundedness of the estimate error covariance matrix of QIKF is obtained under some
weak conditions. The design of the number of quantized levels is discussed to guarantee the stability of QIKF.
To overcome the instability and divergence of QIKF when the number of quantization levels is small, we propose
a Kalman filter using scaling quantized innovations. Numerical simulations show the validity of the theorems and
algorithms.
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1 Introduction

Because of the finite computation precision in
micro-processors (Karlsson and Gustafsson, 2005a;
2005b), estimation with quantized data has long
been a well studied topic in digital signal processing
(DSP) (Curry et al., 1970; Clements and Haddad,
1972).

Recently, wireless sensor networks (WSNs) have
attracted much attention due to their applications
in environmental monitoring, intelligent transporta-
tion, space exploration, military surveillance, etc.
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(Karlsson and Gustafsson, 2005a; 2005b; Xiao et al.,
2006; Sun et al., 2007; Duan et al., 2008; Msechu
et al., 2008; Yu et al., 2009). Because of the band-
width constraint, each sensor is only able to trans-
mit a finite number of bits. Observations have to
be quantized before transmission. Thus, a revisit
of the estimation with quantized data in WSNs is
warranted.

Much of the early work (Curry, 1970; Curry
et al., 1970; Clements and Haddad, 1972) devised
approximate point estimators of the Kalman-type
filter based on the optimal conditional mean es-
timator, which in general requires numerical in-
tegration for implementation. Sviestins and Wi-
gren (2000) derived an exact density filter based on
solving the Fokker-Planck equation and Bayes’ rule
for a special case of the problem, under somewhat
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restrictive assumptions. Recently, Karlsson and
Gustafsson (2005a; 2005b) and Sukhavasi and Has-
sibi (2009) applied particle filtering to solve the es-
timation problems, which practically amounts to re-
peatedly using Bayes’ rule.

Currently, quantized Kalman filtering is applied
to solve estimation problems in WSNs (Ribeiro,
2005; Ribeiro et al., 2006; You et al., 2008; 2011;
Xu and Li, 2011). The sensor measurements are
quantized into several bits to save energy. It is ob-
vious that quantizing sensor measurements can lead
to large quantized noise when the observed value is
large, which then leads to poor estimation accuracy.
In Ribeiro (2005) and Ribeiro et al. (2006), this lim-
itation was overcome by developing an elegant dis-
tributed estimation approach based on quantizing
the innovation to one bit (the so-called sign of in-
novation or SOI) (Fig. 1). There the quantization
Kalman filter is obtained under the Gaussian as-
sumption of the predicted distribution. In You et
al. (2008; 2011) and Msechu et al. (2008), quantized
innovations Kalman filtering (QIKF) was general-
ized to handle multiple quantization levels. All of
these discussions are based on the Gaussian assump-
tion of the predicted distribution and the indepen-
dence assumption between quantization errors and
measurement noises. This approximation is quite
prevalent in low-complexity algorithms for nonlinear
filtering. However, despite its superior practical use-
fulness, the stability of QIKF has not been analyzed
in a rigorous mathematical way for a long time.

In the context of analyzing the stability of the
closed loop system under state feedback control, it
is important to investigate the stability of the ob-
server. Now the question that needs to be answered
is whether QIKF can still maintain stability in the
face of quantization errors. On the other hand, does
the true estimation error covariance matrix of QIKF
remain following the modified Riccati recursion? If
the answer is negative, then under what condition is
the QIKF stable?

The main objective of the current study is to
more exactly analyze the stability of QIKF from
the view of control theory. The other objective of
this work is to give a modified filtering algorithm to
improve the stability of QIKF when the number of
quantization levels is small.

Notations: The superscript ‘T’ stands for ma-
trix transpose, superscript ‘−1’ stands for matrix

Sensor 2Sensor 1 Sensor N

System xk+1=Fxk+wk

1(k)ε

v1(k)

2(k)ε N(k)ε

v2(k) vN(k)

Fig. 1 State estimation with quantized innovations

inverse, and ‘−T’ stands for the transposition of ma-
trix inverse. E(·) stands for expectation. We use ‖ ·‖
to denote the matrix norm. Given an n×m matrix
A, the norm of A is defined as ‖A‖ = (tr(ATA))1/2,
where tr(·) is the trace of a square matrix. Given a
symmetric matrix A, A > 0 means that A is a pos-
itive definite matrix, and A ≥ 0 means that A is
a positive semi-definite matrix. Given two positive
semi-definite matrices A and B, A > B means that
A −B > 0, and A ≥ B means that A−B ≥ 0.

2 Modeling assumptions and prelimi-
naries

In this study, to highlight the impact of quantifi-
cation on the filtering performance, we focus on the
state estimation problem of a linear time-invariant
stochastic system.

Consider the discrete linear time-invariant
stochastic system

xk+1 =Fxk +wk, (1)

yk =Hxk + vk, (2)

where xk ∈ R
n is a state vector to be estimated at

time tk = kΔt, Δt is the time step of the sample,
F is a time-invariant matrix with a suitable dimen-
sionality. yk ∈ R is the scalar observation of the
sensor, and H is the measurement coefficient vec-
tor. wk ∈ R

n and vk ∈ R are uncorrelated Gaussian
noises with zero mean and positive covariance matri-
ces Q and R. The initial value x0 with mean μ0 and
variance P0 is independent of wk and vk.

For the system (1)–(2), the discrete minimum-
variance linear estimate of xk, i.e., the standard
Kalman filter, is determined by Algorithm 1.

It is known that x̂∗
k|k is the minimum-variance

estimate, P∗
k|k is the estimation error covariance ma-

trix after processing the measurement yk, and P∗
k|k−1

is the extrapolated error covariance matrix.
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Algorithm 1 Standard Kalman filter
1: Initialization. Give x̂0|0 (E(x̂0|0) = μ0) and P0|0.
2: Time update:

x̂∗
k|k−1 = Fx̂∗

k−1|k−1, (3)

P∗
k|k−1 = FP∗

k−1|k−1F
T + Q, (4)

K∗
k = P∗

k|k−1H
T(HP∗

k|k−1H
T +R)−1. (5)

3: Measurement update:

x̂∗
k|k = x̂∗

k|k−1 + K∗
k(yk − Hx̂∗

k|k−1), (6)

P∗
k|k = P∗

k|k−1 − K∗
kHP∗

k|k−1, (7)

where x̂∗
k|k−1 and x̂∗

k|k are called the priori and pos-
teriori estimates, respectively.

3 Kalman filter using quantized inno-
vations

In this section, we briefly review the state esti-
mation based on quantized innovations.

3.1 Quantized innovations

Recently, there has been a lot of resurgent in-
terest in the research on quantized estimation, which
has applications in networked systems such as WSNs
(You et al., 2009). Because of the bandwidth con-
straint, each sensor is only able to transmit a finite
number of bits. Observations have to be quantized
before transmission.

The activated sensor makes an observation, and
computes the innovation ε(k) = Y(k)− ̂Yk|k−1. The
one-step predictor ̂Yk|k−1 of the observation and the
inverse (S1/2

k )−1 are received by the sensor from the
estimator center, where Sk is the innovation covari-
ance (cf. Eq. (14)). Denote the normalized innova-
tion as

ε(k) = (S1/2
k )−1ε(k). (8)

Then each component εi(k) (i = 1, 2, · · · , d) of the
normalized innovation ε(k) is quantized to produce a
quantized innovation ε(k) = qL(ε(k)). We consider
a symmetric L = (2l + 1) levels quantizer εi(k) =

qL(εi(k)), where L is the number of quantization
levels for every component of the innovation vector.
More specifically, the symmetric quantizer εi(k) =

qL(εi(k)) for εi(k) is given by

qL(εi(k))=

⎧
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al, εi(k) ∈ (bl,+∞),

· · · · · ·
a2, εi(k) ∈ (b2, b3],

a1, εi(k) ∈ (b1, b2],

0, εi(k) ∈ (−b1, b1],

−a1, εi(k) ∈ (−b2,−b1],

−a2, εi(k) ∈ (−b3,−b2],

· · · · · ·
−al, εi(k) ∈ (−∞,−bl],

(9)

where b1, b2, · · · , bl are the thresholds of the
minimum distortion quantization (Max, 1960).
Thus, the normalized innovation ε(k) is quan-
tized to produce a quantized innovation ε(k) =

[ε1(k), ε2(k), · · · , εd(k)]T. For the same number of
quantization levels, different transmission strategies
will lead to different numbers of bits (Xu and Li,
2011). In this study, we focus only on the number of
quantization levels, L.

3.2 Kalman filtering using quantized innova-
tions

Research on the state estimation using quan-
tization innovations has attracted considerable at-
tention (Ribeiro et al., 2006; You et al., 2008;
2009; 2011; Xu and Li, 2011). According to You
et al. (2009), the QIKF for a linear system can
be described as Algorithm 2. We denote the quanti-

Algorithm 2 Kalman filtering with quantization in-
novations
1: Initialization. Give x̂0|0 (E(x̂0|0) = μ0) and P0|0.
2: Time update:

x̂k|k−1 = Fx̂k−1|k−1, (10)

Pk|k−1 = FPk−1|k−1FT + Q , (11)

Kk = Pk|k−1H
T(HPk|k−1H

T +R)−1. (12)

3: Quantization:

εk = yk −Hx̂k|k−1, (13)

Sk = HPk|k−1H
T +R, (14)

εk = qL((S1/2
k )−1εk). (15)

4: Measurement update:

x̂k|k = x̂k|k−1 + KkS1/2
k εk, (16)

Pk|k = Pk|k−1 − KkSkKT
k + KkCkKT

k . (17)
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zation error as

uk ≡ S1/2
k εk − εk. (18)

Denote the covariance matrix of quantization errors
as

Ck ≡ E[uku
T
k ]. (19)

The calculation of Ck will be discussed in Section
3.3.

From Eq. (19), we have

S1/2
k εk ≡ εk + uk

= Hxk + uk + vk −Hx̂k|k−1. (20)

Thus, introducing the quantization error at time k

is equivalent to introducing a perturbation uk into
observation system (2), which makes the measure-
ment innovation equal to S1/2

k εk. Hence, the original
state-observer system (1)–(2) becomes the equivalent
state-observer system

xk+1 =Fxk +wk, (21)

yk =Hxk + uk + vk. (22)

Remark 1 Since uk is non-Gaussian, and is corre-
lated to εk, x̂k|k is no longer the minimum variance
estimation of state xk. Accordingly, Pk|k is no longer
the actual estimation error covariance matrix. Thus,
in addition to system noise wk and observation noise
vk, the state estimation error also comes from two
parts: (1) the introduction of ‘undetermined’ ran-
dom perturbation uk in the observation system; (2)
non-Gaussianuk and the correlation between uk and
εk. In QIKF (Algorithm 2), the state estimation er-
ror from the first part is considered, and the second
part is ignored, especially the correlation between uk

and εk. Hence, the covariance matrix system of the
estimate errors in Algorithm 2 is no longer the case.
In fact, when the number of quantization levels L
is small, the actual covariance matrix of estimation
errors should be slightly larger than that obtained
from Eq. (17) in Algorithm 2. Accordingly, Sk is no
longer the actual covariance matrix of innovation εk.
This easily leads to the divergence of QIKF, espe-
cially when the system (1) is very unstable, i.e., the
eigenvalue of the system state transition matrix is
large.
Remark 2 It is known that, if there had been

no quantization before time k, then x̃k−1|k−1 would
be uncorrelated with εk, and thus independent of
εk, because both would be Gaussian distributed (Fu
and Xie, 2009). Hence, if εk were quantized, its
quantization error uk would be uncorrelated with
x̃k|k−1 = Fx̃k−1|k−1. Because quantization occurred
before time k, x̃k|k−1 and uk are correlated in gen-
eral. However, the correlation is typically weak.
In particular, the effect of past quantization errors
should be negligible and it is thus fair to ignore the
correlation between x̃k|k−1 and uk. Only the cor-
relations between εk, vk, and uk are considered in
this study. For the same reason, the impact of the
non-Gaussian of uk−1 on the Gaussian of εk is also
slight. In fact, the following conditions hold very
well in numerical simulations:
Assumption 1 Asymptotically, the measurement
innovation εk is approximately Gaussian distributed
with zero mean and variance Sk.
Assumption 2 The quantization error uk−1 is
uncorrelated with Hx̃k|k−1.

Note that, besides the Gaussianity assumption,
Ribeiro et al. and You et al. also assumed that the
quantizing error uk is uncorrelated with all other
random variables. Because of this, they can easily
obtain the QIKF. For the same reason, the stability
of QIKF needs to be improved. The main difference
between our Assumptions 1 and 2 and the assump-
tion in Ribeiro (2005), Ribeiro et al. (2006), and You
et al. (2008), is that we consider the correlation be-
tween quantization error uk and measurement noise
vk. Thus, the effect of the quantization noise can be
fully considered in the algorithm. The stability of
the resulting filter can thus be improved.

3.3 Some important properties

For later application, we provide some proper-
ties of the quantization error uk and the estimation
algorithm.
Theorem 1 For the estimation error dynamics

x̃k|k−1 ≡ xk − x̂k|k−1 = Fx̃k−1|k−1 +wk−1, (23)

x̃k|k ≡ xk − x̂k|k = Hx̃k|k−1 + vk + uk, (24)

the estimation error x̃k|k, the prediction error x̃k|k−1,
and the quantization erroruk have zero-mean and an
even probability density function for all k > 0.
Proof As in Fu and de Souza (2009), the state-
ment can be easily shown by induction. Since
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E(x0|0) = μ0, x̃0|0 is zero-mean with an even proba-
bility density function. Note that L-level quantizer
qL(·) is an odd function. Suppose x̃k−1|k−1 is zero-
mean with an even probability density function for
some k − 1. Then it follows from Eqs. (23) and (24)
that x̃k|k is also zero-mean with an even probability
density function. Hence, by induction, x̃k|k is zero-
mean with an even probability density for all k > 0.
In addition, in view of Eq. (23), it follows that x̃k|k−1

has zero-mean and an even probability density func-
tion for all k > 0. In view of Eqs. (13)–(15) and (19),
we have

εk = yk −H x̂k|k−1

= H x̃k|k−1 + vk,

εk = qL((S
1/2
k )−1εk),

uk = S1/2
k εk − (Hkx̃k|k−1 + vk)

= S1/2
k qL((S

1/2
k )−1εk)− (Hkx̃k|k−1 + vk).

It follows that uk has zero-mean and an even proba-
bility density function for all k > 0.
Lemma 1 Let ε be a random variable with zero
mean and covariance matrix Σε. Consider the L-
level minimum distortion quantizer (9). There is
a real number αL ∈ (0, 1), named the ‘distortion
rate’, such that the covariance matrix Σq

L
of the

quantization error satisfies

Σq
L
≡ E{(ε− q

L
(ε))(ε− q

L
(ε))T}

≤ αLΣε → 0, as L → ∞. (25)

Equivalently, αL → 0, as L → ∞, where L is the
number of quantization levels.

Proof It follows from Gray and Neuhoff (1998)
that there is a real number 0 < αL < 1, such that

Σq
L
= αLΣε → 0, as L → ∞.

Remark 3 In this paper, the quantizer we con-
sider is the minimum distortion quantization in Max
(1960). The distortion rates of 2–17 levels minimum
distortion quantization (Max, 1960) are given in Ta-
ble 1. For more details, one can refer to Max (1960)
and the references therein.

For later application, we indicate some relation-
ships here, concerning the gain matrix Kk, the fore-
cast error variance matrix Pk|k−1, and the estimate
error variance matrix Pk|k. In Eqs. (12) and (17),

Kk and Pk|k can also be expressed as

Kk = (P−1
k|k−1 +HTR−1H)−1HTR−1

= (Pk|k −KkCkKT
k )H

TR−1, (26)

Pk|k = (I− KkH)Pk|k−1(I−KkH)T

+KkRKT
k +KkCkKT

k

= (I− KkH)Pk|k−1 +KkCkKT
k

= (P−1
k|k−1 +HR−1HT)−1 +KkCkKT

k . (27)

The derivation is straightforward and is hence
omitted.

Table 1 The distortion rate of the minimum distortion
quantization in Max (1960)

Number of Distortion Number of Distortion
quantization rate, quantization rate,

levels, L αL levels, L αL

2 0.3634 10 0.02293
3 0.1902 11 0.01922
4 0.1175 12 0.01634
5 0.07994 13 0.01406
6 0.05798 14 0.01223
7 0.04400 15 0.01073
8 0.03454 16 0.009497
9 0.02785 17 0.008463

4 Performance evaluation of QIKF

Just as in the analysis in Remark 1, for an un-
stable system (1), quantization easily leads to the
divergence of QIKF. Hence, in this section, we dis-
cuss the stability of QIKF for system (1)–(2) under
Assumptions 1 and 2.

4.1 Preliminaries

To provide complete proofs of our main theo-
rems, we need to introduce some conclusions about
the boundedness of Pk|k−1, Kk, and Pk|k in Algo-
rithm 2.

For Pk|k−1, we consider the modified algebraic
Riccati equation (MARE)

Pk = FPk−1FT +Q − λFPk−1HT

·(HPk−1HT +R)−1HPk−1FT, (28)

where Pk = Pk|k−1. Research on the stability of
the MARE has attracted considerable attention as
it is vital to the stability problems related to packet
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dropout and the quantization of networked control
systems (You et al., 2008).

For unstable F, Sinopoli et al. (2004) proved
that there is a critical value

λ = arg inf
λ
{P|P > FPFT +Q− λFPHT

·(HPHT +R)−1HPFT}. (29)

When λ > λ, the MARE (28) has a unique positive
definite solution Pk satisfying

lim
k→∞

Pk → P, (30)

where P is the unique positive definite solution of
the algebraic Riccati equation

P = FPFT +Q− λFPHT(HPHT

+R)−1HPFT. (31)

Meanwhile, we know that the Pk = Pk|k−1 is
bounded; i.e., there are two positive real numbers,
α1 and β1, such that

α1In ≤ Pk|k−1 ≤ β1In, for all k ≥ 1, (32)

where In is an identity matrix with n dimensions. It
follows from Eqs (11), (12), and (14) that the Pk|k,
Kk, and Sk are also bounded when λ > λ. Hence,
when λ > λ, there are positive numbers α, β, μ, and
ν, such that

αIn ≤ Pk|k ≤ βIn, (33)

‖KkKT
k ‖ ≤ μ, (34)

0 ≤ Sk ≤ νId, (35)

for all k ≥ 1, where In and Id are identity matrices
with n and d dimensions, respectively.

Remark 4 When rankH = 1, it is shown in Si-
nopoli et al. (2004) that the closed form of λ is

λ = 1− 1

Πi|σu
i |2

. (36)

When H is invertible, λ depends only on the maxi-
mum eigenvalue of F , i.e.,

λ = 1− 1

maxi|σu
i |2

, (37)

where σu
i is the unstable eigenvalue of F . For more

details about λ, one can refer to Sinopoli et al. (2004)
and the references therein.

The following lemma comes from the results of
Sinopoli et al. (2004). It demonstrates some useful
properties of the Pk|k.
Lemma 2 Suppose that (F,Q1/2) is controllable
and (F,H) is detectable. Then for an unstable F,
there exists a λ ∈ (0, 1) such that the algebraic
equation

P = FPFT +Q− λK[H(FPFT

+Q)HT +R]KT (38)

has a positive definite solution P and the equation

Pk|k= FPk−1|k−1F
T− λKk[H(FPk−1|k−1F

T

+Q)HT +R]KT
k +Q (39)

admits a unique positive definite solution Pk|k sat-
isfying Pk|k → P as k → ∞ for any nonnegative
P0|0 ≥ 0 if and only if λ > λ, where K = PHTR−1

and Kk = Pk−1|k−1HTR−1.
Proof It can be obtained directly from Theorems
3–5 in Sinopoli et al. (2004).

4.2 Stability of QIKF

The following theorem provides the upper and
lower bounds for the estimation error covariance ma-
trix ˜Pk|k of QIKF.
Theorem 2 For the scalar observation system (1)–
(2), suppose that (F,Q1/2) is controllable and (F,H)

is detectable. If

αL + 2
√
αL < 1− λ, (40)

then for the estimation error covariance matrix ˜Pk|k
of QIKF, we have

P∗
k|k ≤ ˜Pk|k ≤ Pk|k (41)

for any nonnegativeP0 ≥ 0, where P∗
k|k is the unique

positive definite solution of Eq. (7) and Pk|k is the
unique positive definite solution of equation

Pk|k = FPk−1|k−1F
T+Q−(1−αL−2√αL)Kk

·[H(FPk−1|k−1FT +Q)HT+R]KT
k . (42)

Proof The proof is shown in the Appendix.
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Remark 5 Let λ denote the critical value in
Eq. (29). It follows from Theorem 2 that, besides
controllability and observability, to guarantee that
the QIKF is stable, we need

αL + 2
√
αL < 1− λ, (43)

which leads to

αL < 3− λ− 2
√

2− λ. (44)

Thus, the number of quantization levels to guarantee
a stable QIKF can be obtained according to Table 1.
Note that the condition (40) is only sufficient, but not
necessary. This means that the minimum number
of quantization levels obtained from condition (40)
is not the smallest one. In the process of theorem
derivation, the Cauchy-Schwartz inequality is used to
estimate the upper bound of the correlation matrix,
and hence the corresponding condition (40) obtained
is conservative.

The next theorem gives an estimate of the limit
of the covariance matrix ˜Pk|k, when it is bounded.
Theorem 3 For the scalar observation system (1)–
(2), suppose that (F,Q1/2) is controllable and (F,H)

is detectable. If

αL + 2
√
αL < 1− λ,

then for the estimation error covariance matrix ˜Pk|k,
we have

P∗ ≤ limk→+∞ ˜Pk|k ≤ limk→+∞ ˜Pk|k ≤ P (45)

for any P0 ≥ 0, where P∗ and P are solutions of the
respective algebraic equations

P∗ = FP∗FT+Q−P∗HT(HP∗HT +R)−1HP∗ (46)

and

P = FPFT+Q−(1−αL)PHT(HPHT + R)−1HP.

(47)

Proof First, it follows from Theorem 1 that

P∗
k|k ≤ ˜Pk|k ≤ Pk|k,

where P∗
k|k and Pk|k are the solutions of Eqs. (7) and

(42), respectively.

On the one hand, it follows from the convergence
of Kalman filter (Walrand, 1972) that

lim
k→+∞

P∗
k|k = P∗,

where P∗ is the solution of Eq. (46). On the other
hand, by Theorem 1 and Lemma 3, Eq. (42) admits
a unique positive definite solution Pk|k satisfying

lim
k→+∞

Pk|k = P

for any nonnegative P0 ≥ 0, where P is the solution
of Eq. (47). This completes the proof.

5 Kalman filter using scaling quantiza-
tion innovations

In some cases, communication bandwidth limits
are very strict. It is not feasible to improve the stabil-
ity of QIKF by increasing the number of quantization
levels. Hence, in this section, we discuss how to deal
with the instability and divergence issues of QIKF
when the number of quantization levels is small.

5.1 Modified Kalman filtering using scaling
quantized innovations

On the one hand, due to the independent as-
sumption in QIKF, in Eq. (17), the influence of cor-
relations between εk, vk, and uk is not considered.
From Remark 2 and the derivation of Theorem 1, it
is easy to determine that when the number of quanti-
zation levels is small, such as L ≤ 4, the effect of cor-
relations between εk, vk, and uk cannot be ignored,
especially when the system (1) is unstable. The cor-
relations between εk, vk, and uk make the covariance
matrix of the estimation error, ˜Pk|k, larger than the
one in Eq. (17). Correspondingly, the covariance ma-
trix ˜Sk of innovation is larger than that in Eq. (14).
Thus, the covariance matrix of the normalized inno-
vation is larger than the identity matrix. However,
the quantizer adopted is still the one in Max (1960),
for a unit covariance. Then there will be too many
values of normalized innovation located in the inter-
vals (−∞,−bl) and (bl,∞). The quantization error
might also be very large. Once it is beyond a certain
range, the QIKF will easily diverge.

Fig. 2 shows the schematic of the minimum dis-
tortion quantization with 2–3 levels for a standard
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normal and also the probability density diagram of a
standard normal. It is well known that the probabil-
ity of the value of a standard normal random variable
falling in interval (−3, 3) is not less than 0.997. For
2-level minimum distortion quantization, the value of
the quantizer is a1 = 0.7980 (Fig. 2a). This means
that the absolute quantizing error |ε− q2(ε)| may be
in interval (1, 2.20) with a great probability. Obvi-
ously, a large absolute quantizing error will cause a
great estimate error or even make the filter instable
and divergent. For other multiple level quantifica-
tions, similar phenomena exist. In short, quantizer
qL can lead to a large absolute quantizing error, and
cause instability and divergence of QIKF, although
the distortion rate is minimal.
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Fig. 2 Schematic of 2-level (a) and 3-level (b) quan-
tization

From above analysis, it can be determined that
the instability and divergence of QIKF are due not
only to the correlations between εk, vk, and uk, but
also to the quantitative method. To overcome these
limitations, two scaling factors τ1 and τ2 are intro-
duced into QIKF. By enlarging the matrix Sk, we
can make the normalized innovation εi(k) within
the quantization range (−bl, bl) as great as possible.
Meanwhile, the absolute quantizing error can also be
decreased by multiplying τ2. Thus, a modified QIKF
based on scaling quantizing innovations is obtained.
The modified Kalman filtering using scaling quan-

tized innovations (SQIKF) is provided by Algorithm
3.

Algorithm 3 Kalman filtering with scaling quan-
tized innovations (SQIKF)
1: Initialization. Give x̂0|0 (E(x̂0|0) = μ0) and P0|0.
2: Time update:

x̂k|k−1 = Fx̂k−1|k−1, (48)

Pk|k−1 = FPk−1|k−1F
T + Q, (49)

Kk = Pk|k−1H
T(HPk|k−1H

T +R)−1. (50)

3: Quantization:

εk = yk −Hx̂k|k−1, (51)

Sk = HPk|k−1H
T +R, (52)

εk = qL((τ1S1/2
k )−1εk). (53)

4: Measurement update:

x̂k|k = x̂k|k−1 + Kkτ1S1/2
k τ2εk, (54)

Pk|k = Pk|k−1 − KkSkKT
k + KkCkKT

k . (55)

5.2 Scaling factors τ1 and τ2

The key problem with SQIKF is how to design
the scaling factors τ1 and τ2.

The main technical difficulty in designing τ1 is
that there is no effective calculation approach for the
actual covariance matrix ˜Sk of innovation. Thus, we
can provide only an approximative estimate of τ1 as
far as possible. From the derivation of Theorem 1
and the above analysis, we know that ˜Sk ≥ Sk. At
the same time, the smaller is L, the larger should be
˜Sk compared with Sk. This means that the larger is
αL, the larger should be τ1. Note that αL ∈ (0, 1),
and τ1 should be larger than 1. It is known from the
Chebyshev inequality that if τ1 is too large, the nor-
mal innovations εk will be excessively compressed in
interval (−b1, b1). Thus, the measurement informa-
tion in innovation εk cannot be fully utilized. From
the above,

τ∗1 = 1 + αL (56)

should be a moderate choice.

On the other hand, the introduction of τ2 is to
reduce the absolute quantizing error |ε − qL(ε)| as
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far as possible. This implies that

τ∗2 (L) = argmin
τ

E[|ε− τ · qL(ε)|]. (57)

Obviously, it is very difficult to solve this optimiza-
tion problem. A suboptimal approach for the design
of τ2 is provided here. Specifically, we will provide
the approximate scope of τ2. Obviously, τ2 > 1; i.e.,
the lower bound of τ2 is 1. We analyze the upper
bound of τ2. Fig. 2 shows that, for the quantizer
qL in Eq. (9), most of the quantitative values qL(ε)

are concentrated in the area of the origin. It is well
known that the probability of the values of standard
normal random variables falling in interval (−3, 3)

is almost equal to 1. Fig. 2 shows that the quan-
tization values ai (i = 1, 2, · · · , l) are distributed
evenly in the interval (−al, al). However, the dis-
tance between al and 3 is significantly greater than
the distance between any other two adjacent quan-
tization values. Then if we amplify the quantization
value ai (i = 1, 2, · · · , l) and make them distributed
in interval (−3, 3) as evenly as possible, the absolute
quantizing error |ε−qL(ε)| can be reduced effectively.
To do this, we can take the maximum of τ2(L) such
that

3− τ2(L) · al = (3 − (−3))/(2L),

i.e.,
τ2(L) ≈ (3L− 3)/(L · al). (58)

The maxima of τ2(L) for 2–5 levels quantization are
provided in Table 2, where al is taken from Max
(1960).

Table 2 The scaling factor τ2

Number of quantization levels, L Upper bound of τ2

2 1.8797
3 1.6340
4 1.4901
5 1.3921

6 Numerical simulations

In this section, we present some cases in which
the critical values λ are known, and give some
examples.
Example 1 We consider a first-order system. The
discrete time linear time-invariant (LTI) system used
in this simulation has F = a (a > 1), H = 1, with
vk and wk having zero mean and variances Q = 0.09

and R = 2.5, respectively. For all simulations in this
example, x0|0 = 3 and P0|0 = 9.

When a = 1.15, it follows from Eqs. (36) and
(44) that λ = 0.2439 and αL ≤ 0.1057. Then it
follows from Table 1 that L ≥ 5. To show the effect
of the stability of system (1) on the stability of QIKF,
we consider a slightly larger a. When a = 1.35, by
using Eq. (37), inequality (44), and Table 1, we have
λ = 0.4513, αL ≤ 0.0598, and L ≥ 6.

Figs. 3 and 4 show the experimental and theo-
retical mean square errors (MSEs) of QIKF and stan-
dard KF for the system at a = 1.15 and a = 1.35, re-
spectively. Here, the experimental MSE is obtained
from N = 200 Monte Carlo simulations:

ExpMSE(k) =
1

N

N
∑

i=1

[(xk − xk|k)
T
(xk − xk|k)], (59)

and the theoretical MSE is obtained by

MSE(k) =

d
∑

j=1

Pk|k(j, j). (60)
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Fig. 3 Mean square errors (MSEs) of 2-, 3-, . . . , and
9-level (in increasing order of the number of levels
from top to bottom) KF and QIKF in Example 1
(a = 1.15)
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Fig. 4 Mean square errors (MSEs) of 2-, 3-, . . . , and
9-level (in increasing order of the number of levels
from top to bottom) KF and QIKF in Example 1
(a = 1.35)

Fig. 3 shows that the 2-level QIKF fails to track
the state, while QIKF works well when L ≥ 5. Fig. 4
shows that QIKF diverges when 2 ≤ L ≤ 4 and con-
verges when L ≥ 6. This means that QIKF actually
may be diverged when it is applied to an unstable
linear system. The more unstable is the system (1),
the easier is the QIKF diverged. However, when the
number of quantization levels meets the conditions
of Theorem 2 and Remark 5 (inequality (44)), QIKF
is stable. This shows the correctness of Theorem 1
and Remark 5.

Similar to Fu and de Souza (2009), we proceed to
verify Assumptions 1 and 2 for our example. Fig. 5
shows the probability density function of the nor-
malized innovations for 2–5 levels quantization, com-
puted using simulated data and normalized to have
a unity variance, along with a standard Gaussian
probability density function. We see that the com-
puted probability density function fits a Gaussian
probability density well even for 2–5 levels of quanti-
zation. Hence, Assumption 1 holds well. Fig. 6 shows
the correlation coefficients between quantization er-
ror uk and predictive measurement error Hx̃k|k−1.
The correlation coefficients are all between −0.04

and 0.04. This means that the quantization error uk
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Fig. 5 Probability density estimation of normalized
innovations for 2-level (a), 3-level (b), 4-level (c), and
5-level (d) quantization in Example 1 (time step=40)

is almost uncorrelated with the predictive measure-
ment error Hx̃k|k−1. Hence, Assumption 2 holds
well too.
Example 2 Consider the system (1)–(2) with

F =

(

1.25 1

0 0.98

)

(61)

and
H =

(

1 1
)

. (62)

In the system (1)–(2), wk and vk have zero mean and
variance Q = 0.09I2×2 and R = 2.5, x0|0 = (1, 0.3)

and P0|0 = 9I2×2. This time λ = 0.36, αL = 0.0788,
and L ≥ 6. In this example, Assumptions 1 and 2
still hold well.
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Fig. 6 Correlation coefficient between the quantiza-
tion error and the predictive measurement in Exam-
ple 1

Fig. 7 shows the MSEs of 2–9 levels quantized
filters. The 2- and 3-level quantized filters fail to
track the state over the entire course and the ex-
perimental MSEs diverge, although the theoretical
MSEs are bounded. When L > L = 6, the QIKF
successfully fulfills the tracking duty, showing the
significance of the additional quantization level. This
shows the correctness of Theorem 1 and also demon-
strates the correctness of the discussion on the num-
ber of quantizing levels in Section 4.2 (Remark 5).
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Fig. 7 Mean square errors (MSEs) of 2-, 3-, . . . , and
9-level (in increasing order of the number of levels
from top to bottom) KF and QIKF in Example 2

To evaluate the performance of QIKF, the ex-
perimental and theoretical MSEs of standard KF are
also shown in Fig. 7. With an increasing number of
quantization levels, the MSEs of QIKF come close to
the MSE of standard KF.

Fig. 8 shows the experimental and theoretical
MSEs of 4–17 levels QIKF, when the conditions of
Corollary 1 are met. Fig. 8 shows that the experi-
mental MSE of QIKF is always slightly larger than
the theoretical MSE. This is consistent with Corol-
lary 1.
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Fig. 8 Limits of the mean square error (MSE) in
Example 2

We can also see that, with the increasing number
of quantization levels, the experimental and theoret-
ical MSEs of QIKF approach the MSE of standard
KF. When L = 8, the MSEs of QIKF are very close
to the MSE of standard KF. When L = 17, they are
almost identical.
Example 3 The third example is aimed at demon-
strating the stability of SQIKF. All the parameters
are the same as those in Example 2. Fig. 9 shows
the experimental and theoretical MSEs of 2- and 3-
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Fig. 9 Mean square errors (MSEs) of 2-level (a) and 3-
level (b) QIKF and SQIKF in Example 3. For 2-level
SQIKF, τ1 = 1.3634, τ2 = 1.8; for 3-level SQIKF,
τ1 = 1.1902, τ2 = 1.3
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level QIKF and SQIKF where, for 2-level SQIKF,
τ1 = 1.3634, τ2 = 1.8, and for 3-level SQIKF, τ1 =

1.1902, τ2 = 1.3. This shows that the 2- and 3-level
QIKF fail to track the state over the entire course,
but the SQIKF works well. The validity of SQIKF is
demonstrated by this example.

7 Conclusions

This work mainly deals with the stability and
convergence of Kalman filtering based on quantized
measurement innovations. By taking the quantiza-
tion error as a random perturbation in the obser-
vation system, an estimate error analysis system is
obtained. Through theoretical analysis, the condi-
tions of stability of the filter are provided. To ensure
that the estimated covariance matrix is bounded, a
sufficient condition is provided. Then the number
of quantization levels to guarantee the stability of
QIKF is discussed. The asymptotic stability of the
filtering error system is also obtained in the general
vector case. We also discuss how to design the mod-
ified QIKF to guarantee the stability of QIKF. A
scaling QIKF is given to overcome the divergence
of QIKF when the number of quantization levels is
small. Finally, numerical simulations demonstrate
the validity of these theorems and algorithms.

Because of limited space, the stability of the
modified Kalman filtering using scaling quantized
innovations (SQIKF) for the general vector obser-
vation case will be discussed in another paper. Fur-
ther work is necessary to discuss the existence of a
stable state of QIKF. Moreover, an adaptive scheme
is under investigation, which can adjust the number
of quantization levels in response to the changing
environment.
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Appendix: Proof of Theorem 2

From Algorithm 2,

x̃k|k−1 = xk − x̂k|k−1

= Fxk−1 +wk−1 − Fx̂k−1|k−1

= Fx̃k−1|k−1 +wk−1, (A1)

x̃k|k = xk − x̂k|k
= xk − x̂k|k−1

−Kk(Hxk + uk + vk −Hx̂k|k−1)

= (I−KkH)x̃k|k−1 −Kk(uk + vk). (A2)

Under Assumptions 1 and 2, and taking the mean
square of Eqs. (A1) and (A2) on both sides, we obtain

˜Pk|k−1 = E[x̃k|k−1x̃
T
k|k−1]

= E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T]

= F˜Pk−1|k−1FT +Q, (A3)

˜Pk|k = E[x̃k|kx̃
T
k|k]

= E[(xk − x̂k|k)(xk − x̂k|k)T]

= (I−KkH)˜Pk|k−1(I−KkH)T

+KkE[(uk + vk)(uk + vk)]KT
k

= (I−KkH)˜Pk|k−1(I−KkH)T

+Kk(Ck +R+ E[ukvk + vkuk])KT
k . (A4)

It is easy to verify that the above two equations can
be rewritten as follows:

˜Pk|k = (I−KkH)(F˜Pk−1|k−1F
T +Q)(I−KkH)T

+Kk(Ck +R+ E[ukvk + vkuk])KT
k . (A5)

Hence, it follows from Eqs. (27), (11), (12), and (17)
that

˜Pk|k = (I−KkH)(F˜Pk−1|k−1F
T +Q)(I−KkH)T

+KkRKT
k +Kk(Ck + E[ukvk + vkuk])KT

k

= F˜Pk−1|k−1F
T +Q−KkSkKT

k

+Kk(Ck + E[ukvk + vkuk])KT
k . (A6)

By Lemma 1, there is a number αL, such that Ck ≤
αLSk. Because uk and vk are both scalar, by the
Cauchy inequality and Theorem 1, we have

E[ukvk] ≤ (E[ukuk])
1/2(E[vkvk])

1/2

≤ (αLSk)
1/2R1/2

≤ √
αLSk. (A7)

Thus, we have

˜Pk|k = F˜Pk−1|k−1F
T +Q −KkSkKT

k

+Kk(Ck + E[ukvk + vkuk])KT
k

≤ F˜Pk−1|k−1F
T +Q−KkSkKT

k

+(αL + 2
√
αL)KkSkKT

k

= F˜Pk−1|k−1F
T +Q

−[1− (αL + 2
√
αL)]KkSkKT

k . (A8)

If αL+2
√
αL ∈ (0, 1−λ), i.e., 1− (αL+2

√
αL) > λ,

then by Lemma 2 and Eqs. (11) and (14), the MARE

Pk|k = FPk−1|k−1F
T+Q− [1− (αL + 2

√
αL)]Kk

·[H(FPk−1|k−1F
T +Q)HT +R]KT

k (A9)

has a bounded positive definite solution Pk|k. Fi-
nally, by the optimality of KF and inequality (A8),
we obtain inequality (42). This completes the proof.


